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Should	Ethereum	be	okay	with	enshrining	more
things	in	the	protocol?
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From	the	start	of	the	Ethereum	project,	there	was	a	strong	philosophy	of	trying	to	make	the	core	Ethereum	as	simple
as	possible,	and	do	as	much	as	possible	by	building	protocols	on	top.	In	the	blockchain	space,	the	"do	it	on	L1"	vs
"focus	on	L2s"	debate	is	typically	thought	of	as	being	primarily	about	scaling,	but	in	reality,	similar	issues	exist	for
serving	many	kinds	of	Ethereum	users'	needs:	digital	asset	exchange,	privacy,	usernames,	advanced	cryptography,
account	safety,	censorship	resistance,	frontrunning	protection,	and	the	list	goes	on.	More	recently,	however,	there	has
been	some	cautious	interest	in	being	willing	to	enshrine	more	of	these	features	into	the	core	Ethereum	protocol.

This	post	will	go	into	some	of	the	philosophical	reasoning	behind	the	original	minimal-enshrinement	philosophy,	as
well	as	some	more	recent	ways	of	thinking	about	some	of	these	ideas.	The	goal	will	be	to	start	to	build	toward	a
framework	for	better	identifying	possible	targets	where	enshrining	certain	features	in	the	protocol	might	be	worth
considering.

Early	philosophy	on	protocol	minimalism
Early	on	in	the	history	of	what	was	then	called	"Ethereum	2.0",	there	was	a	strong	desire	to	create	a	clean,	simple	and
beautiful	protocol	that	tried	to	do	as	little	as	possible	itself,	and	left	almost	everything	up	to	users	to	build	on	top.
Ideally,	the	protocol	would	just	be	a	virtual	machine,	and	verifying	a	block	would	just	be	a	single	virtual	machine	call.

A	very	approximate	reconstruction-from-memory	of	a	whiteboard	drawing	Gavin	Wood	and	I	made	back	in	early	2015,
talking	about	what	Ethereum	2.0	would	look	like.

The	"state	transition	function"	(the	function	that	processes	a	block)	would	just	be	a	single	VM	call,	and	all	other	logic
would	happen	through	contracts:	a	few	system-level	contracts,	but	mostly	contracts	provided	by	users.	One	really	nice
feature	of	this	model	is	that	even	an	entire	hard	fork	could	be	described	as	a	single	transaction	to	the	block	processor
contract,	which	would	be	approved	through	either	offchain	or	onchain	governance	and	then	run	with	escalated
permissions.

These	discussions	back	in	2015	particularly	applied	to	two	areas	that	were	on	our	minds:	account	abstraction	and
scaling.	In	the	case	of	scaling,	the	idea	was	to	try	to	create	a	maximally	abstracted	form	of	scaling	that	would	feel	like
a	natural	extension	of	the	diagram	above.	A	contract	could	make	a	call	to	a	piece	of	data	that	was	not	stored	by	most
Ethereum	nodes,	and	the	protocol	would	detect	that,	and	resolve	the	call	through	some	kind	of	very	generic	scaled-
computation	functionality.	From	the	virtual	machine's	point	of	view,	the	call	would	go	off	into	some	separate	sub-
system,	and	then	some	time	later	magically	come	back	with	the	correct	answer.

This	line	of	thinking	was	explored	briefly,	but	soon	abandoned,	because	we	were	too	preoccupied	with	verifying	that
any	kind	of	blockchain	scaling	was	possible	at	all.	Though	as	we	will	see	later,	the	combination	of	data	availability
sampling	and	ZK-EVMs	means	that	one	possible	future	for	Ethereum	scaling	might	actually	look	surprisingly	close	to
that	vision!	For	account	abstraction,	on	the	other	hand,	we	knew	from	the	start	that	some	kind	of	implementation	was
possible,	and	so	research	immediately	began	to	try	to	make	something	as	close	as	possible	to	the	purist	starting	point
of	"a	transaction	is	just	a	call"	into	reality.
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There	is	a	lot	of	boilerplate	code	that	occurs	in	between	processing	a	transaction	and	making	the	actual	underlying
EVM	call	out	of	the	sender	address,	and	a	lot	more	boilerplate	that	comes	after.	How	do	we	reduce	this	code	to	as

close	to	nothing	as	possible?

One	of	the	major	pieces	of	code	in	here	is	validate_transaction(state,	tx),	which	does	things	like	checking	that	the
nonce	and	signature	of	the	transaction	are	correct.	The	practical	goal	of	account	abstraction	was,	from	the	start,	to
allow	the	user	to	replace	basic	nonce-incrementing	and	ECDSA	validation	with	their	own	validation	logic,	so	that	users
could	more	easily	use	things	like	social	recovery	and	multisig	wallets.	Hence,	finding	a	way	to	rearchitect
apply_transaction	into	just	being	a	simple	EVM	call	was	not	simply	a	"make	the	code	clean	for	the	sake	of	making	the
code	clean"	task;	rather,	it	was	about	moving	the	logic	into	the	user's	account	code,	to	give	users	that	needed
flexibility.

However,	the	insistence	on	trying	to	make	apply_transaction	contain	as	little	enshrined	logic	as	possible	ended	up
introducing	a	lot	of	challenges.	To	see	why,	let	us	zoom	in	on	one	of	the	earliest	account	abstraction	proposals,	EIP	86:

Specification

If	block.number	>=	METROPOLIS_FORK_BLKNUM,	then:	1.	If	the	signature	of	a	transaction	is	(0,	0,	0)	(ie.	v	=	r	=	s
=	0),	then	treat	it	as	valid	and	set	the	sender	address	to	2**160	-	1	2.	Set	the	address	of	any	contract	created
through	a	creation	transaction	to	equal	sha3(0	+	init	code)	%	2**160,	where	+	represents	concatenation,
replacing	the	earlier	address	formula	of	sha3(rlp.encode([sender,	nonce]))	3.	Create	a	new	opcode	at	0xfb,
CREATE_P2SH,	which	sets	the	creation	address	to	sha3(sender	+	init	code)	%	2**160.	If	a	contract	at	that
address	already	exists,	fails	and	returns	0	as	if	the	init	code	had	run	out	of	gas.

Basically,	if	the	signature	is	set	to	(0,	0,	0),	then	a	transaction	really	does	become	"just	a	call".	The	account	itself	would
be	responsible	for	having	code	that	parses	the	transaction,	extracts	and	verifies	the	signature	and	nonce,	and	pays
fees;	see	here	for	an	early	example	version	of	that	code,	and	see	here	for	the	very	similar	validate_transaction	code
that	this	account	code	would	be	replacing.

In	exchange	for	this	simplicity	at	protocol	layer,	miners	(or,	today,	block	proposers)	gain	the	additional	responsibility
of	running	extra	logic	for	only	accepting	and	forwarding	transactions	that	go	to	accounts	whose	code	is	set	up	to
actually	pay	fees.	What	is	that	logic?	Well,	honestly	EIP-86	did	not	think	too	hard	about	it:

Note	that	miners	would	need	to	have	a	strategy	for	accepting	these	transactions.	This	strategy	would	need	to
be	very	discriminating,	because	otherwise	they	run	the	risk	of	accepting	transactions	)	for	the
validate_transaction	code	that	this	pre-account	code	would	be	replacingthat	do	not	pay	them	any	fees,	and
possibly	even	transactions	that	have	no	effect	(eg.	because	the	transaction	was	already	included	and	so	the
nonce	is	no	longer	current).	One	simple	approach	is	to	have	a	whitelist	for	the	codehash	of	accounts	that
they	accept	transactions	being	sent	to;	approved	code	would	include	logic	that	pays	miners	transaction	fees.
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However,	this	is	arguably	too	restrictive;	a	looser	but	still	effective	strategy	would	be	to	accept	any	code	that
fits	the	same	general	format	as	the	above,	consuming	only	a	limited	amount	of	gas	to	perform	nonce	and
signature	checks	and	having	a	guarantee	that	transaction	fees	will	be	paid	to	the	miner.	Another	strategy	is
to,	alongside	other	approaches,	try	to	process	any	transaction	that	asks	for	less	than	250,000	gas,	and
include	it	only	if	the	miner's	balance	is	appropriately	higher	after	executing	the	transaction	than	before	it.

If	EIP-86	had	been	included	as-is,	it	would	have	reduced	the	complexity	of	the	EVM,	at	the	cost	of	massively	increasing
the	complexity	of	other	parts	of	the	Ethereum	stack,	requiring	essentially	the	exact	same	code	to	be	written	in	other
places,	in	addition	to	introducing	entirely	new	classes	of	weirdness	such	as	the	possibility	that	the	same	transaction
with	the	same	hash	might	appear	multiple	times	in	the	chain,	not	to	mention	the	multi-invalidation	problem.

The	multi-invalidation	problem	in	account	abstraction.	One	transaction	getting	included	on	chain	could	invalidate
thousands	of	other	transactions	in	the	mempool,	making	the	mempool	easy	to	cheaply	flood.

Acccount	abstraction	evolved	in	stages	from	there.	EIP-86	became	EIP-208,	which	later	became	this	ethresear.ch	post
on	"tradeoffs	in	account	abstraction	proposals",	which	then	became	this	ethresear.ch	post	half	a	year	later.	Eventually,
out	of	all	this,	came	the	actually	somewhat-workable	EIP-2938.

EIP-2938,	however,	was	not	minimalistic	at	all.	The	EIP	includes:

A	new	transaction	type
Three	new	transaction-wide	global	variables
Two	new	opcodes,	including	the	highly	unwieldy	PAYGAS	opcode	that	handles	gas	price	and	gas	limit	checking,
being	an	EVM	execution	breakpoint,	and	temporarily	storing	ETH	for	fee	payments	all	at	once.
A	set	of	complex	mining	and	rebroadcasting	strategies,	including	a	list	of	banned	opcodes	for	the	validation	phase
of	a	transaction

In	order	to	get	account	abstraction	off	the	ground	without	involving	Ethereum	core	developers	who	were	busy	on
heroic	efforts	optimizing	the	Ethereum	clients	and	implementing	the	merge,	EIP-2938	eventually	was	rearchitected
into	the	entirely	extra-protocol	ERC-4337.
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ERC-4337.	It	really	does	rely	entirely	on	EVM	calls	for	everything!

Because	it's	an	ERC,	it	does	not	require	a	hard	fork,	and	technically	lives	"outside	of	the	Ethereum	protocol".	So....
problem	solved?	Well,	as	it	turns	out,	not	quite.	The	current	medium-term	roadmap	for	ERC-4337	actually	does	involve
eventually	turning	large	parts	of	ERC-4337	into	a	series	of	protocol	features,	and	it's	a	useful	instructive	example	to
see	the	reasons	why	this	path	is	being	considered.

Enshrining	ERC-4337
There	have	been	a	few	key	reasons	discussed	for	eventually	bringing	ERC-4337	back	into	the	protocol:

Gas	efficiency:	Anything	done	inside	the	EVM	incurs	some	level	of	virtual	machine	overhead,	including
inefficiency	in	how	it	uses	gas-expensive	features	like	storage	slots.	Currently,	these	extra	inefficiencies	add	up	to
at	least	~20,000	gas,	and	often	more.	Pushing	these	components	into	the	protocol	is	the	easiest	way	to	remove
these	issues.
Code	bug	risk:	if	the	ERC-4337	"entry	point	contract"	has	a	sufficiently	terrible	bug,	all	ERC-4337-compatible
wallets	could	see	all	of	their	funds	drained.	Replacing	the	contract	with	an	in-protocol	functionality	creates	an
implied	responsibility	to	fix	code	bugs	with	a	hard	fork,	which	removes	funds-draining	risk	for	users.
Support	for	EVM	opcodes	like	tx.origin.	ERC-4337,	by	itself,	makes	tx.origin	return	the	address	of	the
"bundler"	that	packaged	up	a	set	of	user	operations	into	a	transaction.	Native	account	abstraction	could	fix	this,
by	making	tx.origin	point	to	the	actual	account	sending	the	transaction,	making	it	work	the	same	way	as	for
EOAs.
Censorship	resistance:	one	of	the	challenges	with	proposer/builder	separation	is	that	it	becomes	easier	to
censor	individual	transactions.	In	a	world	where	individual	transactions	are	legible	to	the	Ethereum	protocol,	this
problem	can	be	greatly	mitigated	with	inclusion	lists,	which	allow	proposers	to	specify	a	list	of	transactions	that
must	be	included	within	the	next	two	slots	in	almost	all	cases.	But	the	extra-protocol	ERC-4337	wraps	"user
operations"	inside	a	single	transaction,	making	user	operations	opaque	to	the	Ethereum	protocol;	hence,
Ethereum-protocol-provided	inclusion	lists	would	not	be	able	to	provide	censorship	resistance	to	ERC-4337	user
operations.	Enshrining	ERC-4337,	and	making	user	operations	a	"proper"	transaction	type,	would	solve	this
problem.

It's	worth	zooming	into	the	gas	efficiency	issue	further.	In	its	current	form,	ERC-4337	is	significantly	more	expensive
than	a	"basic"	Ethereum	transaction:	the	transaction	costs	21,000	gas,	whereas	ERC-4337	costs	~42,000	gas.	This	doc
lists	some	of	the	reasons	why:

Need	to	pay	lots	of	individual	storage	read/write	costs,	which	in	the	case	of	EOAs	get	bundled	into	a
single	21000	gas	payment:

Editing	the	storage	slot	that	contains	pubkey+nonce	(~5000)
UserOperation	calldata	costs	(~4500,	reducible	to	~2500	with	compression)
ECRECOVER	(~3000)
Warming	the	wallet	itself	(~2600)
Warming	the	recipient	account	(~2600)
Transferring	ETH	to	the	recipient	account	(~9000)
Editing	storage	to	pay	fees	(~5000)
Access	the	storage	slot	containing	the	proxy	(~2100)	and	then	the	proxy	itself	(~2600)

On	top	of	the	above	storage	read/write	costs,	the	contract	needs	to	do	"business	logic"	(unpacking	the
UserOperation,	hashing	it,	shuffling	variables,	etc)	that	EOA	transactions	have	handled	"for	free"	by	the
Ethereum	protocol
Need	to	expend	gas	to	pay	for	logs	(EOAs	don't	issue	logs)
One-time	contract	creation	costs	(~32000	base,	plus	200	gas	per	code	byte	in	the	proxy,	plus	20000	to
set	the	proxy	address)
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Theoretically,	it	should	be	possible	to	massage	the	EVM	gas	cost	system	until	the	in-protocol	costs	and	the	extra-
protocol	costs	for	accessing	storage	match;	there	is	no	reason	why	transferring	ETH	needs	to	cost	9000	gas	when
other	kinds	of	storage-editing	operations	are	much	cheaper.	And	indeed,	two	EIPs	([1]	[2])	related	to	the	upcoming
Verkle	tree	transition	actually	try	to	do	that.	But	even	if	we	do	that,	there	is	one	huge	reason	why	enshrined	protocol
features	are	going	to	inevitably	be	significantly	cheaper	than	EVM	code,	no	matter	how	efficient	the	EVM	becomes:
enshrined	code	does	not	need	to	pay	gas	for	being	pre-loaded.

Fully	functional	ERC-4337	wallets	are	big.	This	implementation,	compiled	and	put	on	chain,	takes	up	~12,800	bytes.	Of
course,	you	can	deploy	that	big	piece	of	code	once,	and	use	DELEGATECALL	to	allow	each	individual	wallet	to	call	into	it,
but	that	code	still	needs	to	be	accessed	in	each	block	that	uses	it.	Under	the	Verkle	tree	gas	costs	EIP,	12,800	bytes
would	make	up	413	chunks,	and	accessing	those	chunks	would	require	paying	2x	WITNESS_BRANCH_COST	(3,800	gas	total)
and	413x	WITNESS_CHUNK_COST	(82,600	gas	total).	And	this	does	not	even	begin	to	mention	the	ERC-4337	entry-point
itself,	with	23,689	bytes	onchain	in	version	0.6.0	(under	the	Verkle	tree	EIP	rules,	~158,700	gas	to	load).

This	leads	to	a	problem:	the	gas	costs	of	actually	accessing	this	code	would	have	to	be	split	among	transactions
somehow.	The	current	approach	that	ERC-4337	uses	is	not	great:	the	first	transaction	in	a	bundle	eats	up	one-time
storage/code	reading	costs,	making	it	much	more	expensive	than	the	rest	of	the	transactins.	Enshrinement	in-protocol
would	allow	these	commonly-shared	libraries	to	simply	be	part	of	the	protocol,	accessible	to	all	with	no	fees.

What	can	we	learn	from	this	example	about	when	to	enshrine	things
more	generally?
In	this	example,	we	saw	a	few	different	rationales	for	enshrining	aspects	of	account	abstraction	in	the	protocol.

"Move	complexity	to	the	edges"	market-based	approaches	break	down	the	most	when	there	are	high
fixed	costs.	And	indeed,	the	long	term	account	abstraction	roadmap	looks	like	it's	going	to	have	lots	of	fixed
costs	per	block.	244,100	gas	for	loading	standardized	wallet	code	is	one	thing;	but	aggregation	(see	my
presentation	from	this	summer	for	more	details)	potentially	adds	hundreds	of	thousands	more	gas	for	ZK-SNARK
validation	plus	onchain	costs	for	proof	verification.	There	isn't	a	way	to	charge	users	for	these	costs	without
introducing	lots	of	market	inefficiencies,	whereas	making	some	of	these	functionalities	into	protocol	features
accessible	to	all	with	no	fees	cleanly	solves	that	problem.
Community-wide	response	to	code	bugs.	If	some	set	of	pieces	of	code	are	used	by	all	users,	or	a	very	wide
class	of	users,	then	it	often	makes	more	sense	for	the	blockchain	community	to	take	on	itself	the	responsibility	to
hard-fork	to	fix	any	bugs	that	arise.	ERC-4337	introduced	a	large	amount	of	globally	shared	code,	and	in	the	long
term	it	makes	more	sense	for	bugs	in	that	code	to	be	fixed	by	hard	forks	than	to	lead	to	users	losing	a	large
amount	of	ETH.
Sometimes,	a	stronger	form	of	a	feature	can	be	implemented	by	directly	taking	advantage	of	the
powers	of	the	protocol.	The	key	example	here	is	in-protocol	censorship	resistance	features	like	inclusion	lists:
in-protocol	inclusion	lists	can	do	a	better	job	of	guaranteeing	censorship	resistance	than	extra-protocol
approaches,	in	order	for	user-level	operations	to	actually	benefit	from	in-protocol	inclusion	lists,	individual	user-
level	operations	need	to	be	"legible"	to	the	protocol.	Another	lesser-known	example	is	that	2017-era	Ethereum
proof	of	stake	designs	had	account	abstraction	for	staking	keys,	and	this	was	abandoned	in	favor	of	enshrining
BLS	because	BLS	supported	an	"aggregation"	mechanism,	which	would	have	to	be	implemented	at	protocol	and
network	level,	that	could	make	handling	a	very	large	number	of	signatures	much	more	efficient.

But	it	is	important	to	remember	that	even	enshrined	in-protocol	account	abstraction	is	still	a	massive	"de-
enshrinement"	compared	to	the	status	quo.	Today,	top-level	Ethereum	transactions	can	only	be	initiated	from
externally	owned	accounts	(EOAs)	which	use	a	single	secp256k1	elliptic	curve	signature	for	verification.	Account
abstraction	de-enshrines	this,	and	leaves	verification	conditions	open	for	users	to	define.	And	so,	in	this	story	about
account	abstraction,	we	also	saw	the	biggest	argument	against	enshrinement:	being	flexible	to	diverse	users'
needs.

Let	us	try	to	fill	in	the	story	further,	by	looking	at	a	few	other	examples	of	features	that	have	recently	been	considered
for	enshrinement.	We'll	particularly	focus	on:	ZK-EVMs,	proposer-builder	separation,	private	mempools,	liquid
staking	and	new	precompiles.

Enshrining	ZK-EVMs
Let	us	switch	focus	to	another	potential	target	for	enshrining	into	the	Ethereum	protocol:	ZK-EVMs.	Currently,	we
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have	a	large	number	of	ZK-rollups	that	all	have	to	write	fairly	similar	code	to	verify	execution	of	Ethereum-like	blocks
inside	a	ZK-SNARK.	There	is	a	pretty	diverse	ecosystem	of	independent	implementations:	the	PSE	ZK-EVM,	Kakarot,
the	Polygon	ZK-EVM,	Linea,	Zeth,	and	the	list	goes	on.

One	of	the	recent	controversies	in	the	EVM	ZK-rollup	space	has	to	do	with	how	to	deal	with	the	possibility	of	bugs	in
the	ZK-code.	Currently,	all	of	these	systems	that	are	live	have	some	form	of	"security	council"	mechanism	that	can
override	the	proving	system	in	case	of	a	bug.	In	this	post	last	year,	I	tried	to	create	a	standardized	framework	to
encourage	projects	to	be	clear	about	what	level	of	trust	they	put	in	the	proving	system	and	what	level	in	the	security
council,	and	move	toward	giving	less	and	less	powers	to	the	security	council	over	time.

In	the	medium	term,	rollups	could	rely	on	multiple	proving	systems,	and	the	security	council	would	only	have	any
power	at	all	in	the	extreme	case	where	two	different	proving	systems	disagree	with	each	other.

However,	there	is	a	sense	in	which	some	of	this	work	feels	superfluous.	We	already	have	the	Ethereum	base	layer,
which	has	an	EVM,	and	we	already	have	a	working	mechanism	for	dealing	with	bugs	in	implementations:	if	there's	a
bug,	the	clients	that	have	the	bug	update	to	fix	the	bug,	and	the	chain	goes	on.	Blocks	that	appeared	finalized	from	the
perspective	of	a	buggy	client	would	end	up	no-longer-finalized,	but	at	least	we	would	not	see	users	losing	funds.
Similarly,	if	a	rollup	just	wants	to	be	and	remain	EVM-equivalent,	it	feels	wrong	that	they	need	to	implement	their	own
governance	to	keep	changing	their	internal	ZK-EVM	rules	to	match	upgrades	to	the	Ethereum	base	layer,	when
ultimately	they're	building	on	top	of	the	Ethereum	base	layer	itself,	which	knows	when	it's	being	upgraded	and	to	what
new	rules.

Since	these	L2	ZK-EVMs	are	basically	using	the	exact	same	EVM	as	Ethereum,	can't	we	somehow	make	"verify	EVM
execution	in	ZK"	into	a	protocol	feature,	and	deal	with	exceptional	situations	like	bugs	and	upgrades	by	just	applying
Ethereum's	social	consensus,	the	same	way	we	already	do	for	base-layer	EVM	execution	itself?

This	is	an	important	and	challenging	topic.	There	are	a	few	nuances:

1.	We	want	to	be	compatible	with	Ethereum's	multi-client	philosophy.	This	means	that	we	want	to	allow
different	clients	to	use	different	proving	systems.	This	in	turn	implies	that	for	any	EVM	execution	that	gets	proven
with	one	ZK-SNARK	system,	we	want	a	guarantee	that	the	underlying	data	is	available,	so	that	proofs	can	be
generated	for	other	ZK-SNARK	systems.

2.	While	the	tech	is	immature,	we	probably	want	auditability.	In	practice,	this	means	the	exact	same	thing:	if
any	execution	gets	proven,	we	want	the	underlying	data	to	be	available,	so	that	if	anything	goes	wrong,	users	and
developers	can	inspect	it.

3.	We	need	much	faster	proving	times,	so	that	if	one	type	of	proof	is	made,	other	types	of	proof	can	be	generated
quickly	enough	that	other	clients	can	validate	them.	One	could	get	around	this	by	making	a	precompile	that	has
an	asynchronous	response	after	some	time	window	longer	than	a	slot	(eg.	3	hours),	but	this	adds	complexity.

4.	We	want	to	support	not	just	copies	of	the	EVM,	but	also	"almost-EVMs".	Part	of	the	attraction	of	L2s	is	the
ability	to	innovate	on	the	execution	layer,	and	make	extensions	to	the	EVM.	If	a	given	L2's	VM	differs	from	the
EVM	only	a	little	bit,	it	would	be	nice	if	the	L2	could	still	use	a	native	in-protocol	ZK-EVM	for	the	parts	that	are
identical	to	the	EVM,	and	only	rely	on	their	own	code	for	the	parts	that	are	different.	This	could	be	done	by
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designing	the	ZK-EVM	precompile	in	such	a	way	that	it	allows	the	caller	to	specify	a	bitfield	or	list	of	opcodes	or
addresses	that	get	handled	by	an	externally	supplied	table	instead	of	the	EVM	itself.	We	could	also	make	gas
costs	open	to	customization	to	a	limited	extent.

One	likely	topic	of	contention	with	data	availability	in	a	native	ZK-EVM	is	statefulness.	ZK-EVMs	are	much	more	data-
efficient	if	they	do	not	have	to	carry	"witness"	data.	That	is,	if	a	particular	piece	of	data	was	already	read	or	written	in
some	previous	block,	we	can	simply	assume	that	provers	have	access	to	it,	and	we	don't	have	to	make	it	available
again.	This	goes	beyond	not	re-loading	storage	and	code;	it	turns	out	that	if	a	rollup	properly	compresses	data,	the
compression	being	stateful	allows	for	up	to	3x	data	savings	compared	to	the	compression	being	stateless.

This	means	that	for	a	ZK-EVM	precompile,	we	have	two	options:

1.	 The	precompile	requires	all	data	to	be	available	in	the	same	block.	This	means	that	provers	can	be
stateless,	but	it	also	means	that	ZK-rollups	using	such	a	precompile	become	much	more	expensive	than	rollups
using	custom	code.

2.	 The	precompile	allows	pointers	to	data	used	or	generated	by	previous	executions.	This	allows	ZK-rollups
to	be	near-optimal,	but	it's	more	complicated	and	introduces	a	new	kind	of	state	that	has	to	be	stored	by	provers.

What	lessons	can	we	take	away	from	this?	There	is	a	pretty	good	argument	to	enshrine	ZK-EVM	validation	somehow:
rollups	are	already	building	their	own	custom	versions	of	it,	and	it	feels	wrong	that	Ethereum	is	willing	to	put	the
weight	of	its	multiple	implementations	and	off-chain	social	consensus	behind	EVM	execution	on	L1,	but	L2s	doing	the
exact	same	work	have	to	instead	implement	complicated	gadgets	involving	security	councils.	But	on	the	other	hand,
there	is	a	big	devil	in	the	details:	there	are	different	versions	of	an	enshrined	ZK-EVM	that	have	different	costs	and
benefits.	The	stateful	vs	stateless	divide	only	scratches	the	surface;	attempting	to	support	"almost-EVMs"	that	have
custom	code	proven	by	other	systems	will	likely	reveal	an	even	larger	design	space.	Hence,	enshrining	ZK-EVMs
presents	both	promise	and	challenges.

Enshrining	proposer-builder	separation	(ePBS)
The	rise	of	MEV	has	made	block	production	into	an	economies-of-scale-heavy	activity,	with	sophisticated	actors	being
able	to	produce	blocks	that	generate	much	more	revenue	than	default	algorithms	that	simply	watch	the	mempool	for
transactions	and	include	them.	The	Ethereum	community	has	so	far	attempted	to	deal	with	this	by	using	extra-protocol
proposer-builder	separation	schemes	like	MEV-Boost,	which	allow	regular	validators	("proposers")	to	outsource	block
building	to	specialized	actors	("builders").

However,	MEV-Boost	carries	a	trust	assumption	in	a	new	category	of	actor,	called	a	relay.	For	the	past	two	years,
there	have	been	many	proposals	to	create	"enshrined	PBS".	What	is	the	benefit	of	this?	In	this	case,	the	answer	is
pretty	simple:	the	PBS	that	can	be	built	by	directly	using	the	powers	of	the	protocol	is	simply	stronger	(in	the	sense	of
having	weaker	trust	assumptions)	than	the	PBS	that	can	be	built	without	them.	It's	a	similar	case	to	the	case	for
enshrining	in-protocol	price	oracles	-	though,	in	that	situation,	there	is	also	a	strong	counterargument.

Enshrining	private	mempools
When	a	user	sends	a	transaction,	that	transaction	becomes	immediately	public	and	visible	to	all,	even	before	it	gets
included	on	chain.	This	makes	users	of	many	applications	vulnerable	to	economic	attacks	such	as	frontrunning:	if	a
user	makes	a	large	trade	on	eg.	Uniswap,	an	attacker	could	put	in	a	transaction	right	before	them,	increasing	the	price
at	which	they	buy,	and	collecting	an	arbitrage	profit.
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Recently,	there	has	been	a	number	of	projects	specializing	in	creating	"private	mempols"	(or	"encrypted	mempools"),
which	keep	users'	transactions	encrypted	until	the	moment	they	get	irreversibly	accepted	into	a	block.

The	problem	is,	however,	that	schemes	like	this	require	a	particular	kind	of	encryption:	to	prevent	users	from	flooding
the	system	and	frontrunning	the	decryption	process	itself,	the	encryption	must	auto-decrypt	once	the	transaction
actually	does	get	irreversibly	accepted.

To	implement	such	a	form	of	encryption,	there	are	various	different	technologies	with	different	tradeoffs,	described
well	in	this	post	by	Jon	Charbonneau	(and	this	video	and	slides):

Encryption	to	a	centralized	operator,	eg.	Flashbots	Protect.
Time-lock	encryption,	a	form	of	encryption	which	can	be	decrypted	by	anyone	after	a	certain	number	of
sequential	computational	steps,	which	cannot	be	parallelized.
Threshold	encryption,	trusting	an	honest	majority	committee	to	decrypt	the	data.	See	the	shutterized	beacon
chain	concept	for	a	concrete	proposal.
Trusted	hardware	such	as	SGX.

Unfortunately,	each	of	these	have	varying	weaknesses.	A	centralized	operator	is	not	acceptable	for	inclusion	in-
protocol	for	obvious	reasons.	Traditional	time	lock	encryption	is	too	expensive	to	run	across	thousands	of	transactions
in	a	public	mempool.	A	more	powerful	primitive	called	delay	encryption	allows	efficient	decryption	of	an	unlimited
number	of	messages,	but	it's	hard	to	construct	in	practice,	and	attacks	on	existing	constructions	still	sometimes	get
discovered.	Much	like	with	hash	functions,	we'll	likely	need	a	period	of	more	years	of	research	and	analysis	before
delay	encryption	becomes	sufficiently	mature.	Threshold	encryption	requires	trusting	a	majority	to	not	collude,	in	a
setting	where	they	can	collude	undetectably	(unlike	51%	attacks,	where	it's	immediately	obvious	who	participated).
SGX	creates	a	dependency	on	a	single	trusted	manufacturer.

While	for	each	solution,	there	is	some	subset	of	users	that	is	comfortable	trusting	it,	there	is	no	single
solution	that	is	trusted	enough	that	it	can	practically	be	accepted	into	layer	1.	Hence,	enshrining	anti-
frontrunning	at	layer	1	seems	like	a	difficult	proposition	at	least	until	delay	encrypted	is	perfected	or	there	is	some
other	technological	breakthrough,	even	while	it's	a	valuable	enough	functionality	that	lots	of	application	solutions	will
already	emerge.

Enshrining	liquid	staking
A	common	demand	among	Ethereum	defi	users	is	the	ability	to	use	their	ETH	for	staking	and	as	collateral	in	other
applications	at	the	same	time.	Another	common	demand	is	simply	for	convenience:	users	want	to	be	able	to	stake
without	the	complexity	of	running	a	node	and	keeping	it	online	all	the	time	(and	protecting	their	now-online	staking
keys).

By	far	the	simplest	possible	"interface"	for	staking,	which	satisfies	both	of	these	needs,	is	just	an	ERC20	token:	convert
your	ETH	into	"staked	ETH",	hold	it,	and	then	later	convert	back.	And	indeed,	liquid	staking	providers	such	as	Lido	and
Rocketpool	have	emerged	to	do	just	that.	However,	liquid	staking	has	some	natural	centralizing	mechanics	at	play:
people	naturally	go	into	the	biggest	version	of	staked	ETH	because	it's	most	familiar	and	most	liquid	(and	most	well-
supported	by	applications,	who	in	turn	support	it	because	it's	more	familiar	and	because	it's	the	one	the	most	users
will	have	heard	of).

Each	version	of	staked	ETH	needs	to	have	some	mechanism	determining	who	can	be	the	underlying	node	operators.	It
can't	be	unrestricted,	because	then	attackers	would	join	and	amplify	their	attacks	with	users'	funds.	Currently,	the	top
two	are	Lido,	which	has	a	DAO	whitelisting	node	operators,	and	Rocket	Pool,	which	allows	anyone	to	run	a	node	if	they
put	down	8	ETH	(ie.	1/4	of	the	capital)	as	a	deposit.	These	two	approaches	have	different	risks:	the	Rocket	Pool
approach	allows	attackers	to	51%	attack	the	network,	and	force	users	to	pay	most	of	the	costs.	With	the	DAO
approach,	if	a	single	such	staking	token	dominates,	that	leads	to	a	single,	potentially	attackable	governance	gadget
controlling	a	very	large	portion	of	all	Ethereum	validators.	To	the	credit	of	protocols	like	Lido,	they	have	implemented
safeguards	against	this,	but	one	layer	of	defense	may	not	be	enough.
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In	the	short	term,	one	option	is	to	socially	encourage	ecosystem	participants	to	use	a	diversity	of	liquid	staking
providers,	to	reduce	the	chance	that	any	single	one	becomes	too	large	to	be	a	systemic	risk.	In	the	longer	term,
however,	this	is	an	unstable	equilibrium,	and	there	is	peril	in	relying	too	much	on	moralistic	pressure	to	solve
problems.	One	natural	question	arises:	might	it	make	sense	to	enshrine	some	kind	of	in-protocol	functionality
to	make	liquid	staking	less	centralizing?

Here,	the	key	question	is:	what	kind	of	in-protocol	functionality?	Simply	creating	an	in-protocol	fungible	"staked	ETH"
token	has	the	problem	that	it	would	have	to	either	have	an	enshrined	Ethereum-wide	governance	to	choose	who	runs
the	nodes,	or	be	open-entry,	turning	it	into	a	vehicle	for	attackers.

One	interesting	idea	is	Dankrad	Feist's	writings	on	liquid	staking	maximalism.	First,	we	bite	the	bullet	that	if	Ethereum
gets	51%	attacked,	only	perhaps	5%	of	the	attacking	ETH	gets	slashed.	This	is	a	reasonable	tradeoff;	right	now	there	is
over	26	million	ETH	being	staked,	and	a	cost	of	attack	of	1/3	of	that	(~8	million	ETH)	is	way	overkill,	especially
considering	how	many	kinds	of	"outside-the-model"	attacks	can	be	pulled	off	for	much	less.	Indeed,	a	similar	tradeoff
has	already	been	explored	in	the	"super-committee"	proposal	for	implementing	single-slot	finality.

If	we	accept	that	only	5%	of	attacking	ETH	gets	slashed,	then	over	90%	of	staked	ETH	would	be	invulnerable	to
slashing,	and	so	90%	of	staked	ETH	could	be	put	into	an	in-protocol	fungible	liquid	staking	token	that	can	then	be	used
by	other	applications.

This	path	is	interesting.	But	it	still	leaves	open	the	question:	what	is	the	specific	thing	that	would	get	enshrined?
RocketPool	already	works	in	a	way	very	similar	to	this:	each	node	operator	puts	up	some	capital,	and	liquid	stakers	put
up	the	rest.	We	could	simply	tweak	a	few	constants,	bounding	the	maximum	slashing	penalty	to	eg.	2	ETH,	and	Rocket
Pool's	existing	rETH	would	become	risk-free.

There	are	other	clever	things	that	we	can	do	with	simple	protocol	tweaks.	For	example,	imagine	that	we	want	a	system
where	there	are	two	"tiers"	of	staking:	node	operators	(high	collateral	requirement)	and	depositors	(no	minimum,	can
join	and	leave	any	time),	but	we	still	want	to	guard	against	node	operator	centralization	by	giving	a	randomly-sampled
committee	of	depositors	powers	like	suggesting	lists	of	transactions	that	have	to	be	included	(for	anti-censorship
reasons),	controlling	the	fork	choice	during	an	inactivity	leak,	or	needing	to	sign	off	on	blocks.	This	could	be	done	in	a
mostly-out-of-protocol	way,	by	tweaking	the	protocol	to	require	each	validator	to	provide	(i)	a	regular	staking	key,	and
(ii)	an	ETH	address	that	can	be	called	to	output	a	secondary	staking	key	during	each	slot.	The	protocol	would	give
powers	to	these	two	keys,	but	the	mechanism	for	choosing	the	second	key	in	each	slot	could	be	left	to	staking	pool
protocols.	It	may	still	be	better	to	enshrine	some	things	outright,	but	it's	valuable	to	note	that	this	"enshrine	some
things,	leave	other	things	to	users"	design	space	exists.

Enshrining	more	precompiles
Precompiles	(or	"precompiled	contracts")	are	Ethereum	contracts	that	implement	complex	cryptographic	operations,
whose	logic	is	natively	implemented	in	client	code,	instead	of	EVM	smart	contract	code.	Precompiles	were	a
compromise	adopted	at	the	beginning	of	Ethereum's	development:	because	the	overhead	of	a	VM	is	too	much	for
certain	kinds	of	very	complex	and	highly	specialized	code,	we	can	implement	a	few	key	operations	valuable	to
important	kinds	of	applications	in	native	code	to	make	them	faster.	Today,	this	basically	includes	a	few	specific	hash
functions	and	elliptic	curve	operations.

There	is	currently	a	push	to	add	a	precompile	for	secp256r1,	an	elliptic	curve	slightly	different	from	the	secp256k1
used	for	basic	Ethereum	accounts,	because	it	is	well-supported	by	trusted	hardware	modules	and	thus	widespread	use
of	it	could	improve	wallet	security.	In	recent	years,	there	have	also	been	pushes	to	add	precompiles	for	BLS-12-377,
BW6-761,	generalized	pairings	and	other	features.

The	counterargument	to	these	requests	for	more	precompiles	is	that	many	of	the	precompiles	that	have	been	added
before	(eg.	RIPEMD	and	BLAKE)	have	ended	up	gotten	used	much	less	than	anticipated,	and	we	should	learn	from
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that.	Instead	of	adding	more	precompiles	for	specific	operations,	we	should	perhaps	focus	on	a	more	moderate
approach	based	on	ideas	like	EVM-MAX	and	the	dormant-but-always-revivable	SIMD	proposal,	which	would	allow	EVM
implementations	to	execute	wide	classes	of	code	less	expensively.	Perhaps	even	existing	little-used	precompiles	could
be	removed	and	replaced	with	(unavoidably	less	efficient)	EVM	code	implementations	of	the	same	function.	That	said,
it	is	still	possible	that	there	are	specific	cryptographic	operations	that	are	valuable	enough	to	accelerate	that	it	makes
sense	to	add	them	as	precompiles.

What	do	we	learn	from	all	this?
The	desire	to	enshrine	as	little	as	possible	is	understandable	and	good;	it	hails	from	the	Unix	philosophy	tradition	of
creating	software	that	is	minimalist	and	can	be	easily	adapted	to	different	needs	by	its	users,	avoiding	the	curses	of
software	bloat.	However,	blockchains	are	not	personal-computing	operating	systems;	they	are	social	systems.
This	means	that	there	are	rationales	for	enshrining	certain	features	in	the	protocol	that	go	beyond	the	rationales	that
exist	in	a	purely	personal-computing	context.

In	many	cases,	these	other	examples	re-capped	similar	lessons	to	what	we	saw	in	account	abstraction.	But	there	are
also	a	few	new	lessons	that	have	been	learned	as	well:

Enshrining	features	can	help	avoid	centralization	risks	in	other	areas	of	the	stack.	Often,	keeping	the
base	protocol	minimal	and	simple	pushes	the	complexity	to	some	outside-the-protocol	ecosystem.	From	a	Unix
philosophy	perspective,	this	is	good.	Sometimes,	however,	there	are	risks	that	that	outside-the-protocol	ecosystem
will	centralize,	often	(but	not	just)	because	of	high	fixed	costs.	Enshrining	can	sometimes	decrease	de-facto
centralization.
Enshrining	too	much	can	over-extend	the	trust	and	governance	load	of	the	protocol.	This	is	the	topic	of
this	earlier	post	about	not	overloading	Ethereum's	consensus:	if	enshrining	a	particular	feature	weakens	the	trust
model,	and	makes	Ethereum	as	a	whole	much	more	"subjective",	that	weakens	Ethereum's	credible	neutrality.	In
those	cases,	it's	better	to	leave	that	particular	feature	as	a	mechanism	on	top	of	Ethereum,	and	not	try	to	bring	it
inside	Ethereum	itself.	Here,	encrypted	mempools	are	the	best	example	of	something	that	may	be	a	bit	too
difficult	to	enshrine,	at	least	until/unless	delay	encryption	technology	improves.
Enshrining	too	much	can	over-complicate	the	protocol.	Protocol	complexity	is	a	systemic	risk,	and	adding
too	many	features	in-protocol	increases	that	risk.	Precompiles	are	the	best	example	of	this.
Enshrining	can	backfire	in	the	long	term,	as	users'	needs	are	unpredictable.	A	feature	that	many	people
think	is	important	and	will	be	used	by	many	users	may	well	turn	out	not	to	be	used	much	in	practice.

Additionally,	the	liquid	staking,	ZK-EVM	and	precompile	cases	show	the	possibility	of	a	middle	road:	minimal	viable
enshrinement.	Rather	than	enshrining	an	entire	functionality,	the	protocol	could	enshrine	a	specific	piece	that	solves
the	key	challenges	with	making	that	functionality	easy	to	implement,	without	being	too	opinionated	or	narrowly
focused.	Examples	of	this	include:

Rather	than	enshrining	a	full	liquid	staking	system,	changing	staking	penalty	rules	to	make	trustless	liquid
staking	more	viable
Rather	than	enshrining	more	precompiles,	enshrine	EVM-MAX	and/or	SIMD	to	make	a	wider	class	of	operations
simpler	to	implement	efficiently
Rather	than	enshrining	the	whole	concept	of	rollups,	we	could	simply	enshrine	EVM	verification.

We	can	extend	our	diagram	from	earlier	in	the	post	as	follows:

Sometimes,	it	may	even	make	sense	to	de-enshrine	a	few	things.	De-enshrining	little-used	precompiles	is	one	example.
Account	abstraction	as	a	whole,	as	mentioned	earlier,	is	also	a	significant	form	of	de-enshrinement.	If	we	want	to
support	backwards-compatibility	for	existing	users,	then	the	mechanism	may	actually	be	surprisingly	similar	to	that	for
de-enshrining	precompiles:	one	of	the	proposals	is	EIP-5003,	which	would	allow	EOAs	to	convert	their	account	in-plce
into	a	contract	that	has	the	same	(or	better)	functionality.

What	features	should	be	brought	into	the	protocol	and	what	features	should	be	left	to	other	layers	of	the	ecosystem	is
a	complicated	tradeoff,	and	we	should	expect	the	tradeoff	to	continue	to	evolve	over	time	as	our	understanding	of
users'	needs	and	our	suite	of	available	ideas	and	technologies	continues	to	improve.

https://ethereum-magicians.org/t/eip-6601-evm-modular-arithmetic-extensions-evmmax/13168
https://eips.ethereum.org/EIPS/eip-616
https://en.wikipedia.org/wiki/Unix_philosophy
https://vitalik.ca/general/2023/05/21/dont_overload.html
https://ethereum-magicians.org/t/eip-6601-evm-modular-arithmetic-extensions-evmmax/13168
https://eips.ethereum.org/EIPS/eip-616
https://eips.ethereum.org/EIPS/eip-5003
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What	do	I	think	about	Community	Notes?

Special	thanks	to	Dennis	Pourteaux	and	Jay	Baxter	for	feedback	and	review.

The	last	two	years	of	Twitter	X	have	been	tumultuous,	to	say	the	least.	After	the	platform	was	bought
not	bought	bought	by	Elon	Musk	for	$44	billion	last	year,	Elon	enacted	sweeping	changes	to	the
company's	staffing,	content	moderation	and	business	model,	not	to	mention	changes	to	the	culture	on
the	site	that	may	well	have	been	a	result	of	Elon's	soft	power	more	than	any	specific	policy	decision.
But	in	the	middle	of	these	highly	contentious	actions,	one	new	feature	on	Twitter	grew	rapidly	in
importance,	and	seems	to	be	beloved	by	people	across	the	political	spectrum:	Community	Notes.

Community	Notes	is	a	fact-checking	tool	that	sometimes	attaches	context	notes,	like	the	one	on
Elon's	tweet	above,	to	tweets	as	a	fact-checking	and	anti-misinformation	tool.	It	was	originally	called
Birdwatch,	and	was	first	rolled	out	as	a	pilot	project	in	January	2021.	Since	then,	it	has	expanded	in
stages,	with	the	most	rapid	phase	of	its	expansion	coinciding	with	Twitter's	takeover	by	Elon	last
year.	Today,	Community	Notes	appear	frequently	on	tweets	that	get	a	very	large	audience	on
Twitter,	including	those	on	contentious	political	topics.	And	both	in	my	view,	and	in	the	view	of	many
people	across	the	political	spectrum	I	talk	to,	the	notes,	when	they	appear,	are	informative	and
valuable.

But	what	interests	me	most	about	Community	Notes	is	how,	despite	not	being	a	"crypto	project",	it
might	be	the	closest	thing	to	an	instantiation	of	"crypto	values"	that	we	have	seen	in	the	mainstream
world.	Community	Notes	are	not	written	or	curated	by	some	centrally	selected	set	of	experts;	rather,
they	can	be	written	and	voted	on	by	anyone,	and	which	notes	are	shown	or	not	shown	is	decided
entirely	by	an	open	source	algorithm.	The	Twitter	site	has	a	detailed	and	extensive	guide	describing
how	the	algorithm	works,	and	you	can	download	the	data	containing	which	notes	and	votes	have
been	published,	run	the	algorithm	locally,	and	verify	that	the	output	matches	what	is	visible	on	the

file:///home/runner/index.html
https://www.reuters.com/technology/exclusive-twitter-set-accept-musks-best-final-offer-sources-2022-04-25/
https://www.nytimes.com/2022/06/06/technology/elon-musk-twitter.html
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https://www.euronews.com/next/2022/11/04/twitter-temporarily-closes-offices-as-elon-musk-begins-mass-layoffs
https://www.npr.org/2022/11/29/1139822833/twitter-covid-misinformation-policy-not-enforced
https://www.npr.org/2022/12/12/1139619598/twitter-blue-relaunch
https://github.com/twitter/communitynotes
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https://github.com/twitter/communitynotes/tree/main/sourcecode
https://twitter.com/elonmusk/status/1597170780130852864


Twitter	site.	It's	not	perfect,	but	it's	surprisingly	close	to	satisfying	the	ideal	of	credible	neutrality,	all
while	being	impressively	useful,	even	under	contentious	conditions,	at	the	same	time.

How	does	the	Community	Notes	algorithm	work?
Anyone	with	a	Twitter	account	matching	some	criteria	(basically:	active	for	6+	months,	no	recent
rule	violations,	verified	phone	number)	can	sign	up	to	participate	in	Community	Notes.	Currently,
participants	are	slowly	and	randomly	being	accepted,	but	eventually	the	plan	is	to	let	in	anyone	who
fits	the	criteria.	Once	you	are	accepted,	you	can	at	first	participate	in	rating	existing	notes,	and	once
you've	made	enough	good	ratings	(measured	by	seeing	which	ratings	match	with	the	final	outcome
for	that	note),	you	can	also	write	notes	of	your	own.

When	you	write	a	note,	the	note	gets	a	score	based	on	the	reviews	that	it	receives	from	other
Community	Notes	members.	These	reviews	can	be	thought	of	as	being	votes	along	a	3-point	scale	of
HELPFUL,	SOMEWHAT_HELPFUL	and	NOT_HELPFUL,	but	a	review	can	also	contain	some	other	tags	that	have
roles	in	the	algorithm.	Based	on	these	reviews,	a	note	gets	a	score.	If	the	note's	score	is	above	0.40,
the	note	is	shown;	otherwise,	the	note	is	not	shown.

The	way	that	the	score	is	calculated	is	what	makes	the	algorithm	unique.	Unlike	simpler	algorithms,
which	aim	to	simply	calculate	some	kind	of	sum	or	average	over	users'	ratings	and	use	that	as	the
final	result,	the	Community	Notes	rating	algorithm	explicitly	attempts	to	prioritize	notes
that	receive	positive	ratings	from	people	across	a	diverse	range	of	perspectives.	That	is,	if
people	who	usually	disagree	on	how	they	rate	notes	end	up	agreeing	on	a	particular	note,	that	note	is
scored	especially	highly.

Let	us	get	into	the	deep	math	of	how	this	works.	We	have	a	set	of	users	and	a	set	of	notes;	we	can
create	a	matrix	\(M\),	where	the	cell	\(M_{i,j}\)	represents	how	the	i'th	user	rated	the	j'th	note.

For	any	given	note,	most	users	have	not	rated	that	note,	so	most	entries	in	the	matrix	will	be	zero,
but	that's	fine.	The	goal	of	the	algorithm	is	to	create	a	four-column	model	of	users	and	notes,
assigning	each	user	two	stats	that	we	can	call	"friendliness"	and	"polarity",	and	each	note	two	stats
that	we	can	call	"helpfulness"	and	"polarity".	The	model	is	trying	to	predict	the	matrix	as	a	function
of	these	values,	using	the	following	formula:

https://nakamoto.com/credible-neutrality/
https://communitynotes.twitter.com/guide/en/contributing/signing-up
https://communitynotes.twitter.com/guide/en/under-the-hood/contributor-scores


Note	that	here	I	am	introducing	both	the	terminology	used	in	the	Birdwatch	paper,	and	my	own
terms	to	provide	a	less	mathematical	intuition	for	what	the	variables	mean:

μ	is	a	"general	public	mood"	parameter	that	accounts	for	how	high	the	ratings	are	that	users
give	in	general
\(i_u\)	is	a	user's	"friendliness":	how	likely	that	particular	user	is	to	give	high	ratings
\(i_n\)	is	a	note's	"helpfulness":	how	likely	that	particular	note	is	to	get	rated	highly.
Ultimately,	this	is	the	variable	we	care	about.
\(f_u\)	or	\(f_n\)	is	user	or	note's	"polarity":	its	position	among	the	dominant	axis	of	political
polarization.	In	practice,	negative	polarity	roughly	means	"left-leaning"	and	positive	polarity
means	"right-leaning",	but	note	that	the	axis	of	polarization	is	discovered	emergently	from
analyzing	users	and	notes;	the	concepts	of	leftism	and	rightism	are	in	no	way	hard-
coded.

The	algorithm	uses	a	pretty	basic	machine	learning	model	(standard	gradient	descent)	to	find	values
for	these	variables	that	do	the	best	possible	job	of	predicting	the	matrix	values.	The	helpfulness	that
a	particular	note	is	assigned	is	the	note's	final	score.	If	a	note's	helpfulness	is	at	least	+0.4,	the	note
gets	shown.

The	core	clever	idea	here	is	that	the	"polarity"	terms	absorb	the	properties	of	a	note	that
cause	it	to	be	liked	by	some	users	and	not	others,	and	the	"helpfulness"	term	only	measures
the	properties	that	a	note	has	that	cause	it	to	be	liked	by	all.	Thus,	selecting	for	helpfulness
identifies	notes	that	get	cross-tribal	approval,	and	selects	against	notes	that	get	cheering	from	one
tribe	at	the	expense	of	disgust	from	the	other	tribe.

I	made	a	simplified	implementation	of	the	basic	algorithm;	you	can	find	it	here,	and	are	welcome	to
play	around	with	it.

Now,	the	above	is	only	a	description	of	the	central	core	of	the	algorithm.	In	reality,	there	are	a	lot	of
extra	mechanisms	bolted	on	top.	Fortunately,	they	are	described	in	the	public	documentation.	These
mechanisms	include	the	following:

The	algorithm	gets	run	many	times,	each	time	adding	some	randomly	generated	extreme
"pseudo-votes"	to	the	votes.	This	means	that	the	algorithm's	true	output	for	each	note	is	a	range
of	values,	and	the	final	result	depends	on	a	"lower	confidence	bound"	taken	from	this	range,
which	is	checked	against	a	threshold	of	0.32.
If	many	users	(especially	users	with	a	similar	polarity	to	the	note)	rate	a	note	"Not	Helpful",	and
furthermore	they	specify	the	same	"tag"	(eg.	"Argumentative	or	biased	language",	"Sources	do
not	support	note")	as	the	reason	for	their	rating,	the	helpfulness	threshold	required	for	the	note
to	be	published	increases	from	0.4	to	0.5	(this	looks	small	but	it's	very	significant	in	practice)
If	a	note	is	accepted,	the	threshold	that	its	helpfulness	must	drop	below	to	de-accept	it	is	0.01
points	lower	than	the	threshold	that	a	note's	helpfulness	needed	to	reach	for	the	note	to	be
originally	accepted
The	algorithm	gets	run	even	more	times	with	multiple	models,	and	this	can	sometimes	promote
notes	whose	original	helpfulness	score	is	somewhere	between	0.3	and	0.4

All	in	all,	you	get	some	pretty	complicated	python	code	that	amounts	to	6282	lines	stretching	across
22	files.	But	it	is	all	open,	you	can	download	the	note	and	rating	data	and	run	it	yourself,	and	see	if
the	outputs	correspond	to	what	is	actually	on	Twitter	at	any	given	moment.

So	how	does	this	look	in	practice?
Probably	the	single	most	important	idea	in	this	algorithm	that	distinguishes	it	from	naively	taking	an
average	score	from	people's	votes	is	what	I	call	the	"polarity"	values.	The	algorithm	documentation
calls	them	\(f_u\)	and	\(f_n\),	using	\(f\)	for	factor	because	these	are	the	two	terms	that	get	multiplied
with	each	other;	the	more	general	language	is	in	part	because	of	a	desire	to	eventually	make	\(f_u\)
and	\(f_n\)	multi-dimensional.

Polarity	is	assigned	to	both	users	and	notes.	The	link	between	user	IDs	and	the	underlying	Twitter
accounts	is	intentionally	kept	hidden,	but	notes	are	public.	In	practice,	the	polarities	generated	by
the	algorithm,	at	least	for	the	English-language	data	set,	map	very	closely	to	the	left	vs	right	political
spectrum.

Here	are	some	examples	of	notes	that	have	gotten	polarities	around	-0.8:

https://github.com/twitter/communitynotes/blob/main/birdwatch_paper_2022_10_27.pdf
https://en.wikipedia.org/wiki/Gradient_descent
https://github.com/ethereum/research/blob/master/community_notes_analysis/basic_algo.py
https://communitynotes.twitter.com/guide/en/under-the-hood/ranking-notes
https://communitynotes.twitter.com/guide/en/under-the-hood/ranking-notes
https://github.com/twitter/communitynotes
https://communitynotes.twitter.com/guide/en/under-the-hood/ranking-notes


Note Polarity
Anti-trans	rhetoric	has	been	amplified	by	some	conservative	Colorado
lawmakers,	including	U.S.	Rep.	Lauren	Boebert,	who	narrowly	won	re-
election	in	Colorado's	GOP-leaning	3rd	Congressional	District,	which	does
not	include	Colorado	Springs.
https://coloradosun.com/2022/11/20/colorado-springs-club-q-lgbtq-trans/

-0.800

President	Trump	explicitly	undermined	American	faith	in	election	results	in
the	months	leading	up	to	the	2020	election.
https://www.npr.org/2021/02/08/965342252/timeline-what-trump-told-
supporters-for-months-before-they-attacked	Enforcing	Twitter's	Terms	of
Service	is	not	election	interference.

-0.825

The	2020	election	was	conducted	in	a	free	and	fair	manner.
https://www.npr.org/2021/12/23/1065277246/trump-big-lie-jan-6-election -0.818

Note	that	I	am	not	cherry-picking	here;	these	are	literally	the	first	three	rows	in	the	scored_notes.tsv
spreadsheet	generated	by	the	algorithm	when	I	ran	it	locally	that	have	a	polarity	score	(called
coreNoteFactor1	in	the	spreadsheet)	of	less	than	-0.8.

Now,	here	are	some	notes	that	have	gotten	polarities	around	+0.8.	It	turns	out	that	many	of	these
are	either	people	talking	about	Brazilian	politics	in	Portuguese	or	Tesla	fans	angrily	refuting
criticism	of	Tesla,	so	let	me	cherry-pick	a	bit	to	find	a	few	that	are	not:

Note Polarity
As	of	2021	data,	64%	of	"Black	or	African	American"	children	lived	in
single-parent	families.	https://datacenter.aecf.org/data/tables/107-children-
in-single-parent-families-by-race-and-ethnicity

+0.809

Contrary	to	Rolling	Stones	push	to	claim	child	trafficking	is	"a	Qanon
adjacent	conspiracy,"	child	trafficking	is	a	real	and	huge	issue	that	this
movie	accurately	depicts.	Operation	Underground	Railroad	works	with
multinational	agencies	to	combat	this	issue.	https://ourrescue.org/

+0.840

Example	pages	from	these	LGBTQ+	children's	books	being	banned	can	be
seen	here:	https://i.imgur.com/8SY6cEx.png	These	books	are	obscene,
which	is	not	protected	by	the	US	constitution	as	free	speech.
https://www.justice.gov/criminal-ceos/obscenity	"Federal	law	strictly
prohibits	the	distribution	of	obscene	matter	to	minors.

+0.806

Once	again,	it	is	worth	reminding	ourselves	that	the	"left	vs	right	divide"	was	not	in	any	way
hardcoded	into	the	algorithm;	it	was	discovered	emergently	by	the	calculation.	This	suggests	that	if
you	apply	this	algorithm	in	other	cultural	contexts,	it	could	automatically	detect	what	their	primary
political	divides	are,	and	bridge	across	those	too.

Meanwhile,	notes	that	get	the	highest	helpfulness	look	like	this.	This	time,	because	these	notes	are
actually	shown	on	Twitter,	I	can	just	screenshot	one	directly:
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https://www.justice.gov/criminal-ceos/obscenity


And	another	one:

The	second	one	touches	on	highly	partisan	political	themes	more	directly,	but	it's	a	clear,	high-
quality	and	informative	note,	and	so	it	gets	rated	highly.	So	all	in	all,	the	algorithm	seems	to	work,
and	the	ability	to	verify	the	outputs	of	the	algorithm	by	running	the	code	seems	to	work.

What	do	I	think	of	the	algorithm?
The	main	thing	that	struck	me	when	analyzing	the	algorithm	is	just	how	complex	it	is.	There	is	the
"academic	paper	version",	a	gradient	descent	which	finds	a	best	fit	to	a	five-term	vector	and	matrix
equation,	and	then	the	real	version,	a	complicated	series	of	many	different	executions	of	the
algorithm	with	lots	of	arbitrary	coefficients	along	the	way.

Even	the	academic	paper	version	hides	complexity	under	the	hood.	The	equation	that	it's	optimizing
is	a	degree-4	equation	(as	there's	a	degree-2	\(f_u	*	f_n\)	term	in	the	prediction	formula,	and
compounding	that	the	cost	function	measures	error	squared).	While	optimizing	a	degree-2	equation
over	any	number	of	variables	almost	always	has	a	unique	solution,	which	you	can	calculate	with	fairly
basic	linear	algebra,	a	degree-4	equation	over	many	variables	often	has	many	solutions,	and	so
multiple	rounds	of	a	gradient	descent	algorithm	may	well	arrive	at	different	answers.	Tiny	changes	to
the	input	may	well	cause	the	descent	to	flip	from	one	local	minimum	to	another,	significantly
changing	the	output.

The	distinction	between	this,	and	algorithms	that	I	helped	work	on	such	as	quadratic	funding,	feels	to
me	like	a	distinction	between	an	economist's	algorithm	and	an	engineer's	algorithm.	An
economist's	algorithm,	at	its	best,	values	being	simple,	being	reasonably	easy	to	analyze,	and	having
clear	mathematical	properties	that	show	why	it's	optimal	(or	least-bad)	for	the	task	that	it's	trying	to
solve,	and	ideally	proves	bounds	on	how	much	damage	someone	can	do	by	trying	to	exploit	it.	An
engineer's	algorithm,	on	the	other	hand,	is	a	result	of	iterative	trial	and	error,	seeing	what	works	and
what	doesn't	in	the	engineer's	operational	context.	Engineer's	algorithms	are	pragmatic	and	do	the
job;	economist's	algorithms	don't	go	totally	crazy	when	confronted	with	the	unexpected.

https://en.wikipedia.org/wiki/Degree_of_a_polynomial
https://en.wikipedia.org/wiki/Least_squares
https://vitalik.ca/general/2019/12/07/quadratic.html


Or,	as	was	famously	said	on	a	related	topic	by	the	esteemed	internet	philosopher	roon	(aka	tszzl):

Of	course,	I	would	say	that	the	"theorycel	aesthetic"	side	of	crypto	is	necessary	precisely	to
distinguish	protocols	that	are	actually	trustless	from	janky	constructions	that	look	fine	and	seem	to
work	well	but	under	the	hood	require	trusting	a	few	centralized	actors	-	or	worse,	actually	end	up
being	outright	scams.

Deep	learning	works	when	it	works,	but	it	has	inevitable	vulnerabilities	to	all	kinds	of	adversarial
machine	learning	attacks.	Nerd	traps	and	sky-high	abstraction	ladders,	if	done	well,	can	be	quite
robust	against	them.	And	so	one	question	I	have	is:	could	we	turn	Community	Notes	itself	into
something	that's	more	like	an	economist	algorithm?

To	give	a	view	of	what	this	would	mean	in	practice,	let's	explore	an	algorithm	I	came	up	with	a	few
years	ago	for	a	similar	purpose:	pairwise-bounded	quadratic	funding.

The	goal	of	pairwise-bounded	quadratic	funding	is	to	plug	a	hole	in	"regular"	quadratic	funding,
where	if	even	two	participants	collude	with	each	other,	they	can	each	contribute	a	very	high	amount
of	money	to	a	fake	project	that	sends	the	money	back	to	them,	and	get	a	large	subsidy	that	drains	the
entire	pool.	In	pairwise	quadratic	funding,	we	assign	each	pair	of	participants	a	limited	budget	\(M\).
The	algorithm	walks	over	all	possible	pairs	of	participants,	and	if	the	algorithm	decides	to	add	a
subsidy	to	some	project	\(P\)	because	both	participant	\(A\)	and	participant	\(B\)	supported	it,	that
subsidy	comes	out	of	the	budget	assigned	to	the	pair	\((A,	B)\).	Hence,	even	if	\(k\)	participants	were
to	collude,	the	amount	they	could	steal	from	the	mechanism	is	at	most	\(k	*	(k-1)	*	M\).

https://twitter.com/tszzl/status/1473156331297120256
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2022/05/25/stable.html
https://en.wikipedia.org/wiki/Adversarial_machine_learning
https://ethresear.ch/t/pairwise-coordination-subsidies-a-new-quadratic-funding-design/5553


An	algorithm	of	exactly	this	form	is	not	very	applicable	to	the	Community	Notes	context,	because
each	user	makes	very	few	votes:	on	average,	any	two	users	would	have	exactly	zero	votes	in	common,
and	so	the	algorithm	would	learn	nothing	about	users'	polarities	by	just	looking	at	each	pair	of	users
separately.	The	goal	of	the	machine	learning	model	is	precisely	to	try	to	"fill	in"	the	matrix	from	very
sparse	source	data	that	cannot	be	analyzed	in	this	way	directly.	But	the	challenge	of	this	approach	is
that	it	takes	extra	effort	to	do	it	in	a	way	that	does	not	make	the	result	highly	volatile	in	the	face	of	a
few	bad	votes.

Does	Community	Notes	actually	fight	polarization?

One	thing	that	we	could	do	is	analyze	whether	or	not	the	Community	Notes	algorithm,	as	is,	actually
manages	to	fight	polarization	at	all	-	that	is,	whether	or	not	it	actually	does	any	better	than	a	naive
voting	algorithm.	Naive	voting	algorithms	already	fight	polarization	to	some	limited	extent:	a	post
with	200	upvotes	and	100	downvotes	does	worse	than	a	post	that	just	gets	the	200	upvotes.	But	does
Community	Notes	do	better	than	that?

Looking	at	the	algorithm	abstractly,	it's	hard	to	tell.	Why	wouldn't	a	high-average-rating	but
polarizing	post	get	a	strong	polarity	and	a	high	helpfulness?	The	idea	is	that	polarity	is	supposed	to
"absorb"	the	properties	of	a	note	that	cause	it	to	get	a	lot	of	votes	if	those	votes	are	conflicting,	but
does	it	actually	do	that?

To	check	this,	I	ran	my	own	simplified	implementation	for	100	rounds.	The	average	results	were:

Quality	averages:
Group	1	(good):	0.30032841807271166
Group	2	(good	but	extra	polarizing):	0.21698871680927437
Group	3	(neutral):	0.09443120045416832
Group	4	(bad):	-0.1521160965793673

In	this	test,	"Good"	notes	received	a	rating	of	+2	from	users	in	the	same	political	tribe	and	+0	from
users	in	the	opposite	political	tribe,	and	"Good	but	extra	polarizing"	notes	received	a	rating	of	+4
from	same-tribe	users	and	-2	from	opposite-tribe	users.	Same	average,	but	different	polarity.	And	it
seems	to	actually	be	the	case	that	"Good"	notes	get	a	higher	average	helpfulness	than	"Good	but
extra	polarizing"	notes.

One	other	benefit	of	having	something	closer	to	an	"economist's	algorithm"	would	be	having	a	clearer
story	for	how	the	algorithm	is	penalizing	polarization.

How	useful	is	this	all	in	high-stakes	situations?
We	can	see	some	of	how	this	works	out	by	looking	at	one	specific	situation.	About	a	month	ago,	Ian
Bremmer	complained	that	a	highly	critical	Community	Note	that	was	added	to	a	tweet	by	a	Chinese
government	official	had	been	removed.

https://github.com/ethereum/research/blob/master/community_notes_analysis/basic_algo.py
https://twitter.com/ianbremmer/status/1676590373727088647


The	note,	which	is	now	no	longer	visible.	Screenshot	by	Ian	Bremmer.

This	is	heavy	stuff.	It's	one	thing	to	do	mechanism	design	in	a	nice	sandbox	Ethereum	community
environment	where	the	largest	complaint	is	$20,000	going	to	a	polarizing	Twitter	influencer.	It's
another	to	do	it	for	political	and	geopolitical	questions	that	affect	many	millions	of	people	and	where
everyone,	often	quite	understandably,	is	assuming	maximum	bad	faith.	But	if	mechanism	designers
want	to	have	a	significant	impact	into	the	world,	engaging	with	these	high-stakes	environments	is
ultimately	necessary.

In	the	case	of	Twitter,	there	is	a	clear	reason	why	one	might	suspect	centralized	manipulation	to	be
behind	the	Note's	removal:	Elon	has	a	lot	of	business	interests	in	China,	and	so	there	is	a	possibility
that	Elon	forced	the	Community	Notes	team	to	interfere	with	the	algorithm's	outputs	and	delete	this
specific	one.

Fortunately,	the	algorithm	is	open	source	and	verifiable,	so	we	can	actually	look	under	the	hood!
Let's	do	that.	The	URL	of	the	original	tweet	is
https://twitter.com/MFA_China/status/1676157337109946369.	The	number	at	the	end,
1676157337109946369,	is	the	tweet	ID.	We	can	search	for	that	in	the	downloadable	data,	and	identify
the	specific	row	in	the	spreadsheet	that	has	the	above	note:

https://twitter.com/ianbremmer
https://vitalik.ca/general/2020/01/28/round4.html
https://www.nbcnews.com/tech/elon-musks-business-ties-china-draw-scrutiny-twitter-purchase-rcna26057
https://twitter.com/MFA_China/status/1676157337109946369
https://communitynotes.twitter.com/guide/en/under-the-hood/ranking-notes


Here	we	get	the	ID	of	the	note	itself,	1676391378815709184.	We	then	search	for	that	in	the
scored_notes.tsv	and	note_status_history.tsv	files	generated	by	running	the	algorithm.	We	get:

The	second	column	in	the	first	output	is	the	note's	current	rating.	The	second	output	shows	the
note's	history:	its	current	status	is	in	the	seventh	column	(NEEDS_MORE_RATINGS),	and	the	first	status
that's	not	NEEDS_MORE_RATINGS	that	it	received	earlier	on	is	in	the	fifth	column
(CURRENTLY_RATED_HELPFUL).	Hence,	we	see	that	the	algorithm	itself	first	showed	the	note,	and
then	removed	it	once	its	rating	dropped	somewhat	-	seemingly	no	centralized	intervention
involved.

We	can	see	this	another	way	by	looking	at	the	votes	themselves.	We	can	scan	the	ratings-00000.tsv
file	to	isolate	all	the	ratings	for	this	note,	and	see	how	many	rated	HELPFUL	vs	NOT_HELPFUL:

But	if	you	sort	them	by	timestamp,	and	look	at	the	first	50	votes,	you	see	40	HELPFUL	votes	and	9
NOT_HELPFUL	votes.	And	so	we	see	the	same	conclusion:	the	note's	initial	audience	viewed	the	note
more	favorably	then	the	note's	later	audience,	and	so	its	rating	started	out	higher	and	dropped	lower
over	time.

Unfortunately,	the	exact	story	of	how	the	note	changed	status	is	complicated	to	explain:	it's	not	a
simple	matter	of	"before	the	rating	was	above	0.40,	now	it's	below	0.40,	so	it	got	dropped".	Rather,
the	high	volume	of	NOT_HELPFUL	replies	triggered	one	of	the	outlier	conditions,	increasing	the
helpfulness	score	that	the	note	needs	to	stay	over	the	threshold.

This	is	a	good	learning	opportunity	for	another	lesson:	making	a	credibly	neutral	algorithm	truly
credible	requires	keeping	it	simple.	If	a	note	moves	from	being	accepted	to	not	being	accepted,	there
should	be	a	simple	and	legible	story	as	to	why.

Of	course,	there	is	a	totally	different	way	in	which	this	vote	could	have	been	manipulated:
brigading.	Someone	who	sees	a	note	that	they	disapprove	of	could	call	upon	a	highly	engaged
community	(or	worse,	a	mass	of	fake	accounts)	to	rate	it	NOT_HELPFUL,	and	it	may	not	require	that
many	votes	to	drop	the	note	from	being	seen	as	"helpful"	to	being	seen	as	"polarized".	Properly
minimizing	the	vulnerability	of	this	algorithm	to	such	coordinated	attacks	will	require	a	lot	more
analysis	and	work.	One	possible	improvement	would	be	not	allowing	any	user	to	vote	on	any	note,
but	instead	using	the	"For	you"	algorithmic	feed	to	randomly	allocate	notes	to	raters,	and	only	allow
raters	to	rate	those	notes	that	they	have	been	allocated	to.

https://communitynotes.twitter.com/guide/en/under-the-hood/ranking-notes#tag-outlier-filtering
https://vitalik.ca/general/2018/11/25/central_planning.html


Is	Community	Notes	not	"brave"	enough?

The	main	criticism	of	Community	Notes	that	I	have	seen	is	basically	that	it	does	not	do	enough.	Two
recent	articles	that	I	have	seen	make	this	point.	Quoting	one:

The	program	is	severely	hampered	by	the	fact	that	for	a	Community	Note	to	be	public,	it
has	to	be	generally	accepted	by	a	consensus	of	people	from	all	across	the	political
spectrum.

"It	has	to	have	ideological	consensus,"	he	said.	"That	means	people	on	the	left	and	people
on	the	right	have	to	agree	that	that	note	must	be	appended	to	that	tweet."

Essentially,	it	requires	a	"cross-ideological	agreement	on	truth,	and	in	an	increasingly
partisan	environment,	achieving	that	consensus	is	almost	impossible,	he	said.

This	is	a	difficult	issue,	but	ultimately	I	come	down	on	the	side	that	it	is	better	to	let	ten
misinformative	tweets	go	free	than	it	is	to	have	one	tweet	covered	by	a	note	that	judges	it	unfairly.
We	have	seen	years	of	fact-checking	that	is	brave,	and	does	come	from	the	perspective	of	"well,
actually	we	know	the	truth,	and	we	know	that	one	side	lies	much	more	often	than	the	other".	And
what	happened	as	a	result?

Honestly,	some	pretty	widespread	distrust	of	fact-checking	as	a	concept.	One	strategy	here	is	to	say:
ignore	the	haters,	remember	that	the	fact	checking	experts	really	do	know	the	facts	better	than	any
voting	system,	and	stay	the	course.	But	going	all-in	on	this	approach	seems	risky.	There	is	value	in
building	cross-tribal	institutions	that	are	at	least	somewhat	respected	by	everyone.	As	with	William
Blackstone's	dictum	and	the	courts,	it	feels	to	me	that	maintaining	such	respect	requires	a	system
that	commits	far	more	sins	of	omission	than	it	does	sins	of	commission.	And	so	it	seems	valuable	to
me	that	there	is	at	least	one	major	organization	that	is	taking	this	alternate	path,	and	treating	its
rare	cross-tribal	respect	as	a	resource	to	be	cherished	and	built	upon.

https://www.poynter.org/fact-checking/2023/why-twitters-community-notes-feature-mostly-fails-to-combat-misinformation/
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Another	reason	why	I	think	it	is	okay	for	Community	Notes	to	be	conservative	is	that	I	do	not	think	it
is	the	goal	for	every	misinformative	tweet,	or	even	most	misinformative	tweets,	to	receive	a
corrective	note.	Even	if	less	than	one	percent	of	misinformative	tweets	get	a	note	providing
context	or	correcting	them,	Community	Notes	is	still	providing	an	exceedingly	valuable
service	as	an	educational	tool.	The	goal	is	not	to	correct	everything;	rather,	the	goal	is	to	remind
people	that	multiple	perspectives	exist,	that	certain	kinds	of	posts	that	look	convincing	and	engaging
in	isolation	are	actually	quite	incorrect,	and	you,	yes	you,	can	often	go	do	a	basic	internet	search	to
verify	that	it's	incorrect.

Community	Notes	cannot	be,	and	is	not	meant	to	be,	a	miracle	cure	that	solves	all	problems	in	public
epistemology.	Whatever	problems	it	does	not	solve,	there	is	plenty	of	room	for	other	mechanisms,
whether	newfangled	gadgets	such	as	prediction	markets	or	good	old-fashioned	organizations	hiring
full-time	staff	with	domain	expertise,	to	try	to	fill	in	the	gaps.

Conclusions
Community	Notes,	in	addition	to	being	a	fascinating	social	media	experiment,	is	also	an	instance	of	a
fascinating	new	and	emerging	genre	of	mechanism	design:	mechanisms	that	intentionally	try	to
identify	polarization,	and	favor	things	that	bridge	across	divides	rather	than	perpetuate	them.

The	two	other	things	in	this	category	that	I	know	about	are	(i)	pairwise	quadratic	funding,	which	is
being	used	in	Gitcoin	Grants	and	(ii)	Polis,	a	discussion	tool	that	uses	clustering	algorithms	to	help
communities	identify	statements	that	are	commonly	well-received	across	people	who	normally	have
different	viewpoints.	This	area	of	mechanism	design	is	valuable,	and	I	hope	that	we	can	see	a	lot
more	academic	work	in	this	field.

Algorithmic	transparency	of	the	type	that	Community	Notes	offers	is	not	quite	full-on	decentralized
social	media	-	if	you	disagree	with	how	Community	Notes	works,	there's	no	way	to	go	see	a	view	of
the	same	content	with	a	different	algorithm.	But	it's	the	closest	that	very-large-scale	applications	are
going	to	get	within	the	next	couple	of	years,	and	we	can	see	that	it	provides	a	lot	of	value	already,
both	by	preventing	centralized	manipulation	and	by	ensuring	that	platforms	that	do	not	engage	in
such	manipulation	can	get	proper	credit	for	doing	so.

I	look	forward	to	seeing	both	Community	Notes,	and	hopefully	many	more	algorithms	of	a	similar
spirit,	develop	and	grow	over	the	next	decade.

https://manifold.markets/
https://manifold.markets/
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https://pol.is/
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What	do	I	think	about	biometric	proof	of	personhood?

Special	thanks	to	the	Worldcoin	team,	the	Proof	of	Humanity	community	and	Andrew	Miller	for	discussion.

One	of	the	trickier,	but	potentially	one	of	the	most	valuable,	gadgets	that	people	in	the	Ethereum	community	have	been	trying	to	build	is	a	decentralized	proof-of-
personhood	solution.	Proof	of	personhood,	aka	the	"unique-human	problem",	is	a	limited	form	of	real-world	identity	that	asserts	that	a	given	registered	account	is
controlled	by	a	real	person	(and	a	different	real	person	from	every	other	registered	account),	ideally	without	revealing	which	real	person	it	is.

There	have	been	a	few	efforts	at	tackling	this	problem:	Proof	of	Humanity,	BrightID,	Idena	and	Circles	come	up	as	examples.	Some	of	them	come	with	their	own
applications	(often	a	UBI	token),	and	some	have	found	use	in	Gitcoin	Passport	to	verify	which	accounts	are	valid	for	quadratic	voting.	Zero-knowledge	tech	like
Sismo	adds	privacy	to	many	of	these	solutions.	More	recently,	we	have	seen	the	rise	of	a	much	larger	and	more	ambitious	proof-of-personhood	project:	Worldcoin.

Worldcoin	was	co-founded	by	Sam	Altman,	who	is	best	known	for	being	the	CEO	of	OpenAI.	The	philosophy	behind	the	project	is	simple:	AI	is	going	to	create	a	lot
of	abundance	and	wealth	for	humanity,	but	it	also	may	kill	very	many	people's	jobs	and	make	it	almost	impossible	to	tell	who	even	is	a	human	and	not	a	bot,	and	so
we	need	to	plug	that	hole	by	(i)	creating	a	really	good	proof-of-personhood	system	so	that	humans	can	prove	that	they	actually	are	humans,	and	(ii)	giving	everyone
a	UBI.	Worldcoin	is	unique	in	that	it	relies	on	highly	sophisticated	biometrics,	scanning	each	user's	iris	using	a	piece	of	specialized	hardware	called	"the	Orb":

The	goal	is	to	produce	a	large	number	of	these	Orbs	and	widely	distribute	them	around	the	world	and	put	them	in	public	places	to	make	it	easy	for	anyone	to	get
an	ID.	To	Worldcoin's	credit,	they	have	also	committed	to	decentralize	over	time.	At	first,	this	means	technical	decentralization:	being	an	L2	on	Ethereum	using	the
Optimism	stack,	and	protecting	users'	privacy	with	ZK-SNARKs	and	other	cryptographic	techniques.	Later	on,	it	includes	decentralizing	governance	of	the	system
itself.

Worldcoin	has	been	criticized	for	privacy	and	security	concerns	around	the	Orb,	design	issues	in	its	"coin",	and	for	ethical	issues	around	some	choices	that	the
company	has	made.	Some	of	the	criticisms	are	highly	specific,	focusing	on	decisions	made	by	the	project	that	could	easily	have	been	made	in	another	way	-	and
indeed,	that	the	Worldcoin	project	itself	may	be	willing	to	change.	Others,	however,	raise	the	more	fundamental	concern	of	whether	or	not	biometrics	-	not	just	the
eye-scanning	biometrics	of	Worldcoin,	but	also	the	simpler	face-video-uploads	and	verification	games	used	in	Proof	of	Humanity	and	Idena	-	are	a	good	idea	at	all.
And	still	others	criticize	proof	of	personhood	in	general.	Risks	include	unavoidable	privacy	leaks,	further	erosion	of	people's	ability	to	navigate	the	internet
anonymously,	coercion	by	authoritarian	governments,	and	the	potential	impossibility	of	being	secure	at	the	same	time	as	being	decentralized.

This	post	will	talk	about	these	issues,	and	go	through	some	arguments	that	can	help	you	decide	whether	or	not	bowing	down	and	scanning	your	eyes	(or	face,	or
voice,	or...)	before	our	new	spherical	overlords	is	a	good	idea,	and	whether	or	not	the	natural	alternatives	-	either	using	social-graph-based	proof	of	personhood	or
giving	up	on	proof	of	personhood	entirely	-	are	any	better.

What	is	proof	of	personhood	and	why	is	it	important?
The	simplest	way	to	define	a	proof-of-personhood	system	is:	it	creates	a	list	of	public	keys	where	the	system	guarantees	that	each	key	is	controlled	by	a	unique
human.	In	other	words,	if	you're	a	human,	you	can	put	one	key	on	the	list,	but	you	can't	put	two	keys	on	the	list,	and	if	you're	a	bot	you	can't	put	any	keys	on	the
list.

Proof	of	personhood	is	valuable	because	it	solves	a	lot	of	anti-spam	and	anti-concentration-of-power	problems	that	many	people	have,	in	a	way	that	avoids
dependence	on	centralized	authorities	and	reveals	the	minimal	information	possible.	If	proof	of	personhood	is	not	solved,	decentralized	governance	(including
"micro-governance"	like	votes	on	social	media	posts)	becomes	much	easier	to	capture	by	very	wealthy	actors,	including	hostile	governments.	Many	services	would
only	be	able	to	prevent	denial-of-service	attacks	by	setting	a	price	for	access,	and	sometimes	a	price	high	enough	to	keep	out	attackers	is	also	too	high	for	many
lower-income	legitimate	users.
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Many	major	applications	in	the	world	today	deal	with	this	issue	by	using	government-backed	identity	systems	such	as	credit	cards	and	passports.	This	solves	the
problem,	but	it	makes	large	and	perhaps	unacceptable	sacrifices	on	privacy,	and	can	be	trivially	attacked	by	governments	themselves.

How	many	proof	of	personhood	proponents	see	the	two-sided	risk	that	we	are	facing.	Image	source.

In	many	proof-of-personhood	projects	-	not	just	Worldcoin,	but	also	Proof	of	Humanity,	Circles	and	others	-	the	"flagship	application"	is	a	built-in	"N-per-person
token"	(sometimes	called	a	"UBI	token").	Each	user	registered	in	the	system	receives	some	fixed	quantity	of	tokens	each	day	(or	hour,	or	week).	But	there	are
plenty	of	other	applications:

Airdrops	for	token	distributions
Token	or	NFT	sales	that	give	more	favorable	terms	to	less-wealthy	users
Voting	in	DAOs
A	way	to	"seed"	graph-based	reputation	systems
Quadratic	voting	(and	funding,	and	attention	payments)
Protection	against	bots	/	sybil	attacks	in	social	media
An	alternative	to	captchas	for	preventing	DoS	attacks

In	many	of	these	cases,	the	common	thread	is	a	desire	to	create	mechanisms	that	are	open	and	democratic,	avoiding	both	centralized	control	by	a	project's
operators	and	domination	by	its	wealthiest	users.	The	latter	is	especially	important	in	decentralized	governance.	In	many	of	these	cases,	existing	solutions	today
rely	on	some	combination	of	(i)	highly	opaque	AI	algorithms	that	leave	lots	of	room	to	undetectably	discriminate	against	users	that	the	operators	simply	do	not	like,
and	(ii)	centralized	IDs,	aka	"KYC".	An	effective	proof-of-personhood	solution	would	be	a	much	better	alternative,	achieving	the	security	properties	that	those
applications	need	without	the	pitfalls	of	the	existing	centralized	approaches.

What	are	some	early	attempts	at	proof	of	personhood?
There	are	two	main	forms	of	proof	of	personhood:	social-graph-based	and	biometric.	Social-graph	based	proof	of	personhood	relies	on	some	form	of	vouching:	if
Alice,	Bob,	Charlie	and	David	are	all	verified	humans,	and	they	all	say	that	Emily	is	a	verified	human,	then	Emily	is	probably	also	a	verified	human.	Vouching	is
often	enhanced	with	incentives:	if	Alice	says	that	Emily	is	a	human,	but	it	turns	out	that	she	is	not,	then	Alice	and	Emily	may	both	get	penalized.	Biometric	proof	of
personhood	involves	verifying	some	physical	or	behavioral	trait	of	Emily,	that	distinguishes	humans	from	bots	(and	individual	humans	from	each	other).	Most
projects	use	a	combination	of	the	two	techniques.

The	four	systems	I	mentioned	at	the	beginning	of	the	post	work	roughly	as	follows:

Proof	of	Humanity:	you	upload	a	video	of	yourself,	and	provide	a	deposit.	To	be	approved,	an	existing	user	needs	to	vouch	for	you,	and	an	amount	of	time
needs	to	pass	during	which	you	can	be	challenged.	If	there	is	a	challenge,	a	Kleros	decentralized	court	determines	whether	or	not	your	video	was	genuine;	if	it
is	not,	you	lose	your	deposit	and	the	challenger	gets	a	reward.
BrightID:	you	join	a	video	call	"verification	party"	with	other	users,	where	everyone	verifies	each	other.	Higher	levels	of	verification	are	available	via	Bitu,	a
system	in	which	you	can	get	verified	if	enough	other	Bitu-verified	users	vouch	for	you.
Idena:	you	play	a	captcha	game	at	a	specific	point	in	time	(to	prevent	people	from	participating	multiple	times);	part	of	the	captcha	game	involves	creating
and	verifying	captchas	that	will	then	be	used	to	verify	others.
Circles:	an	existing	Circles	user	vouches	for	you.	Circles	is	unique	in	that	it	does	not	attempt	to	create	a	"globally	verifiable	ID";	rather,	it	creates	a	graph	of
trust	relationships,	where	someone's	trustworthiness	can	only	be	verified	from	the	perspective	of	your	own	position	in	that	graph.

How	does	Worldcoin	work?
Each	Worldcoin	user	installs	an	app	on	their	phone,	which	generates	a	private	and	public	key,	much	like	an	Ethereum	wallet.	They	then	go	in-person	to	visit	an
"Orb".	The	user	stares	into	the	Orb's	camera,	and	at	the	same	time	shows	the	Orb	a	QR	code	generated	by	their	Worldcoin	app,	which	contains	their	public	key.
The	Orb	scans	the	user's	eyes,	and	uses	complicated	hardware	scanning	and	machine-learned	classifiers	to	verify	that:

1.	 The	user	is	a	real	human
2.	 The	user's	iris	does	not	match	the	iris	of	any	other	user	that	has	previously	used	the	system

If	both	scans	pass,	the	Orb	signs	a	message	approving	a	specialized	hash	of	the	user's	iris	scan.	The	hash	gets	uploaded	to	a	database	-	currently	a	centralized
server,	intended	to	be	replaced	with	a	decentralized	on-chain	system	once	they	are	sure	the	hashing	mechanism	works.	The	system	does	not	store	full	iris	scans;	it
only	stores	hashes,	and	these	hashes	are	used	to	check	for	uniqueness.	From	that	point	forward,	the	user	has	a	"World	ID".

A	World	ID	holder	is	able	to	prove	that	they	are	a	unique	human	by	generating	a	ZK-SNARK	proving	that	they	hold	the	private	key	corresponding	to	a	public	key	in
the	database,	without	revealing	which	key	they	hold.	Hence,	even	if	someone	re-scans	your	iris,	they	will	not	be	able	to	see	any	actions	that	you	have	taken.

What	are	the	major	issues	with	Worldcoin's	construction?
There	are	four	major	risks	that	immediately	come	to	mind:

Privacy.	The	registry	of	iris	scans	may	reveal	information.	At	the	very	least,	if	someone	else	scans	your	iris,	they	can	check	it	against	the	database	to
determine	whether	or	not	you	have	a	World	ID.	Potentially,	iris	scans	might	reveal	more	information.
Accessibility.	World	IDs	are	not	going	to	be	reliably	accessible	unless	there	are	so	many	Orbs	that	anyone	in	the	world	can	easily	get	to	one.
Centralization.	The	Orb	is	a	hardware	device,	and	we	have	no	way	to	verify	that	it	was	constructed	correctly	and	does	not	have	backdoors.	Hence,	even	if	the
software	layer	is	perfect	and	fully	decentralized,	the	Worldcoin	Foundation	still	has	the	ability	to	insert	a	backdoor	into	the	system,	letting	it	create	arbitrarily
many	fake	human	identities.
Security.	Users'	phones	could	be	hacked,	users	could	be	coerced	into	scanning	their	irises	while	showing	a	public	key	that	belongs	to	someone	else,	and	there
is	the	possibility	of	3D-printing	"fake	people"	that	can	pass	the	iris	scan	and	get	World	IDs.

It's	important	to	distinguish	between	(i)	issues	specific	to	choices	made	by	Worldcoin,	(ii)	issues	that	any	biometric	proof	of	personhood	will
inevitably	have,	and	(iii)	issues	that	any	proof	of	personhood	in	general	will	have.	For	example,	signing	up	to	Proof	of	Humanity	means	publishing	your
face	on	the	internet.	Joining	a	BrightID	verification	party	doesn't	quite	do	that,	but	still	exposes	who	you	are	to	a	lot	of	people.	And	joining	Circles	publicly	exposes
your	social	graph.	Worldcoin	is	significantly	better	at	preserving	privacy	than	either	of	those.	On	the	other	hand,	Worldcoin	depends	on	specialized	hardware,
which	opens	up	the	challenge	of	trusting	the	orb	manufacturers	to	have	constructed	the	orbs	correctly	-	a	challenge	which	has	no	parallels	in	Proof	of	Humanity,
BrightID	or	Circles.	It's	even	conceivable	that	in	the	future,	someone	other	than	Worldcoin	will	create	a	different	specialized-hardware	solution	that	has	different
tradeoffs.
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How	do	biometric	proof-of-personhood	schemes	address	privacy	issues?
The	most	obvious,	and	greatest,	potential	privacy	leak	that	any	proof-of-personhood	system	has	is	linking	each	action	that	a	person	takes	to	a	real-world	identity.
This	data	leak	is	very	large,	arguably	unacceptably	large,	but	fortunately	it	is	easy	to	solve	with	zero	knowledge	proof	technology.	Instead	of	directly	making	a
signature	with	a	private	key	whose	corresponding	public	key	is	in	the	database,	a	user	could	make	a	ZK-SNARK	proving	that	they	own	the	private	key	whose
corresponding	public	key	is	somewhere	in	the	database,	without	revealing	which	specific	key	they	have.	This	can	be	done	generically	with	tools	like	Sismo	(see
here	for	the	Proof	of	Humanity-specific	implementation),	and	Worldcoin	has	its	own	built-in	implementation.	It's	important	to	give	"crypto-native"	proof	of
personhood	credit	here:	they	actually	care	about	taking	this	basic	step	to	provide	anonymization,	whereas	basically	all	centralized	identity	solutions
do	not.

A	more	subtle,	but	still	important,	privacy	leak	is	the	mere	existence	of	a	public	registry	of	biometric	scans.	In	the	case	of	Proof	of	Humanity,	this	is	a	lot	of	data:
you	get	a	video	of	each	Proof	of	Humanity	participant,	making	it	very	clear	to	anyone	in	the	world	who	cares	to	investigate	who	all	the	Proof	of	Humanity
participants	are.	In	the	case	of	Worldcoin,	the	leak	is	much	more	limited:	the	Orb	locally	computes	and	publishes	only	a	"hash"	of	each	person's	iris	scan.	This	hash
is	not	a	regular	hash	like	SHA256;	rather,	it	is	a	specialized	algorithm	based	on	machine-learned	Gabor	filters	that	deals	with	the	inexactness	inherent	in	any
biometric	scan,	and	ensures	that	successive	hashes	taken	of	the	same	person's	iris	have	similar	outputs.

Blue:	percent	of	bits	that	differ	between	two	scans	of	the	same	person's	iris.	Orange:	percent	of	bits	that	differ	between	two	scans	of	two	different	people's	irises.

These	iris	hashes	leak	only	a	small	amount	of	data.	If	an	adversary	can	forcibly	(or	secretly)	scan	your	iris,	then	they	can	compute	your	iris	hash	themselves,	and
check	it	against	the	database	of	iris	hashes	to	see	whether	or	not	you	participated	in	the	system.	This	ability	to	check	whether	or	not	someone	signed	up	is
necessary	for	the	system	itself	to	prevent	people	from	signing	up	multiple	times,	but	there's	always	the	possibility	that	it	will	somehow	be	abused.	Additionally,
there	is	the	possibility	that	the	iris	hashes	leak	some	amount	of	medical	data	(sex,	ethnicity,	perhaps	medical	conditions),	but	this	leak	is	far	smaller	than	what
could	be	captured	by	pretty	much	any	other	mass	data-gathering	system	in	use	today	(eg.	even	street	cameras).	On	the	whole,	to	me	the	privacy	of	storing	iris
hashes	seems	sufficient.

If	others	disagree	with	this	judgement	and	decide	that	they	want	to	design	a	system	with	even	more	privacy,	there	are	two	ways	to	do	so:

1.	 If	the	iris	hashing	algorithm	can	be	improved	to	make	the	difference	between	two	scans	of	the	same	person	much	lower	(eg.	reliably	under	10%	bit	flips),	then
instead	of	storing	full	iris	hashes,	the	system	can	store	a	smaller	number	of	error	correction	bits	for	iris	hashes	(see:	fuzzy	extractors).	If	the	difference
between	two	scans	is	under	10%,	then	the	number	of	bits	that	needs	to	be	published	would	be	at	least	5x	less.

2.	 If	we	want	to	go	further,	we	could	store	the	iris	hash	database	inside	a	multi-party	computation	(MPC)	system	which	could	only	be	accessed	by	Orbs	(with	a
rate	limit),	making	the	data	unaccessible	entirely,	but	at	the	cost	of	significant	protocol	complexity	and	social	complexity	in	governing	the	set	of	MPC
participants.	This	would	have	the	benefit	that	users	would	not	be	able	to	prove	a	link	between	two	different	World	IDs	that	they	had	at	different	times	even	if
they	wanted	to.

Unfortunately,	these	techniques	are	not	applicable	to	Proof	of	Humanity,	because	Proof	of	Humanity	requires	the	full	video	of	each	participant	to	be	publicly
available	so	that	it	can	be	challenged	if	there	are	signs	that	it	is	fake	(including	AI-generated	fakes),	and	in	such	cases	investigated	in	more	detail.

On	the	whole,	despite	the	"dystopian	vibez"	of	staring	into	an	Orb	and	letting	it	scan	deeply	into	your	eyeballs,	it	does	seem	like	specialized	hardware	systems	can
do	quite	a	decent	job	of	protecting	privacy.	However,	the	flip	side	of	this	is	that	specialized	hardware	systems	introduce	much	greater	centralization	concerns.
Hence,	we	cypherpunks	seem	to	be	stuck	in	a	bind:	we	have	to	trade	off	one	deeply-held	cypherpunk	value	against	another.
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What	are	the	accessibility	issues	in	biometric	proof-of-personhood	systems?
Specialized	hardware	introduces	accessibility	concerns	because,	well,	specialized	hardware	is	not	very	accessible.	Somewhere	between	51%	and	64%	of	sub-
Saharan	Africans	now	have	smartphones,	and	this	seems	to	be	projected	to	increase	to	87%	by	2030.	But	while	there	are	billions	of	smartphones,	there	are	only	a
few	hundred	Orbs.	Even	with	much	higher-scale	distributed	manufacturing,	it	would	be	hard	to	get	to	a	world	where	there's	an	Orb	within	five	kilometers	of
everyone.

But	to	the	team's	credit,	they	have	been	trying!

It	is	also	worth	noting	that	many	other	forms	of	proof	of	personhood	have	accessibility	problems	that	are	even	worse.	It	is	very	difficult	to	join	a	social-graph-based
proof-of-personhood	system	unless	you	already	know	someone	who	is	in	the	social	graph.	This	makes	it	very	easy	for	such	systems	to	remain	restricted	to	a	single
community	in	a	single	country.

Even	centralized	identity	systems	have	learned	this	lesson:	India's	Aadhaar	ID	system	is	biometric-based,	as	that	was	the	only	way	to	quickly	onboard	its	massive
population	while	avoiding	massive	fraud	from	duplicate	and	fake	accounts	(resulting	in	huge	cost	savings),	though	of	course	the	Aadhaar	system	as	a	whole	is	far
weaker	on	privacy	than	anything	being	proposed	on	a	large	scale	within	the	crypto	community.

The	best-performing	systems	from	an	accessibility	perspective	are	actually	systems	like	Proof	of	Humanity,	which	you	can	sign	up	to	using	only	a
smartphone	-	though,	as	we	have	seen	and	as	we	will	see,	such	systems	come	with	all	kinds	of	other	tradeoffs.

What	are	the	centralization	issues	in	biometric	proof-of-personhood	systems?
There	are	three:

1.	 Centralization	risks	in	the	system's	top-level	governance	(esp.	the	system	that	makes	final	top-level	resolutions	if	different	actors	in	the	system	disagree	on
subjective	judgements).

2.	 Centralization	risks	unique	to	systems	that	use	specialized	hardware.
3.	 Centralization	risks	if	proprietary	algorithms	are	used	to	determine	who	is	an	authentic	participant.

Any	proof-of-personhood	system	must	contend	with	(1),	perhaps	with	the	exception	of	systems	where	the	set	of	"accepted"	IDs	is	completely	subjective.	If	a	system
uses	incentives	denominated	in	outside	assets	(eg.	ETH,	USDC,	DAI),	then	it	cannot	be	fully	subjective,	and	so	governance	risks	become	unavoidable.

[2]	is	a	much	bigger	risk	for	Worldcoin	than	for	Proof	of	Humanity	(or	BrightID),	because	Worldcoin	depends	on	specialized	hardware	and	other	systems	do	not.

[3]	is	a	risk	particularly	in	"logically	centralized"	systems	where	there	is	a	single	system	doing	the	verification,	unless	all	of	the	algorithms	are	open-source	and	we
have	an	assurance	that	they	are	actually	running	the	code	that	they	claim	they	are.	For	systems	that	rely	purely	on	users	verifying	other	users	(like	Proof	of
Humanity),	it	is	not	a	risk.

How	does	Worldcoin	address	hardware	centralization	issues?

Currently,	a	Worldcoin-affiliated	entity	called	Tools	for	Humanity	is	the	only	organization	that	is	making	Orbs.	However,	the	Orb's	source	code	is	mostly	public:	you
can	see	the	hardware	specs	in	this	github	repository,	and	other	parts	of	the	source	code	are	expected	to	be	published	soon.	The	license	is	another	one	of	those
"shared	source	but	not	technically	open	source	until	four	years	from	now"	licenses	similar	to	the	Uniswap	BSL,	except	in	addition	to	preventing	forking	it	also
prevents	what	they	consider	unethical	behavior	-	they	specifically	list	mass	surveillance	and	three	international	civil	rights	declarations.

The	team's	stated	goal	is	to	allow	and	encourage	other	organizations	to	create	Orbs,	and	over	time	transition	from	Orbs	being	created	by	Tools	for	Humanity	to
having	some	kind	of	DAO	that	approves	and	manages	which	organizations	can	make	Orbs	that	are	recognized	by	the	system.

There	are	two	ways	in	which	this	design	can	fail:

1.	 It	fails	to	actually	decentralize.	This	could	happen	because	of	the	common	trap	of	federated	protocols:	one	manufacturer	ends	up	dominating	in	practice,
causing	the	system	to	re-centralize.	Presumably,	governance	could	limit	how	many	valid	Orbs	each	manufacturer	can	produce,	but	this	would	need	to	be
managed	carefully,	and	it	puts	a	lot	of	pressure	on	governance	to	be	both	decentralized	and	monitor	the	ecosystem	and	respond	to	threats	effectively:	a	much
harder	task	than	eg.	a	fairly	static	DAO	that	just	handles	top-level	dispute	resolution	tasks.

2.	 It	turns	out	that	it's	not	possible	to	make	such	a	distributed	manufacturing	mechanism	secure.	Here,	there	are	two	risks	that	I	see:
Fragility	against	bad	Orb	manufacturers:	if	even	one	Orb	manufacturer	is	malicious	or	hacked,	it	can	generate	an	unlimited	number	of	fake	iris	scan
hashes,	and	give	them	World	IDs.
Government	restriction	of	Orbs:	governments	that	do	not	want	their	citizens	participating	in	the	Worldcoin	ecosystem	can	ban	Orbs	from	their
country.	Furthermore,	they	could	even	force	their	citizens	to	get	their	irises	scanned,	allowing	the	government	to	get	their	accounts,	and	the	citizens
would	have	no	way	to	respond.

To	make	the	system	more	robust	against	bad	Orb	manufacturers,	the	Worldcoin	team	is	proposing	to	perform	regular	audits	on	Orbs,	verifying	that	they	are	built
correctly	and	key	hardware	components	were	built	according	to	specs	and	were	not	tampered	with	after	the	fact.	This	is	a	challenging	task:	it's	basically	something
like	the	IAEA	nuclear	inspections	bureaucracy	but	for	Orbs.	The	hope	is	that	even	a	very	imperfect	implementation	of	an	auditing	regime	could	greatly	cut	down	on
the	number	of	fake	Orbs.

To	limit	the	harm	caused	by	any	bad	Orb	that	does	slip	through,	it	makes	sense	to	have	a	second	mitigation.	World	IDs	registered	with	different	Orb
manufacturers,	and	ideally	with	different	Orbs,	should	be	distinguishable	from	each	other.	It's	okay	if	this	information	is	private	and	only	stored	on	the
World	ID	holder's	device;	but	it	does	need	to	be	provable	on	demand.	This	makes	it	possible	for	the	ecosystem	to	respond	to	(inevitable)	attacks	by	removing
individual	Orb	manufacturers,	and	perhaps	even	individual	Orbs,	from	the	whitelist	on-demand.	If	we	see	the	North	Korea	government	going	around	and	forcing
people	to	scan	their	eyeballs,	those	Orbs	and	any	accounts	produced	by	them	could	be	immediately	retroactively	disabled.

Security	issues	in	proof	of	personhood	in	general
In	addition	to	issues	specific	to	Worldcoin,	there	are	concerns	that	affect	proof-of-personhood	designs	in	general.	The	major	ones	that	I	can	think	of	are:

1.	 3D-printed	fake	people:	one	could	use	AI	to	generate	photographs	or	even	3D	prints	of	fake	people	that	are	convincing	enough	to	get	accepted	by	the	Orb
software.	If	even	one	group	does	this,	they	can	generate	an	unlimited	number	of	identities.

2.	 Possibility	of	selling	IDs:	someone	can	provide	someone	else's	public	key	instead	of	their	own	when	registering,	giving	that	person	control	of	their
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registered	ID,	in	exchange	for	money.	This	seems	to	be	happening	already.	In	addition	to	selling,	there's	also	the	possibility	of	renting	IDs	to	use	for	a	short
time	in	one	application.

3.	 Phone	hacking:	if	a	person's	phone	gets	hacked,	the	hacker	can	steal	the	key	that	controls	their	World	ID.
4.	 Government	coercion	to	steal	IDs:	a	government	could	force	their	citizens	to	get	verified	while	showing	a	QR	code	belonging	to	the	government.	In	this

way,	a	malicious	government	could	gain	access	to	millions	of	IDs.	In	a	biometric	system,	this	could	even	be	done	covertly:	governments	could	use	obfuscated
Orbs	to	extract	World	IDs	from	everyone	entering	their	country	at	the	passport	control	booth.

[1]	is	specific	to	biometric	proof-of-personhood	systems.	[2]	and	[3]	are	common	to	both	biometric	and	non-biometric	designs.	[4]	is	also	common	to	both,	though
the	techniques	that	are	required	would	be	quite	different	in	both	cases;	in	this	section	I	will	focus	on	the	issues	in	the	biometric	case.

These	are	pretty	serious	weaknesses.	Some	already	have	been	addressed	in	existing	protocols,	others	can	be	addressed	with	future	improvements,	and	still	others
seem	to	be	fundamental	limitations.

How	can	we	deal	with	fake	people?

This	is	significantly	less	of	a	risk	for	Worldcoin	than	it	is	for	Proof	of	Humanity-like	systems:	an	in-person	scan	can	examine	many	features	of	a	person,	and	is	quite
hard	to	fake,	compared	to	merely	deep-faking	a	video.	Specialized	hardware	is	inherently	harder	to	fool	than	commodity	hardware,	which	is	in	turn	harder	to	fool
than	digital	algorithms	verifying	pictures	and	videos	that	are	sent	remotely.

Could	someone	3D-print	something	that	can	fool	even	specialized	hardware	eventually?	Probably.	I	expect	that	at	some	point	we	will	see	growing	tensions	between
the	goal	of	keeping	the	mechanism	open	and	keeping	it	secure:	open-source	AI	algorithms	are	inherently	more	vulnerable	to	adversarial	machine	learning.	Black-
box	algorithms	are	more	protected,	but	it's	hard	to	tell	that	a	black-box	algorithm	was	not	trained	to	include	backdoors.	Perhaps	ZK-ML	technologies	could	give	us
the	best	of	both	worlds.	Though	at	some	point	in	the	even	further	future,	it	is	likely	that	even	the	best	AI	algorithms	will	be	fooled	by	the	best	3D-printed	fake
people.

However,	from	my	discussions	with	both	the	Worldcoin	and	Proof	of	Humanity	teams,	it	seems	like	at	the	present	moment	neither	protocol	is	yet	seeing	significant
deep	fake	attacks,	for	the	simple	reason	that	hiring	real	low-wage	workers	to	sign	up	on	your	behalf	is	quite	cheap	and	easy.

Can	we	prevent	selling	IDs?

In	the	short	term,	preventing	this	kind	of	outsourcing	is	difficult,	because	most	people	in	the	world	are	not	even	aware	of	proof-of-personhood	protocols,	and	if	you
tell	them	to	hold	up	a	QR	code	and	scan	their	eyes	for	$30	they	will	do	that.	Once	more	people	are	aware	of	what	proof-of-personhood	protocols	are,	a	fairly	simple
mitigation	becomes	possible:	allowing	people	who	have	a	registered	ID	to	re-register,	canceling	the	previous	ID.	This	makes	"ID	selling"	much	less
credible,	because	someone	who	sells	you	their	ID	can	just	go	and	re-register,	canceling	the	ID	that	they	just	sold.	However,	getting	to	this	point	requires	the
protocol	to	be	very	widely	known,	and	Orbs	to	be	very	widely	accessible	to	make	on-demand	registration	practical.

This	is	one	of	the	reasons	why	having	a	UBI	coin	integrated	into	a	proof-of-personhood	system	is	valuable:	a	UBI	coin	provides	an	easily	understandable
incentive	for	people	to	(i)	learn	about	the	protocol	and	sign	up,	and	(ii)	immediately	re-register	if	they	register	on	behalf	of	someone	else.	Re-
registration	also	prevents	phone	hacking.

Can	we	prevent	coercion	in	biometric	proof-of-personhood	systems?

This	depends	on	what	kind	of	coercion	we	are	talking	about.	Possible	forms	of	coercion	include:

Governments	scanning	people's	eyes	(or	faces,	or...)	at	border	control	and	other	routine	government	checkpoints,	and	using	this	to	register	(and	frequently	re-
register)	their	citizens
Governments	banning	Orbs	within	the	country	to	prevent	people	from	independently	re-registering
Individuals	buying	IDs	and	then	threatening	to	harm	the	seller	if	they	detect	that	the	ID	has	been	invalidated	due	to	re-registration
(Possibly	government-run)	applications	requiring	people	to	"sign	in"	by	signing	with	their	public	key	directly,	letting	them	see	the	corresponding	biometric
scan,	and	hence	the	link	between	the	user's	current	ID	and	any	future	IDs	they	get	from	re-registering.	A	common	fear	is	that	this	makes	it	too	easy	to	create
"permanent	records"	that	stick	with	a	person	for	their	entire	life.

All	your	UBI	and	voting	power	are	belong	to	us.	Image	source.

Especially	in	the	hands	of	unsophisticated	users,	it	seems	quite	tough	to	outright	prevent	these	situations.	Users	could	leave	their	country	to	(re-)register	at
an	Orb	in	a	safer	country,	but	this	is	a	difficult	process	and	high	cost.	In	a	truly	hostile	legal	environment,	seeking	out	an	independent	Orb	seems	too	difficult	and
risky.

What	is	feasible	is	making	this	kind	of	abuse	more	annoying	to	implement	and	detectable.	The	Proof	of	Humanity	approach	of	requiring	a	person	to	speak
a	specific	phrase	when	registering	is	a	good	example:	it	may	be	enough	to	prevent	hidden	scanning,	requiring	coercion	to	be	much	more	blatant,	and	the
registration	phrase	could	even	include	a	statement	confirming	that	the	respondent	knows	that	they	have	the	right	to	re-register	independently	and	may	get	UBI
coin	or	other	rewards.	If	coercion	is	detected,	the	devices	used	to	perform	coercive	registrations	en	masse	could	have	their	access	rights	revoked.	To	prevent
applications	linking	people's	current	and	previous	IDs	and	attempting	to	leave	"permanent	records",	the	default	proof	of	personhood	app	could	lock	the	user's	key
in	trusted	hardware,	preventing	any	application	from	using	the	key	directly	without	the	anonymizing	ZK-SNARK	layer	in	between.	If	a	government	or	application
developer	wants	to	get	around	this,	they	would	need	to	mandate	the	use	of	their	own	custom	app.

With	a	combination	of	these	techniques	and	active	vigilance,	locking	out	those	regimes	that	are	truly	hostile,	and	keeping	honest	those	regimes	that	are	merely
medium-bad	(as	much	of	the	world	is),	seems	possible.	This	can	be	done	either	by	a	project	like	Worldcoin	or	Proof	of	Humanity	maintaining	its	own	bureaucracy
for	this	task,	or	by	revealing	more	information	about	how	an	ID	was	registered	(eg.	in	Worldcoin,	which	Orb	it	came	from),	and	leaving	this	classification	task	to
the	community.

Can	we	prevent	renting	IDs	(eg.	to	sell	votes)?

Renting	out	your	ID	is	not	prevented	by	re-registration.	This	is	okay	in	some	applications:	the	cost	of	renting	out	your	right	to	collect	the	day's	share	of	UBI	coin	is
going	to	be	just	the	value	of	the	day's	share	of	UBI	coin.	But	in	applications	such	as	voting,	easy	vote	selling	is	a	huge	problem.

Systems	like	MACI	can	prevent	you	from	credibly	selling	your	vote,	by	allowing	you	to	later	cast	another	vote	that	invalidates	your	previous	vote,	in	such	a	way	that
no	one	can	tell	whether	or	not	you	in	fact	cast	such	a	vote.	However,	if	the	briber	controls	which	key	you	get	at	registration	time,	this	does	not	help.
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I	see	two	solutions	here:

1.	 Run	entire	applications	inside	an	MPC.	This	would	also	cover	the	re-registration	process:	when	a	person	registers	to	the	MPC,	the	MPC	assigns	them	an
ID	that	is	separate	from,	and	not	linkable	to,	their	proof	of	personhood	ID,	and	when	a	person	re-registers,	only	the	MPC	would	know	which	account	to
deactivate.	This	prevents	users	from	making	proofs	about	their	actions,	because	every	important	step	is	done	inside	an	MPC	using	private	information	that	is
only	known	to	the	MPC.

2.	 Decentralized	registration	ceremonies.	Basically,	implement	something	like	this	in-person	key-registration	protocol	that	requires	four	randomly	selected
local	participants	to	work	together	to	register	someone.	This	could	ensure	that	registration	is	a	"trusted"	procedure	that	an	attacker	cannot	snoop	in	during.

Social-graph-based	systems	may	actually	perform	better	here,	because	they	can	create	local	decentralized	registration	processes	automatically	as	a	byproduct	of
how	they	work.

How	do	biometrics	compare	with	the	other	leading	candidate	for	proof	of	personhood,	social
graph-based	verification?
Aside	from	biometric	approaches,	the	main	other	contender	for	proof	of	personhood	so	far	has	been	social-graph-based	verification.	Social-graph-based	verification
systems	all	operate	on	the	same	principle:	if	there	are	a	whole	bunch	of	existing	verified	identities	that	all	attest	to	the	validity	of	your	identity,	then	you	probably
are	valid	and	should	also	get	verified	status.

If	only	a	few	real	users	(accidentally	or	maliciously)	verify	fake	users,	then	you	can	use	basic	graph-theory	techniques	to	put	an	upper	bound	on	how	many	fake
users	get	verified	by	the	system.	Source:	https://www.sciencedirect.com/science/article/abs/pii/S0045790622000611.

Proponents	of	social-graph-based	verification	often	describe	it	as	being	a	better	alternative	to	biometrics	for	a	few	reasons:

It	does	not	rely	on	special-purpose	hardware,	making	it	much	easier	to	deploy
It	avoids	a	permanent	arms	race	between	manufacturers	trying	to	create	fake	people	and	the	Orb	needing	to	be	updated	to	reject	such	fake	people
It	does	not	require	collecting	biometric	data,	making	it	more	privacy-friendly
It	is	potentially	more	friendly	to	pseudonymity,	because	if	someone	chooses	to	split	their	internet	life	across	multiple	identities	that	they	keep	separate
from	each	other,	both	of	those	identities	could	potentially	be	verified	(but	maintaining	multiple	genuine	and	separate	identities	sacrifices	network	effects	and
has	a	high	cost,	so	it's	not	something	that	attackers	could	do	easily)
Biometric	approaches	give	a	binary	score	of	"is	a	human"	or	"is	not	a	human",	which	is	fragile:	people	who	are	accidentally	rejected	would	end	up	with	no
UBI	at	all,	and	potentially	no	ability	to	participate	in	online	life.	Social-graph-based	approaches	can	give	a	more	nuanced	numerical	score,	which	may
of	course	be	moderately	unfair	to	some	participants	but	is	unlikely	to	"un-person"	someone	completely.

My	perspective	on	these	arguments	is	that	I	largely	agree	with	them!	These	are	genuine	advantages	of	social-graph-based	approaches	and	should	be	taken
seriously.	However,	it's	worth	also	taking	into	account	the	weaknesses	of	social-graph-based	approaches:

Bootstrapping:	for	a	user	to	join	a	social-graph-based	system,	that	user	must	know	someone	who	is	already	in	the	graph.	This	makes	large-scale	adoption
difficult,	and	risks	excluding	entire	regions	of	the	world	that	do	not	get	lucky	in	the	initial	bootstrapping	process.
Privacy:	while	social-graph-based	approaches	avoid	collecting	biometric	data,	they	often	end	up	leaking	info	about	a	person's	social	relationships,	which	may
lead	to	even	greater	risks.	Of	course,	zero-knowledge	technology	can	mitigate	this	(eg.	see	this	proposal	by	Barry	Whitehat),	but	the	interdependency	inherent
in	a	graph	and	the	need	to	perform	mathematical	analyses	on	the	graph	makes	it	harder	to	achieve	the	same	level	of	data-hiding	that	you	can	with	biometrics.
Inequality:	each	person	can	only	have	one	biometric	ID,	but	a	wealthy	and	socially	well-connected	person	could	use	their	connections	to	generate	many	IDs.
Essentially,	the	same	flexibility	that	might	allow	a	social-graph-based	system	to	give	multiple	pseudonyms	to	someone	(eg.	an	activist)	that	really	needs	that
feature	would	likely	also	imply	that	more	powerful	and	well-connected	people	can	gain	more	pseudonyms	than	less	powerful	and	well-connected	people.
Risk	of	collapse	into	centralization:	most	people	are	too	lazy	to	spend	time	reporting	into	an	internet	app	who	is	a	real	person	and	who	is	not.	As	a	result,
there	is	a	risk	that	the	system	will	come	over	time	to	favor	"easy"	ways	to	get	inducted	that	depend	on	centralized	authorities,	and	the	"social	graph"	that	the
system	users	will	de-facto	become	the	social	graph	of	which	countries	recognize	which	people	as	citizens	-	giving	us	centralized	KYC	with	needless	extra
steps.

Is	proof	of	personhood	compatible	with	pseudonymity	in	the	real	world?

In	principle,	proof	of	personhood	is	compatible	with	all	kinds	of	pseudonymity.	Applications	could	be	designed	in	such	a	way	that	someone	with	a	single	proof	of
personhood	ID	can	create	up	to	five	profiles	within	the	application,	leaving	room	for	pseudonymous	accounts.	One	could	even	use	quadratic	formulas:	N	accounts
for	a	cost	of	$N².	But	will	they?

A	pessimist,	however,	might	argue	that	it	is	naive	to	try	to	create	a	more	privacy-friendly	form	of	ID	and	hope	that	it	will	actually	get	adopted	in	the	right	way,
because	the	powers-that-be	are	not	privacy-friendly,	and	if	a	powerful	actor	gets	a	tool	that	could	be	used	to	get	much	more	information	about	a	person,	they	will
use	it	that	way.	In	such	a	world,	the	argument	goes,	the	only	realistic	approach	is,	unfortunately,	to	throw	sand	in	the	gears	of	any	identity	solution,	and	defend	a
world	with	full	anonymity	and	digital	islands	of	high-trust	communities.

I	see	the	reasoning	behind	this	way	of	thinking,	but	I	worry	that	such	an	approach	would,	even	if	successful,	lead	to	a	world	where	there's	no	way	for	anyone	to	do
anything	to	counteract	wealth	concentration	and	governance	centralization,	because	one	person	could	always	pretend	to	be	ten	thousand.	Such	points	of
centralization	would,	in	turn,	be	easy	for	the	powers-that-be	to	capture.	Rather,	I	would	favor	a	moderate	approach,	where	we	vigorously	advocate	for	proof-of-
personhood	solutions	to	have	strong	privacy,	potentially	if	desired	even	include	a	"N	accounts	for	$N²"	mechanism	at	protocol	layer,	and	create	something	that	has
privacy-friendly	values	and	has	a	chance	of	getting	accepted	by	the	outside	world.

So...	what	do	I	think?
There	is	no	ideal	form	of	proof	of	personhood.	Instead,	we	have	at	least	three	different	paradigms	of	approaches	that	all	have	their	own	unique	strengths	and
weaknesses.	A	comparison	chart	might	look	as	follows:

Social-graph-based General-hardware	biometric Specialized-hardware	biometric
Privacy Low Fairly	low Fairly	high
Accessibility	/	scalability Fairly	low High Medium
Robustness	of	decentralization Fairly	high Fairly	high Fairly	low
Security	against	"fake	people" High	(if	done	well) Low Medium

What	we	should	ideally	do	is	treat	these	three	techniques	as	complementary,	and	combine	them	all.	As	India's	Aadhaar	has	shown	at	scale,	specialized-
hardware	biometrics	have	their	benefits	of	being	secure	at	scale.	They	are	very	weak	at	decentralization,	though	this	can	be	addressed	by	holding	individual	Orbs
accountable.	General-purpose	biometrics	can	be	adopted	very	easily	today,	but	their	security	is	rapidly	dwindling,	and	they	may	only	work	for	another	1-2	years.
Social-graph-based	systems	bootstrapped	off	of	a	few	hundred	people	who	are	socially	close	to	the	founding	team	are	likely	to	face	constant	tradeoffs	between
completely	missing	large	parts	of	the	world	and	being	vulnerable	to	attacks	within	communities	they	have	no	visibility	into.	A	social-graph-based	system
bootstrapped	off	tens	of	millions	of	biometric	ID	holders,	however,	could	actually	work.	Biometric	bootstrapping	may	work	better	short-term,	and	social-graph-
based	techniques	may	be	more	robust	long-term,	and	take	on	a	larger	share	of	the	responsibility	over	time	as	their	algorithms	improve.
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A	possible	hybrid	path.

All	of	these	teams	are	in	a	position	to	make	many	mistakes,	and	there	are	inevitable	tensions	between	business	interests	and	the	needs	of	the	wider	community,	so
it's	important	to	exercise	a	lot	of	vigilance.	As	a	community,	we	can	and	should	push	all	participants'	comfort	zones	on	open-sourcing	their	tech,	demand	third-
party	audits	and	even	third-party-written	software,	and	other	checks	and	balances.	We	also	need	more	alternatives	in	each	of	the	three	categories.

At	the	same	time	it's	important	to	recognize	the	work	already	done:	many	of	the	teams	running	these	systems	have	shown	a	willingness	to	take	privacy	much	more
seriously	than	pretty	much	any	government	or	major	corporate-run	identity	systems,	and	this	is	a	success	that	we	should	build	on.

The	problem	of	making	a	proof-of-personhood	system	that	is	effective	and	reliable,	especially	in	the	hands	of	people	distant	from	the	existing	crypto	community,
seems	quite	challenging.	I	definitely	do	not	envy	the	people	attempting	the	task,	and	it	will	likely	take	years	to	find	a	formula	that	works.	The	concept	of	proof-of-
personhood	in	principle	seems	very	valuable,	and	while	the	various	implementations	have	their	risks,	not	having	any	proof-of-personhood	at	all	has	its	risks	too:	a
world	with	no	proof-of-personhood	seems	more	likely	to	be	a	world	dominated	by	centralized	identity	solutions,	money,	small	closed	communities,	or	some
combination	of	all	three.	I	look	forward	to	seeing	more	progress	on	all	types	of	proof	of	personhood,	and	hopefully	seeing	the	different	approaches	eventually	come
together	into	a	coherent	whole.
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Deeper	dive	on	cross-L2	reading	for	wallets	and
other	use	cases

Special	thanks	to	Yoav	Weiss,	Dan	Finlay,	Martin	Koppelmann,	and	the	Arbitrum,	Optimism,	Polygon,	Scroll	and
SoulWallet	teams	for	feedback	and	review.

In	this	post	on	the	Three	Transitions,	I	outlined	some	key	reasons	why	it's	valuable	to	start	thinking	explicitly	about
L1	+	cross-L2	support,	wallet	security,	and	privacy	as	necessary	basic	features	of	the	ecosystem	stack,	rather	than
building	each	of	these	things	as	addons	that	can	be	designed	separately	by	individual	wallets.

This	post	will	focus	more	directly	on	the	technical	aspects	of	one	specific	sub-problem:	how	to	make	it
easier	to	read	L1	from	L2,	L2	from	L1,	or	an	L2	from	another	L2.	Solving	this	problem	is	crucial	for
implementing	an	asset	/	keystore	separation	architecture,	but	it	also	has	valuable	use	cases	in	other	areas,	most
notably	optimizing	reliable	cross-L2	calls,	including	use	cases	like	moving	assets	between	L1	and	L2s.
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What	is	the	goal?
Once	L2s	become	more	mainstream,	users	will	have	assets	across	multiple	L2s,	and	possibly	L1	as	well.	Once	smart
contract	wallets	(multisig,	social	recovery	or	otherwise)	become	mainstream,	the	keys	needed	to	access	some
account	are	going	to	change	over	time,	and	old	keys	would	need	to	no	longer	be	valid.	Once	both	of	these
things	happen,	a	user	will	need	to	have	a	way	to	change	the	keys	that	have	authority	to	access	many	accounts	which
live	in	many	different	places,	without	making	an	extremely	high	number	of	transactions.

Particularly,	we	need	a	way	to	handle	counterfactual	addresses:	addresses	that	have	not	yet	been
"registered"	in	any	way	on-chain,	but	which	nevertheless	need	to	receive	and	securely	hold	funds.	We	all
depend	on	counterfactual	addresses:	when	you	use	Ethereum	for	the	first	time,	you	are	able	to	generate	an	ETH
address	that	someone	can	use	to	pay	you,	without	"registering"	the	address	on-chain	(which	would	require	paying
txfees,	and	hence	already	holding	some	ETH).

With	EOAs,	all	addresses	start	off	as	counterfactual	addresses.	With	smart	contract	wallets,	counterfactual
addresses	are	still	possible,	largely	thanks	to	CREATE2,	which	allows	you	to	have	an	ETH	address	that	can	only	be
filled	by	a	smart	contract	that	has	code	matching	a	particular	hash.
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EIP-1014	(CREATE2)	address	calculation	algorithm.

However,	smart	contract	wallets	introduce	a	new	challenge:	the	possibility	of	access	keys	changing.	The	address,
which	is	a	hash	of	the	initcode,	can	only	contain	the	wallet's	initial	verification	key.	The	current	verification	key
would	be	stored	in	the	wallet's	storage,	but	that	storage	record	does	not	magically	propagate	to	other	L2s.

If	a	user	has	many	addresses	on	many	L2s,	including	addresses	that	(because	they	are	counterfactual)	the	L2	that
they	are	on	does	not	know	about,	then	it	seems	like	there	is	only	one	way	to	allow	users	to	change	their	keys:	asset
/	keystore	separation	architecture.	Each	user	has	(i)	a	"keystore	contract"	(on	L1	or	on	one	particular	L2),
which	stores	the	verification	key	for	all	wallets	along	with	the	rules	for	changing	the	key,	and	(ii)	"wallet
contracts"	on	L1	and	many	L2s,	which	read	cross-chain	to	get	the	verification	key.

There	are	two	ways	to	implement	this:

Light	version	(check	only	to	update	keys):	each	wallet	stores	the	verification	key	locally,	and	contains	a
function	which	can	be	called	to	check	a	cross-chain	proof	of	the	keystore's	current	state,	and	update	its	locally
stored	verification	key	to	match.	When	a	wallet	is	used	for	the	first	time	on	a	particular	L2,	calling	that	function
to	obtain	the	current	verification	key	from	the	keystore	is	mandatory.

Upside:	uses	cross-chain	proofs	sparingly,	so	it's	okay	if	cross-chain	proofs	are	expensive.	All	funds	are
only	spendable	with	the	current	keys,	so	it's	still	secure.
Downside:	To	change	the	verification	key,	you	have	to	make	an	on-chain	key	change	in	both	the	keystore
and	in	every	wallet	that	is	already	initialized	(though	not	counterfactual	ones).	This	could	cost	a	lot	of	gas.

Heavy	version	(check	for	every	tx):	a	cross-chain	proof	showing	the	key	currently	in	the	keystore	is
necessary	for	each	transaction.

Upside:	less	systemic	complexity,	and	keystore	updating	is	cheap.
Downside:	expensive	per-tx,	so	requires	much	more	engineering	to	make	cross-chain	proofs	acceptably
cheap.	Also	not	easily	compatible	with	ERC-4337,	which	currently	does	not	support	cross-contract	reading
of	mutable	objects	during	validation.
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What	does	a	cross-chain	proof	look	like?
To	show	the	full	complexity,	we'll	explore	the	most	difficult	case:	where	the	keystore	is	on	one	L2,	and	the	wallet	is
on	a	different	L2.	If	either	the	keystore	on	the	wallet	is	on	L1,	then	only	half	of	this	design	is	needed.

Let's	assume	that	the	keystore	is	on	Linea,	and	the	wallet	is	on	Kakarot.	A	full	proof	of	the	keys	to	the	wallet
consists	of:

A	proof	proving	the	current	Linea	state	root,	given	the	current	Ethereum	state	root	that	Kakarot	knows	about
A	proof	proving	the	current	keys	in	the	keystore,	given	the	current	Linea	state	root

There	are	two	primary	tricky	implementation	questions	here:

1.	What	kind	of	proof	do	we	use?	(Is	it	Merkle	proofs?	something	else?)
2.	 How	does	the	L2	learn	the	recent	L1	(Ethereum)	state	root	(or,	as	we	shall	see,	potentially	the	full	L1

state)	in	the	first	place?	And	alternatively,	how	does	the	L1	learn	the	L2	state	root?
In	both	cases,	how	long	are	the	delays	between	something	happening	on	one	side,	and	that	thing	being
provable	to	the	other	side?

What	kinds	of	proof	schemes	can	we	use?
There	are	five	major	options:

Merkle	proofs
General-purpose	ZK-SNARKs
Special-purpose	proofs	(eg.	with	KZG)
Verkle	proofs,	which	are	somewhere	between	KZG	and	ZK-SNARKs	on	both	infrastructure	workload	and	cost.
No	proofs	and	rely	on	direct	state	reading

In	terms	of	infrastructure	work	required	and	cost	for	users,	I	rank	them	roughly	as	follows:
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"Aggregation"	refers	to	the	idea	of	aggregating	all	the	proofs	supplied	by	users	within	each	block	into	a	big	meta-
proof	that	combines	all	of	them.	This	is	possible	for	SNARKs,	and	for	KZG,	but	not	for	Merkle	branches	(you	can
combine	Merkle	branches	a	little	bit,	but	it	only	saves	you	log(txs	per	block)	/	log(total	number	of	keystores),
perhaps	15-30%	in	practice,	so	it's	probably	not	worth	the	cost).

Aggregation	only	becomes	worth	it	once	the	scheme	has	a	substantial	number	of	users,	so	realistically	it's	okay	for	a
version-1	implementation	to	leave	aggregation	out,	and	implement	that	for	version	2.

How	would	Merkle	proofs	work?

This	one	is	simple:	follow	the	diagram	in	the	previous	section	directly.	More	precisely,	each	"proof"	(assuming	the
max-difficulty	case	of	proving	one	L2	into	another	L2)	would	contain:

A	Merkle	branch	proving	the	state-root	of	the	keystore-holding	L2,	given	the	most	recent	state	root
of	Ethereum	that	the	L2	knows	about.	The	keystore-holding	L2's	state	root	is	stored	at	a	known	storage	slot	of
a	known	address	(the	contract	on	L1	representing	the	L2),	and	so	the	path	through	the	tree	could	be
hardcoded.
A	Merkle	branch	proving	the	current	verification	keys,	given	the	state-root	of	the	keystore-holding
L2.	Here	once	again,	the	verification	key	is	stored	at	a	known	storage	slot	of	a	known	address,	so	the	path	can
be	hardcoded.

Unfortunately,	Ethereum	state	proofs	are	complicated,	but	there	exist	libraries	for	verifying	them,	and	if	you	use
these	libraries,	this	mechanism	is	not	too	complicated	to	implement.

The	larger	problem	is	cost.	Merkle	proofs	are	long,	and	Patricia	trees	are	unfortunately	~3.9x	longer	than	necessary
(precisely:	an	ideal	Merkle	proof	into	a	tree	holding	N	objects	is	32	*	log2(N)	bytes	long,	and	because	Ethereum's
Patricia	trees	have	16	leaves	per	child,	proofs	for	those	trees	are	32	*	15	*	log16(N)	~=	125	*	log2(N)	bytes	long).	In
a	state	with	roughly	250	million	(~2²⁸)	accounts,	this	makes	each	proof	125	*	28	=	3500	bytes,	or	about	56,000	gas,
plus	extra	costs	for	decoding	and	verifying	hashes.

Two	proofs	together	would	end	up	costing	around	100,000	to	150,000	gas	(not	including	signature	verification	if
this	is	used	per-transaction)	-	significantly	more	than	the	current	base	21,000	gas	per	transaction.	But	the	disparity
gets	worse	if	the	proof	is	being	verified	on	L2.	Computation	inside	an	L2	is	cheap,	because	computation	is	done
off-chain	and	in	an	ecosystem	with	much	fewer	nodes	than	L1.	Data,	on	the	other	hand,	has	to	be	posted	to	L1.
Hence,	the	comparison	is	not	21000	gas	vs	150,000	gas;	it's	21,000	L2	gas	vs	100,000	L1	gas.

We	can	calculate	what	this	means	by	looking	at	comparisons	between	L1	gas	costs	and	L2	gas	costs:

https://github.com/ethereum/consensus-specs/blob/dev/ssz/merkle-proofs.md#merkle-multiproofs
file:///home/runner/work/vitalik-blog-pdf/vitalik-blog-pdf/html/3.html#what-does-a-cross-chain-proof-look-like
https://github.com/ConsenSysMesh/rb-relay/blob/master/contracts/MerklePatriciaProof.sol
https://ycharts.com/indicators/ethereum_cumulative_unique_addresses


L1	is	currently	about	15-25x	more	expensive	than	L2	for	simple	sends,	and	20-50x	more	expensive	for	token	swaps.
Simple	sends	are	relatively	data-heavy,	but	swaps	are	much	more	computationally	heavy.	Hence,	swaps	are	a	better
benchmark	to	approximate	cost	of	L1	computation	vs	L2	computation.	Taking	all	this	into	account,	if	we	assume	a
30x	cost	ratio	between	L1	computation	cost	and	L2	computation	cost,	this	seems	to	imply	that	putting	a	Merkle
proof	on	L2	will	cost	the	equivalent	of	perhaps	fifty	regular	transactions.

Of	course,	using	a	binary	Merkle	tree	can	cut	costs	by	~4x,	but	even	still,	the	cost	is	in	most	cases	going	to	be	too
high	-	and	if	we're	willing	to	make	the	sacrifice	of	no	longer	being	compatible	with	Ethereum's	current	hexary	state
tree,	we	might	as	well	seek	even	better	options.

How	would	ZK-SNARK	proofs	work?

Conceptually,	the	use	of	ZK-SNARKs	is	also	easy	to	understand:	you	simply	replace	the	Merkle	proofs	in	the
diagram	above	with	a	ZK-SNARK	proving	that	those	Merkle	proofs	exist.	A	ZK-SNARK	costs	~400,000	gas	of
computation,	and	about	400	bytes	(compare:	21,000	gas	and	100	bytes	for	a	basic	transaction,	in	the	future
reducible	to	~25	bytes	with	compression).	Hence,	from	a	computational	perspective,	a	ZK-SNARK	costs	19x	the	cost
of	a	basic	transaction	today,	and	from	a	data	perspective,	a	ZK-SNARK	costs	4x	as	much	as	a	basic	transaction
today,	and	16x	what	a	basic	transaction	may	cost	in	the	future.

These	numbers	are	a	massive	improvement	over	Merkle	proofs,	but	they	are	still	quite	expensive.	There	are	two
ways	to	improve	on	this:	(i)	special-purpose	KZG	proofs,	or	(ii)	aggregation,	similar	to	ERC-4337	aggregation	but
using	more	fancy	math.	We	can	look	into	both.

How	would	special-purpose	KZG	proofs	work?

Warning,	this	section	is	much	more	mathy	than	other	sections.	This	is	because	we're	going	beyond	general-purpose
tools	and	building	something	special-purpose	to	be	cheaper,	so	we	have	to	go	"under	the	hood"	a	lot	more.	If	you
don't	like	deep	math,	skip	straight	to	the	next	section.

First,	a	recap	of	how	KZG	commitments	work:
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We	can	represent	a	set	of	data	[D_1	...	D_n]	with	a	KZG	proof	of	a	polynomial	derived	from	the	data:
specifically,	the	polynomial	P	where	P(w)	=	D_1,	P(w²)	=	D_2	...	P(wⁿ)	=	D_n.	w	here	is	a	"root	of	unity",	a	value
where	wᴺ	=	1	for	some	evaluation	domain	size	N	(this	is	all	done	in	a	finite	field).
To	"commit"	to	P,	we	create	an	elliptic	curve	point	com(P)	=	P₀	*	G	+	P₁	*	S₁	+	...	+	Pₖ	*	Sₖ.	Here:

G	is	the	generator	point	of	the	curve
Pᵢ	is	the	i'th-degree	coefficient	of	the	polynomial	P
Sᵢ	is	the	i'th	point	in	the	trusted	setup

To	prove	P(z)	=	a,	we	create	a	quotient	polynomial	Q	=	(P	-	a)	/	(X	-	z),	and	create	a	commitment	com(Q)	to
it.	It	is	only	possible	to	create	such	a	polynomial	if	P(z)	actually	equals	a.
To	verify	a	proof,	we	check	the	equation	Q	*	(X	-	z)	=	P	-	a	by	doing	an	elliptic	curve	check	on	the	proof
com(Q)	and	the	polynomial	commitment	com(P):	we	check	e(com(Q),	com(X	-	z))	?=	e(com(P)	-	com(a),	com(1))

Some	key	properties	that	are	important	to	understand	are:

A	proof	is	just	the	com(Q)	value,	which	is	48	bytes
com(P₁)	+	com(P₂)	=	com(P₁	+	P₂)
This	also	means	that	you	can	"edit"	a	value	into	an	existing	a	commitment.	Suppose	that	we	know	that	D_i	is
currently	a,	we	want	to	set	it	to	b,	and	the	existing	commitment	to	D	is	com(P).	A	commitment	to	"P,	but	with
P(wⁱ)	=	b,	and	no	other	evaluations	changed",	then	we	set	com(new_P)	=	com(P)	+	(b-a)	*	com(Lᵢ),	where	Lᵢ	is	a
the	"Lagrange	polynomial"	that	equals	1	at	wⁱ	and	0	at	other	wʲ	points.
To	perform	these	updates	efficiently,	all	N	commitments	to	Lagrange	polynomials	(com(Lᵢ))	can	be	pre-
calculated	and	stored	by	each	client.	Inside	a	contract	on-chain	it	may	be	too	much	to	store	all	N	commitments,
so	instead	you	could	make	a	KZG	commitment	to	the	set	of	com(L_i)	(or	hash(com(L_i))	values,	so	whenever
someone	needs	to	update	the	tree	on-chain	they	can	simply	provide	the	appropriate	com(L_i)	with	a	proof	of	its
correctness.

Hence,	we	have	a	structure	where	we	can	just	keep	adding	values	to	the	end	of	an	ever-growing	list,	though	with	a
certain	size	limit	(realistically,	hundreds	of	millions	could	be	viable).	We	then	use	that	as	our	data	structure	to
manage	(i)	a	commitment	to	the	list	of	keys	on	each	L2,	stored	on	that	L2	and	mirrored	to	L1,	and	(ii)	a	commitment
to	the	list	of	L2	key-commitments,	stored	on	the	Ethereum	L1	and	mirrored	to	each	L2.

Keeping	the	commitments	updated	could	either	become	part	of	core	L2	logic,	or	it	could	be	implemented	without	L2
core-protocol	changes	through	deposit	and	withdraw	bridges.

A	full	proof	would	thus	require:

The	latest	com(key	list)	on	the	keystore-holding	L2	(48	bytes)
KZG	proof	of	com(key	list)	being	a	value	inside	com(mirror_list),	the	commitment	to	the	list	of	all	key	list
comitments	(48	bytes)
KZG	proof	of	your	key	in	com(key	list)	(48	bytes,	plus	4	bytes	for	the	index)

It's	actually	possible	to	merge	the	two	KZG	proofs	into	one,	so	we	get	a	total	size	of	only	100	bytes.

Note	one	subtlety:	because	the	key	list	is	a	list,	and	not	a	key/value	map	like	the	state	is,	the	key	list	will	have	to
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assign	positions	sequentially.	The	key	commitment	contract	would	contain	its	own	internal	registry	mapping	each
keystore	to	an	ID,	and	for	each	key	it	would	store	hash(key,	address	of	the	keystore)	instead	of	just	key,	to
unambiguously	communicate	to	other	L2s	which	keystore	a	particular	entry	is	talking	about.

The	upside	of	this	technique	is	that	it	performs	very	well	on	L2.	The	data	is	100	bytes,	~4x	shorter	than	a	ZK-
SNARK	and	waaaay	shorter	than	a	Merkle	proof.	The	computation	cost	is	largely	one	size-2	pairing	check,	or	about
119,000	gas.	On	L1,	data	is	less	important	than	computation,	and	so	unfortunately	KZG	is	somewhat	more	expensive
than	Merkle	proofs.

How	would	Verkle	trees	work?

Verkle	trees	essentially	involve	stacking	KZG	commitments	(or	IPA	commitments,	which	can	be	more	efficient	and
use	simpler	cryptography)	on	top	of	each	other:	to	store	2⁴⁸	values,	you	can	make	a	KZG	commitment	to	a	list	of	2²⁴
values,	each	of	which	itself	is	a	KZG	commitment	to	2²⁴	values.	Verkle	trees	are	being	strongly	considered	for	the
Ethereum	state	tree,	because	Verkle	trees	can	be	used	to	hold	key-value	maps	and	not	just	lists	(basically,	you	can
make	a	size-2²⁵⁶	tree	but	start	it	empty,	only	filling	in	specific	parts	of	the	tree	once	you	actually	need	to	fill	them).

What	a	Verkle	tree	looks	like.	In	practice,	you	might	give	each	node	a	width	of	256	==	2⁸	for	IPA-based	trees,	or	2²⁴
for	KZG-based	trees.

Proofs	in	Verkle	trees	are	somewhat	longer	than	KZG;	they	might	be	a	few	hundred	bytes	long.	They	are	also
difficult	to	verify,	especially	if	you	try	to	aggregate	many	proofs	into	one.

Realistically,	Verkle	trees	should	be	considered	to	be	like	Merkle	trees,	but	more	viable	without	SNARKing	(because
of	the	lower	data	costs),	and	cheaper	with	SNARKing	(because	of	lower	prover	costs).

The	largest	advantage	of	Verkle	trees	is	the	possibility	of	harmonizing	data	structures:	Verkle	proofs
could	be	used	directly	over	L1	or	L2	state,	without	overlay	structures,	and	using	the	exact	same
mechanism	for	L1	and	L2.	Once	quantum	computers	become	an	issue,	or	once	proving	Merkle	branches	becomes
efficient	enough,	Verkle	trees	could	be	replaced	in-place	with	a	binary	hash	tree	with	a	suitable	SNARK-friendly
hash	function.

Aggregation

If	N	users	make	N	transactions	(or	more	realistically,	N	ERC-4337	UserOperations)	that	need	to	prove	N	cross-chain
claims,	we	can	save	a	lot	of	gas	by	aggregating	those	proofs:	the	builder	that	would	be	combining	those	transactions
into	a	block	or	bundle	that	goes	into	a	block	can	create	a	single	proof	that	proves	all	of	those	claims	simultaneously.

This	could	mean:

A	ZK-SNARK	proof	of	N	Merkle	branches
A	KZG	multi-proof
A	Verkle	multi-proof	(or	a	ZK-SNARK	of	a	multi-proof)

In	all	three	cases,	the	proofs	would	only	cost	a	few	hundred	thousand	gas	each.	The	builder	would	need	to	make	one
of	these	on	each	L2	for	the	users	in	that	L2;	hence,	for	this	to	be	useful	to	build,	the	scheme	as	a	whole	needs	to
have	enough	usage	that	there	are	very	often	at	least	a	few	transactions	within	the	same	block	on	multiple	major	L2s.

If	ZK-SNARKs	are	used,	the	main	marginal	cost	is	simply	"business	logic"	of	passing	numbers	around	between
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contracts,	so	perhaps	a	few	thousand	L2	gas	per	user.	If	KZG	multi-proofs	are	used,	the	prover	would	need	to	add
48	gas	for	each	keystore-holding	L2	that	is	used	within	that	block,	so	the	marginal	cost	of	the	scheme	per	user
would	add	another	~800	L1	gas	per	L2	(not	per	user)	on	top.	But	these	costs	are	much	lower	than	the	costs	of	not
aggregating,	which	inevitably	involve	over	10,000	L1	gas	and	hundreds	of	thousands	of	L2	gas	per	user.	For	Verkle
trees,	you	can	either	use	Verkle	multi-proofs	directly,	adding	around	100-200	bytes	per	user,	or	you	can	make	a	ZK-
SNARK	of	a	Verkle	multi-proof,	which	has	similar	costs	to	ZK-SNARKs	of	Merkle	branches	but	is	significantly
cheaper	to	prove.

From	an	implementation	perspective,	it's	probably	best	to	have	bundlers	aggregate	cross-chain	proofs	through	the
ERC-4337	account	abstraction	standard.	ERC-4337	already	has	a	mechanism	for	builders	to	aggregate	parts	of
UserOperations	in	custom	ways.	There	is	even	an	implementation	of	this	for	BLS	signature	aggregation,	which	could
reduce	gas	costs	on	L2	by	1.5x	to	3x	depending	on	what	other	forms	of	compression	are	included.

Diagram	from	a	BLS	wallet	implementation	post	showing	the	workflow	of	BLS	aggregate	signatures	within	an
earlier	version	of	ERC-4337.	The	workflow	of	aggregating	cross-chain	proofs	will	likely	look	very	similar.

Direct	state	reading

A	final	possibility,	and	one	only	usable	for	L2	reading	L1	(and	not	L1	reading	L2),	is	to	modify	L2s	to	let	them
make	static	calls	to	contracts	on	L1	directly.

This	could	be	done	with	an	opcode	or	a	precompile,	which	allows	calls	into	L1	where	you	provide	the	destination
address,	gas	and	calldata,	and	it	returns	the	output,	though	because	these	calls	are	static-calls	they	cannot	actually
change	any	L1	state.	L2s	have	to	be	aware	of	L1	already	to	process	deposits,	so	there	is	nothing	fundamental
stopping	such	a	thing	from	being	implemented;	it	is	mainly	a	technical	implementation	challenge	(see:	this	RFP	from
Optimism	to	support	static	calls	into	L1).

Notice	that	if	the	keystore	is	on	L1,	and	L2s	integrate	L1	static-call	functionality,	then	no	proofs	are
required	at	all!	However,	if	L2s	don't	integrate	L1	static-calls,	or	if	the	keystore	is	on	L2	(which	it	may	eventually
have	to	be,	once	L1	gets	too	expensive	for	users	to	use	even	a	little	bit),	then	proofs	will	be	required.

How	does	L2	learn	the	recent	Ethereum	state	root?
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All	of	the	schemes	above	require	the	L2	to	access	either	the	recent	L1	state	root,	or	the	entire	recent	L1	state.
Fortunately,	all	L2s	have	some	functionality	to	access	the	recent	L1	state	already.	This	is	because	they	need
such	a	functionality	to	process	messages	coming	in	from	L1	to	the	L2,	most	notably	deposits.

And	indeed,	if	an	L2	has	a	deposit	feature,	then	you	can	use	that	L2	as-is	to	move	L1	state	roots	into	a	contract	on
the	L2:	simply	have	a	contract	on	L1	call	the	BLOCKHASH	opcode,	and	pass	it	to	L2	as	a	deposit	message.	The	full	block
header	can	be	received,	and	its	state	root	extracted,	on	the	L2	side.	However,	it	would	be	much	better	for	every	L2
to	have	an	explicit	way	to	access	either	the	full	recent	L1	state,	or	recent	L1	state	roots,	directly.

The	main	challenge	with	optimizing	how	L2s	receive	recent	L1	state	roots	is	simultaneously	achieving
safety	and	low	latency:

If	L2s	implement	"direct	reading	of	L1"	functionality	in	a	lazy	way,	only	reading	finalized	L1	state	roots,
then	the	delay	will	normally	be	15	minutes,	but	in	the	extreme	case	of	inactivity	leaks	(which	you	have	to
tolerate),	the	delay	could	be	several	weeks.
L2s	absolutely	can	be	designed	to	read	much	more	recent	L1	state	roots,	but	because	L1	can	revert	(even	with
single	slot	finality,	reverts	can	happen	during	inactivity	leaks),	L2	would	need	to	be	able	to	revert	as	well.
This	is	technically	challenging	from	a	software	engineering	perspective,	but	at	least	Optimism	already	has	this
capability.
If	you	use	the	deposit	bridge	to	bring	L1	state	roots	into	L2,	then	simple	economic	viability	might	require
a	long	time	between	deposit	updates:	if	the	full	cost	of	a	deposit	is	100,000	gas,	and	we	assume	ETH	is	at
$1800,	and	fees	are	at	200	gwei,	and	L1	roots	are	brought	into	L2	once	per	day,	that	would	be	a	cost	of	$36	per
L2	per	day,	or	$13148	per	L2	per	year	to	maintain	the	system.	With	a	delay	of	one	hour,	that	goes	up	to
$315,569	per	L2	per	year.	In	the	best	case,	a	constant	trickle	of	impatient	wealthy	users	covers	the	updating
fees	and	keep	the	system	up	to	date	for	everyone	else.	In	the	worst	case,	some	altruistic	actor	would	have	to
pay	for	it	themselves.
"Oracles"	(at	least,	the	kind	of	tech	that	some	defi	people	call	"oracles")	are	not	an	acceptable
solution	here:	wallet	key	management	is	a	very	security-critical	low-level	functionality,	and	so	it	should
depend	on	at	most	a	few	pieces	of	very	simple,	cryptographically	trustless	low-level	infrastructure.

Additionally,	in	the	opposite	direction	(L1s	reading	L2):

On	optimistic	rollups,	state	roots	take	one	week	to	reach	L1	because	of	the	fraud	proof	delay.	On	ZK
rollups	it	takes	a	few	hours	for	now	because	of	a	combination	of	proving	times	and	economic	limits,	though
future	technology	will	reduce	this.
Pre-confirmations	(from	sequencers,	attesters,	etc)	are	not	an	acceptable	solution	for	L1	reading	L2.
Wallet	management	is	a	very	security-critical	low-level	functionality,	and	so	the	level	of	security	of	the	L2	->	L1
communication	must	be	absolute:	it	should	not	even	be	possible	to	push	a	false	L1	state	root	by	taking	over	the
L2	validator	set.	The	only	state	roots	the	L1	should	trust	are	state	roots	that	have	been	accepted	as	final	by	the
L2's	state-root-holding	contract	on	L1.

Some	of	these	speeds	for	trustless	cross-chain	operations	are	unacceptably	slow	for	many	defi	use	cases;	for	those
cases,	you	do	need	faster	bridges	with	more	imperfect	security	models.	For	the	use	case	of	updating	wallet	keys,
however,	longer	delays	are	more	acceptable:	you're	not	delaying	transactions	by	hours,	you're	delaying	key
changes.	You'll	just	have	to	keep	the	old	keys	around	longer.	If	you're	changing	keys	because	keys	are	stolen,	then
you	do	have	a	significant	period	of	vulnerability,	but	this	can	be	mitigated,	eg.	by	wallets	having	a	freeze	function.

Ultimately,	the	best	latency-minimizing	solution	is	for	L2s	to	implement	direct	reading	of	L1	state	roots	in	an
optimal	way,	where	each	L2	block	(or	the	state	root	computation	log)	contains	a	pointer	to	the	most	recent	L1	block,
so	if	L1	reverts,	L2	can	revert	as	well.	Keystore	contracts	should	be	placed	either	on	mainnet,	or	on	L2s	that	are	ZK-
rollups	and	so	can	quickly	commit	to	L1.

https://ethereum.org/fil/roadmap/single-slot-finality/


Blocks	of	the	L2	chain	can	have	dependencies	on	not	just	previous	L2	blocks,	but	also	on	an	L1	block.	If	L1	reverts
past	such	a	link,	the	L2	reverts	too.	It's	worth	noting	that	this	is	also	how	an	earlier	(pre-Dank)	version	of	sharding

was	envisioned	to	work;	see	here	for	code.

How	much	connection	to	Ethereum	does	another	chain	need	to	hold
wallets	whose	keystores	are	rooted	on	Ethereum	or	an	L2?
Surprisingly,	not	that	much.	It	actually	does	not	even	need	to	be	a	rollup:	if	it's	an	L3,	or	a	validium,	then	it's	okay	to
hold	wallets	there,	as	long	as	you	hold	keystores	either	on	L1	or	on	a	ZK	rollup.	The	thing	that	you	do	need	is	for	the
chain	to	have	direct	access	to	Ethereum	state	roots,	and	a	technical	and	social	commitment	to	be	willing	to
reorg	if	Ethereum	reorgs,	and	hard	fork	if	Ethereum	hard	forks.

One	interesting	research	problem	is	identifying	to	what	extent	it	is	possible	for	a	chain	to	have	this	form	of
connection	to	multiple	other	chains	(eg.	Ethereum	and	Zcash).	Doing	it	naively	is	possible:	your	chain	could	agree	to
reorg	if	Ethereum	or	Zcash	reorg	(and	hard	fork	if	Ethereum	or	Zcash	hard	fork),	but	then	your	node	operators	and
your	community	more	generally	have	double	the	technical	and	political	dependencies.	Hence	such	a	technique	could
be	used	to	connect	to	a	few	other	chains,	but	at	increasing	cost.	Schemes	based	on	ZK	bridges	have	attractive
technical	properties,	but	they	have	the	key	weakness	that	they	are	not	robust	to	51%	attacks	or	hard	forks.	There
may	be	more	clever	solutions.

Preserving	privacy
Ideally,	we	also	want	to	preserve	privacy.	If	you	have	many	wallets	that	are	managed	by	the	same	keystore,	then	we
want	to	make	sure:

It's	not	publicly	known	that	those	wallets	are	all	connected	to	each	other.
Social	recovery	guardians	don't	learn	what	the	addresses	are	that	they	are	guarding.

This	creates	a	few	issues:

We	cannot	use	Merkle	proofs	directly,	because	they	do	not	preserve	privacy.
If	we	use	KZG	or	SNARKs,	then	the	proof	needs	to	provide	a	blinded	version	of	the	verification	key,	without
revealing	the	location	of	the	verification	key.
If	we	use	aggregation,	then	the	aggregator	should	not	learn	the	location	in	plaintext;	rather,	the	aggregator
should	receive	blinded	proofs,	and	have	a	way	to	aggregate	those.
We	can't	use	the	"light	version"	(use	cross-chain	proofs	only	to	update	keys),	because	it	creates	a	privacy	leak:
if	many	wallets	get	updated	at	the	same	time	due	to	an	update	procedure,	the	timing	leaks	the	information	that
those	wallets	are	likely	related.	So	we	have	to	use	the	"heavy	version"	(cross-chain	proofs	for	each	transaction).

With	SNARKs,	the	solutions	are	conceptually	easy:	proofs	are	information-hiding	by	default,	and	the	aggregator
needs	to	produce	a	recursive	SNARK	to	prove	the	SNARKs.

https://github.com/ethereum/research/blob/ddac715ee18a23d6198e3ae7bdeec61fd3bbfdb3/sharding_fork_choice_poc/beacon_chain_node.py
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The	main	challenge	of	this	approach	today	is	that	aggregation	requires	the	aggregator	to	create	a	recursive	SNARK,
which	is	currently	quite	slow.

With	KZG,	we	can	use	this	work	on	non-index-revealing	KZG	proofs	(see	also:	a	more	formalized	version	of	that	work
in	the	Caulk	paper)	as	a	starting	point.	Aggregation	of	blinded	proofs,	however,	is	an	open	problem	that	requires
more	attention.

Directly	reading	L1	from	inside	L2,	unfortunately,	does	not	preserve	privacy,	though	implementing	direct-reading
functionality	is	still	very	useful,	both	to	minimize	latency	and	because	of	its	utility	for	other	applications.

Summary
To	have	cross-chain	social	recovery	wallets,	the	most	realistic	workflow	is	a	wallet	that	maintains	a	keystore	in
one	location,	and	wallets	in	many	locations,	where	wallet	reads	the	keystore	either	(i)	to	update	their	local
view	of	the	verification	key,	or	(ii)	during	the	process	of	verifying	each	transaction.
A	key	ingredient	of	making	this	possible	is	cross-chain	proofs.	We	need	to	optimize	these	proofs	hard.	Either
ZK-SNARKs,	waiting	for	Verkle	proofs,	or	a	custom-built	KZG	solution,	seem	like	the	best	options.
In	the	longer	term,	aggregation	protocols	where	bundlers	generate	aggregate	proofs	as	part	of	creating	a
bundle	of	all	the	UserOperations	that	have	been	submitted	by	users	will	be	necessary	to	minimize	costs.	This
should	probably	be	integrated	into	the	ERC-4337	ecosystem,	though	changes	to	ERC-4337	will	likely	be
required.
L2s	should	be	optimized	to	minimize	the	latency	of	reading	L1	state	(or	at	least	the	state	root)	from	inside
the	L2.	L2s	directly	reading	L1	state	is	ideal	and	can	save	on	proof	space.
Wallets	can	be	not	just	on	L2s;	you	can	also	put	wallets	on	systems	with	lower	levels	of	connection	to
Ethereum	(L3s,	or	even	separate	chains	that	only	agree	to	include	Ethereum	state	roots	and	reorg	or	hard	fork
when	Ethereum	reorgs	or	hardforks).
However,	keystores	should	be	either	on	L1	or	on	high-security	ZK-rollup	L2	.	Being	on	L1	saves	a	lot	of
complexity,	though	in	the	long	run	even	that	may	be	too	expensive,	hence	the	need	for	keystores	on	L2.
Preserving	privacy	will	require	additional	work	and	make	some	options	more	difficult.	However,	we	should
probably	move	toward	privacy-preserving	solutions	anyway,	and	at	the	least	make	sure	that	anything	we
propose	is	forward-compatible	with	preserving	privacy.
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The	Three	Transitions

Special	thanks	to	Dan	Finlay,	Karl	Floersch,	David	Hoffman,	and	the	Scroll	and	SoulWallet	teams	for
feedback	and	review	and	suggestions.

As	Ethereum	transitions	from	a	young	experimental	technology	into	a	mature	tech	stack	that	is	capable	of
actually	bringing	an	open,	global	and	permissionless	experience	to	average	users,	there	are	three	major
technical	transitions	that	the	stack	needs	to	undergo,	roughly	simultaneously:

The	L2	scaling	transition	-	everyone	moving	to	rollups
The	wallet	security	transition	-	everyone	moving	to	smart	contract	wallets
The	privacy	transition	-	making	sure	privacy-preserving	funds	transfers	are	available,	and	making
sure	all	of	the	other	gadgets	that	are	being	developed	(social	recovery,	identity,	reputation)	are
privacy-preserving

The	ecosystem	transition	triangle.	You	can	only	pick	3	out	of	3.

Without	the	first,	Ethereum	fails	because	each	transaction	costs	$3.75	($82.48	if	we	have	another	bull
run),	and	every	product	aiming	for	the	mass	market	inevitably	forgets	about	the	chain	and	adopts
centralized	workarounds	for	everything.

Without	the	second,	Ethereum	fails	because	users	are	uncomfortable	storing	their	funds	(and	non-financial
assets),	and	everyone	moves	onto	centralized	exchanges.

Without	the	third,	Ethereum	fails	because	having	all	transactions	(and	POAPs,	etc)	available	publicly	for
literally	anyone	to	see	is	far	too	high	a	privacy	sacrifice	for	many	users,	and	everyone	moves	onto
centralized	solutions	that	at	least	somewhat	hide	your	data.

These	three	transitions	are	crucial	for	the	reasons	above.	But	they	are	also	challenging	because	of	the
intense	coordination	involved	to	properly	resolve	them.	It's	not	just	features	of	the	protocol	that	need	to
improve;	in	some	cases,	the	way	that	we	interact	with	Ethereum	needs	to	change	pretty	fundamentally,
requiring	deep	changes	from	applications	and	wallets.

The	three	transitions	will	radically	reshape	the	relationship
between	users	and	addresses
In	an	L2	scaling	world,	users	are	going	to	exist	on	lots	of	L2s.	Are	you	a	member	of	ExampleDAO,	which
lives	on	Optimism?	Then	you	have	an	account	on	Optimism!	Are	you	holding	a	CDP	in	a	stablecoin	system
on	ZkSync?	Then	you	have	an	account	on	ZkSync!	Did	you	once	go	try	some	application	that	happened	to
live	on	Kakarot?	Then	you	have	an	account	on	Kakarot!	The	days	of	a	user	having	only	one	address	will	be
gone.
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I	have	ETH	in	four	places,	according	to	my	Brave	Wallet	view.	And	yes,	Arbitrum	and	Arbitrum	Nova	are
different.	Don't	worry,	it	will	get	more	confusing	over	time!

Smart	contract	wallets	add	more	complexity,	by	making	it	much	more	difficult	to	have	the	same
address	across	L1	and	the	various	L2s.	Today,	most	users	are	using	externally	owned	accounts,	whose
address	is	literally	a	hash	of	the	public	key	that	is	used	to	verify	signatures	-	so	nothing	changes	between
L1	and	L2.	With	smart	contract	wallets,	however,	keeping	one	address	becomes	more	difficult.	Although	a
lot	of	work	has	been	done	to	try	to	make	addresses	be	hashes	of	code	that	can	be	equivalent	across
networks,	most	notably	CREATE2	and	the	ERC-2470	singleton	factory,	it's	difficult	to	make	this	work
perfectly.	Some	L2s	(eg.	"type	4	ZK-EVMs")	are	not	quite	EVM	equivalent,	often	using	Solidity	or	an
intermediate	assembly	instead,	preventing	hash	equivalence.	And	even	when	you	can	have	hash
equivalence,	the	possibility	of	wallets	changing	ownership	through	key	changes	creates	other	unintuitive
consequences.

Privacy	requires	each	user	to	have	even	more	addresses,	and	may	even	change	what	kinds	of
addresses	we're	dealing	with.	If	stealth	address	proposals	become	widely	used,	instead	of	each	user
having	only	a	few	addresses,	or	one	address	per	L2,	users	might	have	one	address	per	transaction.	Other
privacy	schemes,	even	existing	ones	such	as	Tornado	Cash,	change	how	assets	are	stored	in	a	different
way:	many	users'	funds	are	stored	in	the	same	smart	contract	(and	hence	at	the	same	address).	To	send
funds	to	a	specific	user,	users	will	need	to	rely	on	the	privacy	scheme's	own	internal	addressing	system.

As	we've	seen,	each	of	the	three	transitions	weaken	the	"one	user	~=	one	address"	mental	model
in	different	ways,	and	some	of	these	effects	feed	back	into	the	complexity	of	executing	the	transitions.
Two	particular	points	of	complexity	are:

1.	 If	you	want	to	pay	someone,	how	will	you	get	the	information	on	how	to	pay	them?
2.	 If	users	have	many	assets	stored	in	different	places	across	different	chains,	how	do	they	do

key	changes	and	social	recovery?

The	three	transitions	and	on-chain	payments	(and	identity)
I	have	coins	on	Scroll,	and	I	want	to	pay	for	coffee	(if	the	"I"	is	literally	me,	the	writer	of	this	article,	then
"coffee"	is	of	course	a	metonymy	for	"green	tea").	You	are	selling	me	the	coffee,	but	you	are	only	set	up	to
receive	coins	on	Taiko.	Wat	do?

There	are	basically	two	solutions:

1.	 Receiving	wallets	(which	could	be	merchants,	but	also	could	just	be	regular	individuals)	try	really
hard	to	support	every	L2,	and	have	some	automated	functionality	for	consolidating	funds
asynchronously.

2.	 The	recipient	provides	their	L2	alongside	their	address,	and	the	sender's	wallet	automatically	routes
funds	to	the	destination	L2	through	some	cross-L2	bridging	system.

Of	course,	these	solutions	can	be	combined:	the	recipient	provides	the	list	of	L2s	they're	willing	to	accept,
and	the	sender's	wallet	figures	out	payment,	which	could	involve	either	a	direct	send	if	they're	lucky,	or
otherwise	a	cross-L2	bridging	path.
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But	this	is	only	one	example	of	a	key	challenge	that	the	three	transitions	introduce:	simple	actions	like
paying	someone	start	to	require	a	lot	more	information	than	just	a	20-byte	address.

A	transition	to	smart	contract	wallets	is	fortunately	not	a	large	burden	on	the	addressing	system,	but	there
are	still	some	technical	issues	in	other	parts	of	the	application	stack	that	need	to	be	worked	through.
Wallets	will	need	to	be	updated	to	make	sure	that	they	do	not	send	only	21000	gas	along	with	a
transaction,	and	it	will	be	even	more	important	to	ensure	that	the	payment	receiving	side	of	a	wallet
tracks	not	only	ETH	transfers	from	EOAs,	but	also	ETH	sent	by	smart	contract	code.	Apps	that	rely	on	the
assumption	that	address	ownership	is	immutable	(eg.	NFTs	that	ban	smart	contracts	to	enforce	royalties)
will	have	to	find	other	ways	of	achieving	their	goals.	Smart	contract	wallets	will	also	make	some	things
easier	-	notably,	if	someone	receives	only	a	non-ETH	ERC20	token,	they	will	be	able	to	use	ERC-4337
paymasters	to	pay	for	gas	with	that	token.

Privacy,	on	the	other	hand,	once	again	poses	major	challenges	that	we	have	not	really	dealt	with	yet.	The
original	Tornado	Cash	did	not	introduce	any	of	these	issues,	because	it	did	not	support	internal	transfers:
users	could	only	deposit	into	the	system	and	withdraw	out	of	it.	Once	you	can	make	internal	transfers,
however,	users	will	need	to	use	the	internal	addressing	scheme	of	the	privacy	system.	In	practice,	a	user's
"payment	information"	would	need	to	contain	both	(i)	some	kind	of	"spending	pubkey",	a	commitment	to	a
secret	that	the	recipient	could	use	to	spend,	and	(ii)	some	way	for	the	sender	to	send	encrypted
information	that	only	the	recipient	can	decrypt,	to	help	the	recipient	discover	the	payment.

Stealth	address	protocols	rely	on	a	concept	of	meta-addresses,	which	work	in	this	way:	one	part	of	the
meta-address	is	a	blinded	version	of	the	sender's	spending	key,	and	another	part	is	the	sender's	encryption
key	(though	a	minimal	implementation	could	set	those	two	keys	to	be	the	same).

Schematic	overview	of	an	abstract	stealth	address	scheme	based	on	encryption	and	ZK-SNARKs.

A	key	lesson	here	is	that	in	a	privacy-friendly	ecosystem,	a	user	will	have	both	spending	pubkeys
and	encryption	pubkeys,	and	a	user's	"payment	information"	will	have	to	include	both	keys.
There	are	also	good	reasons	other	than	payments	to	expand	in	this	direction.	For	example,	if	we	want
Ethereum-based	encrypted	email,	users	will	need	to	publicly	provide	some	kind	of	encryption	key.	In	"EOA
world",	we	could	re-use	account	keys	for	this,	but	in	a	safe	smart-contract-wallet	world,	we	probably
should	have	more	explicit	functionality	for	this.	This	would	also	help	in	making	Ethereum-based	identity
more	compatible	with	non-Ethereum	decentralized	privacy	ecosystems,	most	notably	PGP	keys.

The	three	transitions	and	key	recovery
The	default	way	to	implement	key	changes	and	social	recovery	in	a	many-address-per-user	world	is	to
simply	have	users	run	the	recovery	procedure	on	each	address	separately.	This	can	be	done	in	one	click:
the	wallet	can	include	software	to	execute	the	recovery	procedure	across	all	of	a	user's	addresses	at	the
same	time.	However,	even	with	such	UX	simplifications,	naive	multi-address	recovery	has	three	issues:

1.	 Gas	cost	impracticality:	this	one	is	self-explanatory.
2.	 Counterfactual	addresses:	addresses	for	which	the	smart	contract	has	not	yet	been	published	(in
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practice,	this	will	mean	an	account	that	you	have	not	yet	sent	funds	from).	You	as	a	user	have	a
potentially	unlimited	number	of	counterfactual	addresses:	one	or	more	on	every	L2,	including	L2s
that	do	not	yet	exist,	and	a	whole	other	infinite	set	of	counterfactual	addresses	arising	from	stealth
address	schemes.

3.	 Privacy:	if	a	user	intentionally	has	many	addresses	to	avoid	linking	them	to	each	other,	they	certainly
do	not	want	to	publicly	link	all	of	them	by	recovering	them	at	or	around	the	same	time!

Solving	these	problems	is	hard.	Fortunately,	there	is	a	somewhat	elegant	solution	that	performs
reasonably	well:	an	architecture	that	separates	verification	logic	and	asset	holdings.

Each	user	has	a	keystore	contract,	which	exists	in	one	location	(could	either	be	mainnet	or	a	specific	L2).
Users	then	have	addresses	on	different	L2s,	where	the	verification	logic	of	each	of	those	addresses	is	a
pointer	to	the	keystore	contract.	Spending	from	those	addresses	would	require	a	proof	going	into	the
keystore	contract	showing	the	current	(or,	more	realistically,	very	recent)	spending	public	key.

The	proof	could	be	implemented	in	a	few	ways:

Direct	read-only	L1	access	inside	the	L2.	It's	possible	to	modify	L2s	to	give	them	a	way	to	directly
read	L1	state.	If	the	keystore	contract	is	on	L1,	this	would	mean	that	contracts	inside	L2	can	access
the	keystore	"for	free"
Merkle	branches.	Merkle	branches	can	prove	L1	state	to	an	L2,	or	L2	state	to	an	L1,	or	you	can
combine	the	two	to	prove	parts	of	the	state	of	one	L2	to	another	L2.	The	main	weakness	of	Merkle
proofs	is	high	gas	costs	due	to	proof	length:	potentially	5	kB	for	a	proof,	though	this	will	reduce	to	<
1	kB	in	the	future	due	to	Verkle	trees.
ZK-SNARKs.	You	can	reduce	data	costs	by	using	a	ZK-SNARK	of	a	Merkle	branch	instead	of	the
branch	itself.	It's	possible	to	build	off-chain	aggregation	techniques	(eg.	on	top	of	EIP-4337)	to	have
one	single	ZK-SNARK	verify	all	cross-chain	state	proofs	in	a	block.
KZG	commitments.	Either	L2s,	or	schemes	built	on	top	of	them,	could	introduce	a	sequential
addressing	system,	allowing	proofs	of	state	inside	this	system	to	be	a	mere	48	bytes	long.	Like	with
ZK-SNARKs,	a	multiproof	scheme	could	merge	all	of	these	proofs	into	a	single	proof	per	block.
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If	we	want	to	avoid	making	one	proof	per	transaction,	we	can	implement	a	lighter	scheme	that	only
requires	a	cross-L2	proof	for	recovery.	Spending	from	an	account	would	depend	on	a	spending	key	whose
corresponding	pubkey	is	stored	within	that	account,	but	recovery	would	require	a	transaction	that	copies
over	the	current	spending_pubkey	in	the	keystore.	Funds	in	counterfactual	addresses	are	safe	even	if	your
old	keys	are	not:	"activating"	a	counterfactual	address	to	turn	it	into	a	working	contract	would	require
making	a	cross-L2	proof	to	copy	over	the	current	spending_pubkey.	This	thread	on	the	Safe	forums
describes	how	a	similar	architecture	might	work.

To	add	privacy	to	such	a	scheme,	then	we	just	encrypt	the	pointer,	and	we	do	all	of	our	proving
inside	ZK-SNARKs:

With	more	work	(eg.	using	this	work	as	a	starting	point),	we	could	also	strip	out	most	of	the	complexity	of
ZK-SNARKs	and	make	a	more	bare-bones	KZG-based	scheme.

These	schemes	can	get	complex.	On	the	plus	side,	there	are	many	potential	synergies	between	them.	For
example,	the	concept	of	"keystore	contracts"	could	also	be	a	solution	to	the	challenge	of	"addresses"
mentioned	in	the	previous	section:	if	we	want	users	to	have	persistent	addresses,	that	do	not	change	every
time	the	user	updates	a	key,	we	could	put	stealth	meta-addresses,	encryption	keys,	and	other	information
into	the	keystore	contract,	and	use	the	address	of	the	keystore	contract	as	a	user's	"address".

Lots	of	secondary	infrastructure	needs	to	update
Using	ENS	is	expensive.	Today,	in	June	2023,	the	situation	is	not	too	bad:	the	transaction	fee	is	significant,
but	it's	still	comparable	to	the	ENS	domain	fee.	Registering	zuzalu.eth	cost	me	roughly	$27,	of	which	$11
was	transaction	fees.	But	if	we	have	another	bull	market,	fees	will	skyrocket.	Even	without	ETH	price
increases,	gas	fees	returning	to	200	gwei	would	raise	the	tx	fee	of	a	domain	registration	to	$104.	And	so	if
we	want	people	to	actually	use	ENS,	especially	for	use	cases	like	decentralized	social	media	where	users
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demand	nearly-free	registration	(and	the	ENS	domain	fee	is	not	an	issue	because	these	platforms	offer
their	users	sub-domains),	we	need	ENS	to	work	on	L2.

Fortunately,	the	ENS	team	has	stepped	up,	and	ENS	on	L2	is	actually	happening!	ERC-3668	(aka	"the
CCIP	standard"),	together	with	ENSIP-10,	provide	a	way	to	have	ENS	subdomains	on	any	L2	automatically
be	verifiable.	The	CCIP	standard	requires	setting	up	a	smart	contract	that	describes	a	method	for	verifying
proofs	of	data	on	L2,	and	a	domain	(eg.	Optinames	uses	ecc.eth)	can	be	put	under	the	control	of	such	a
contract.	Once	the	CCIP	contract	controls	ecc.eth	on	L1,	accessing	some	subdomain.ecc.eth	will
automatically	involve	finding	and	verifying	a	proof	(eg.	Merkle	branch)	of	the	state	in	L2	that	actually
stores	that	particular	subdomain.

Actually	fetching	the	proofs	involves	going	to	a	list	of	URLs	stored	in	the	contract,	which	admittedly	feels
like	centralization,	though	I	would	argue	it	really	isn't:	it's	a	1-of-N	trust	model	(invalid	proofs	get	caught
by	the	verification	logic	in	the	CCIP	contract's	callback	function,	and	as	long	as	even	one	of	the	URLs
returns	a	valid	proof,	you're	good).	The	list	of	URLs	could	contain	dozens	of	them.

The	ENS	CCIP	effort	is	a	success	story,	and	it	should	be	viewed	as	a	sign	that	radical	reforms	of
the	kind	that	we	need	are	actually	possible.	But	there's	a	lot	more	application-layer	reform	that	will
need	to	be	done.	A	few	examples:

Lots	of	dapps	depend	on	users	providing	off-chain	signatures.	With	externally-owned	accounts
(EOAs),	this	is	easy.	ERC-1271	provides	a	standardized	way	to	do	this	for	smart	contract	wallets.
However,	lots	of	dapps	still	don't	support	ERC-1271;	they	will	need	to.
Dapps	that	use	"is	this	an	EOA?"	to	discriminate	between	users	and	contracts	(eg.	to
prevent	transfer	or	enforce	royalties)	will	break.	In	general,	I	advise	against	attempting	to	find	a
purely	technical	solution	here;	figuring	out	whether	or	not	a	particular	transfer	of	cryptographic
control	is	a	transfer	of	beneficial	ownership	is	a	difficult	problem	and	probably	not	solvable	without
resolving	to	some	off-chain	community-driven	mechanisms.	Most	likely,	applications	will	have	to	rely
less	on	preventing	transfers	and	more	on	techniques	like	Harberger	taxes.
How	wallets	interact	with	spending	and	encryption	keys	will	have	to	be	improved.	Currently,
wallets	often	use	deterministic	signatures	to	generate	application-specific	keys:	signing	a	standard
nonce	(eg.	the	hash	of	the	application's	name)	with	an	EOA's	private	key	generates	a	deterministic
value	that	cannot	be	generated	without	the	private	key,	and	so	it's	secure	in	a	purely	technical	sense.
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However,	these	techniques	are	"opaque"	to	the	wallet,	preventing	the	wallet	from	implementing	user-
interface	level	security	checks.	In	a	more	mature	ecosystem,	signing,	encryption	and	related
functionalities	will	have	to	be	handled	by	wallets	more	explicitly.
Light	clients	(eg.	Helios)	will	have	to	verify	L2s	and	not	just	the	L1.	Today,	light	clients	focus
on	checking	the	validity	of	the	L1	headers	(using	the	light	client	sync	protocol),	and	verifying	Merkle
branches	of	L1	state	and	transactions	rooted	in	the	L1	header.	Tomorrow,	they	will	also	need	to	verify
a	proof	of	L2	state	rooted	in	the	state	root	stored	in	the	L1	(a	more	advanced	version	of	this	would
actually	look	at	L2	pre-confirmations).

Wallets	will	need	to	secure	both	assets	and	data
Today,	wallets	are	in	the	business	of	securing	assets.	Everything	lives	on-chain,	and	the	only	thing	that	the
wallet	needs	to	protect	is	the	private	key	that	is	currently	guarding	those	assets.	If	you	change	the	key,
you	can	safely	publish	your	previous	private	key	on	the	internet	the	next	day.	In	a	ZK	world,	however,	this
is	no	longer	true:	the	wallet	is	not	just	protecting	authentication	credentials,	it's	also	holding	your	data.

We	saw	the	first	signs	of	such	a	world	with	Zupass,	the	ZK-SNARK-based	identity	system	that	was	used	at
Zuzalu.	Users	had	a	private	key	that	they	used	to	authenticate	to	the	system,	which	could	be	used	to	make
basic	proofs	like	"prove	I'm	a	Zuzalu	resident,	without	revealing	which	one".	But	the	Zupass	system	also
began	to	have	other	apps	built	on	top,	most	notably	stamps	(Zupass's	version	of	POAPs).

One	of	my	many	Zupass	stamps,	confirming	that	I	am	a	proud	member	of	Team	Cat.

The	key	feature	that	stamps	offer	over	POAPs	is	that	stamps	are	private:	you	hold	the	data	locally,	and	you
only	ZK-prove	a	stamp	(or	some	computation	over	the	stamps)	to	someone	if	you	want	them	to	have	that
information	about	you.	But	this	creates	added	risk:	if	you	lose	that	information,	you	lose	your	stamps.

Of	course,	the	problem	of	holding	data	can	be	reduced	to	the	problem	of	holding	a	single	encryption	key:
some	third	party	(or	even	the	chain)	can	hold	an	encrypted	copy	of	the	data.	This	has	the	convenient
advantage	that	actions	you	take	don't	change	the	encryption	key,	and	so	do	not	require	any	interactions
with	the	system	holding	your	encryption	key	safe.	But	even	still,	if	you	lose	your	encryption	key,	you
lose	everything.	And	on	the	flip	side,	if	someone	sees	your	encryption	key,	they	see	everything	that
was	encrypted	to	that	key.
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Zupass's	de-facto	solution	was	to	encourage	people	to	store	their	key	on	multiple	devices	(eg.	laptop	and
phone),	as	the	chance	that	they	would	lose	access	to	all	devices	at	the	same	time	is	tiny.	We	could	go
further,	and	use	secret	sharing	to	store	the	key,	split	between	multiple	guardians.

This	kind	of	social	recovery	via	MPC	is	not	a	sufficient	solution	for	wallets,	because	it	means	that	not	only
current	guardians	but	also	previous	guardians	could	collude	to	steal	your	assets,	which	is	an	unacceptably
high	risk.	But	privacy	leaks	are	generally	a	lower	risk	than	total	asset	loss,	and	someone	with	a	high-
privacy-demanding	use	case	could	always	accept	a	higher	risk	of	loss	by	not	backing	up	the	key	associated
with	those	privacy-demanding	actions.

To	avoid	overwheming	the	user	with	a	byzantine	system	of	multiple	recovery	paths,	wallets	that	support
social	recovery	will	likely	need	to	manage	both	recovery	of	assets	and	recovery	of	encryption	keys.

Back	to	identity
One	of	the	common	threads	of	these	changes	is	that	the	concept	of	an	"address",	a	cryptographic	identifier
that	you	use	to	represent	"you"	on-chain,	will	have	to	radically	change.	"Instructions	for	how	to
interact	with	me"	would	no	longer	just	be	an	ETH	address;	they	would	have	to	be,	in	some	form,
some	combination	of	multiple	addresses	on	multiple	L2s,	stealth	meta-addresses,	encryption
keys,	and	other	data.

One	way	to	do	this	is	to	make	ENS	your	identity:	your	ENS	record	could	just	contain	all	of	this	information,
and	if	you	send	someone	bob.eth	(or	bob.ecc.eth,	or...),	they	could	look	up	and	see	everything	about	how	to
pay	and	interact	with	you,	including	in	the	more	complicated	cross-domain	and	privacy-preserving	ways.

But	this	ENS-centric	approach	has	two	weaknesses:

It	ties	too	many	things	to	your	name.	Your	name	is	not	you,	your	name	is	one	of	many	attributes
of	you.	It	should	be	possible	to	change	your	name	without	moving	over	your	entire	identity	profile	and
updating	a	whole	bunch	of	records	across	many	applications.
You	can't	have	trustless	counterfactual	names.	One	key	UX	feature	of	any	blockchain	is	the
ability	to	send	coins	to	people	who	have	not	interacted	with	the	chain	yet.	Without	such	a
functionality,	there	is	a	catch-22:	interacting	with	the	chain	requires	paying	transaction	fees,	which
requires...	already	having	coins.	ETH	addresses,	including	smart	contract	addresses	with	CREATE2,
have	this	feature.	ENS	names	don't,	because	if	two	Bobs	both	decide	off-chain	that	they	are
bob.ecc.eth,	there's	no	way	to	choose	which	one	of	them	gets	the	name.

One	possible	solution	is	to	put	more	things	into	the	keystore	contract	mentioned	in	the	architecture
earlier	in	this	post.	The	keystore	contract	could	contain	all	of	the	various	information	about	you	and	how
to	interact	with	you	(and	with	CCIP,	some	of	that	info	could	be	off-chain),	and	users	would	use	their
keystore	contract	as	their	primary	identifier.	But	the	actual	assets	that	they	receive	would	be	stored	in	all
kinds	of	different	places.	Keystore	contracts	are	not	tied	to	a	name,	and	they	are	counterfactual-friendly:
you	can	generate	an	address	that	can	provably	only	be	initialized	by	a	keystore	contract	that	has	certain
fixed	initial	parameters.

Another	category	of	solutions	has	to	do	with	abandoning	the	concept	of	user-facing	addresses	altogether,
in	a	similar	spirit	to	the	Bitcoin	payment	protocol.	One	idea	is	to	rely	more	heavily	on	direct
communication	channels	between	the	sender	and	the	recipient;	for	example,	the	sender	could	send	a	claim
link	(either	as	an	explicit	URL	or	a	QR	code)	which	the	recipient	could	use	to	accept	the	payment	however
they	wish.

Regardless	of	whether	the	sender	or	the	recipient	acts	first,	greater	reliance	on	wallets	directly	generating
up-to-date	payment	information	in	real	time	could	reduce	friction.	That	said,	persistent	identifiers	are
convenient	(especially	with	ENS),	and	the	assumption	of	direct	communication	between	sender	and
recipient	is	a	really	tricky	one	in	practice,	and	so	we	may	end	up	seeing	a	combination	of	different
techniques.

In	all	of	these	designs,	keeping	things	both	decentralized	and	understandable	to	users	is	paramount.	We
need	to	make	sure	that	users	have	easy	access	to	an	up-to-date	view	of	what	their	current	assets	are	and
what	messages	have	been	published	that	are	intended	for	them.	These	views	should	depend	on	open	tools,
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not	proprietary	solutions.	It	will	take	hard	work	to	avoid	the	greater	complexity	of	payment	infrastructure
from	turning	into	an	opaque	"tower	of	abstraction"	where	developers	have	a	hard	time	making	sense	of
what's	going	on	and	adapting	it	to	new	contexts.	Despite	the	challenges,	achieving	scalability,	wallet
security,	and	privacy	for	regular	users	is	crucial	for	Ethereum's	future.	It	is	not	just	about	technical
feasibility	but	about	actual	accessibility	for	regular	users.	We	need	to	rise	to	meet	this	challenge.
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Don't	overload	Ethereum's	consensus

Special	thanks	to	Karl	Floersch	and	Justin	Drake	for	feedback	and	review

The	Ethereum	network's	consensus	is	one	of	the	most	highly	secured	cryptoeconomic	systems	out
there.	18	million	ETH	(~$34	billion)	worth	of	validators	finalize	a	block	every	6.4	minutes,	running
many	different	implementations	of	the	protocol	for	redundancy.	And	if	the	cryptoeconomic	consensus
fails,	whether	due	to	a	bug	or	an	intentional	51%	attack,	a	vast	community	of	many	thousands	of
developers	and	many	more	users	are	watching	carefully	to	make	sure	the	chain	recovers	correctly.
Once	the	chain	recovers,	protocol	rules	ensure	that	attackers	will	likely	be	heavily	penalized.

Over	the	years	there	have	been	a	number	of	ideas,	usually	at	the	thought	experiment	stage,	to	also
use	the	Ethereum	validator	set,	and	perhaps	even	the	Ethereum	social	consensus,	for	other	purposes:

The	ultimate	oracle:	a	proposal	where	users	can	vote	on	what	facts	are	true	by	sending	ETH,
with	a	SchellingCoin	mechanism:	everyone	who	sent	ETH	to	vote	for	the	majority	answer	gets	a
proportional	share	of	all	the	ETH	sent	to	vote	for	the	minority	answer.	The	description
continues:	"So	in	principle	this	is	an	symmetric	game.	What	breaks	the	symmetry	is	that	a)	the
truth	is	the	natural	point	to	coordinate	on	and	more	importantly	b)	the	people	betting	on	the
truth	can	make	a	credible	thread	of	forking	Ethereum	if	they	loose."
Re-staking:	a	set	of	techniques,	used	by	many	protocols	including	EigenLayer,	where	Ethereum
stakers	can	simultaneously	use	their	stake	as	a	deposit	in	another	protocol.	In	some	cases,	if
they	misbehave	according	to	the	other	protocol's	rules,	their	deposit	also	gets	slashed.	In	other
cases,	there	are	no	in-protocol	incentives	and	stake	is	simply	used	to	vote.
L1-driven	recovery	of	L2	projects:	it	has	been	proposed	on	many	occasions	that	if	an	L2	has	a
bug,	the	L1	could	fork	to	recover	it.	One	recent	example	is	this	design	for	using	L1	soft	forks	to
recover	L2	failures.

The	purpose	of	this	post	will	be	to	explain	in	detail	the	argument	why,	in	my	view,	a	certain
subset	of	these	techniques	brings	high	systemic	risks	to	the	ecosystem	and	should	be
discouraged	and	resisted.

These	proposals	are	generally	made	in	a	well-intentioned	way,	and	so	the	goal	is	not	to	focus	on
individuals	or	projects;	rather,	the	goal	is	to	focus	on	techniques.	The	general	rule	of	thumb	that	this
post	will	attempt	to	defend	is	as	follows:	dual-use	of	validator	staked	ETH,	while	it	has	some
risks,	is	fundamentally	fine,	but	attempting	to	"recruit"	Ethereum	social	consensus	for	your
application's	own	purposes	is	not.

Examples	of	the	distinction	between	re-using	validators	(low-
risk)	and	overloading	social	consensus	(high-risk)

Alice	creates	a	web3	social	network	where	if	you	cryptographically	prove	that	you	control	the
key	of	an	active	Ethereum	validator,	you	automatically	gain	"verified"	status.	Low-risk.
Bob	cryptographically	proves	that	he	controls	the	key	of	ten	active	Ethereum	validators	as	a	way
of	proving	that	he	has	enough	wealth	to	satisfy	some	legal	requirement.	Low-risk.
Charlie	claims	to	have	disproven	the	twin	primes	conjecture,	and	claims	to	know	the	largest	p
such	that	p	and	p+2	are	both	prime.	He	changes	his	staking	withdrawal	address	to	a	smart
contract	where	anyone	can	submit	a	claimed	counterexample	q	>	p,	along	with	a	SNARK
proving	that	q	and	q+2	are	both	prime.	If	someone	makes	a	valid	claim,	then	Charlie's	validator	is
forcibly	exited,	and	the	submitter	gets	whatever	of	Charlie's	ETH	is	left.	Low-risk.
Dogecoin	decides	to	switch	to	proof	of	stake,	and	to	increase	the	size	of	its	security	pool	it
allows	Ethereum	stakers	to	"dual-stake"	and	simultaneously	join	its	validator	set.	To	do	so,
Ethereum	stakers	would	have	to	change	their	staking	withdrawal	address	to	a	smart	contract
where	anyone	can	submit	a	proof	that	they	violated	the	Dogecoin	staking	rules.	If	someone	does
submit	such	a	proof,	then	the	staker's	validator	is	forcibly	exited,	and	whatever	of	their	ETH	is
left	is	used	to	buy-and-burn	DOGE.	Low-risk.
eCash	does	the	same	as	Dogecoin,	but	the	project	leaders	further	announce:	if	the	majority	of
participating	ETH	validators	collude	to	censor	eCash	transactions,	they	expect	that	the
Ethereum	community	will	hard-fork	to	delete	those	validators.	They	argue	that	it	will	be	in
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Ethereum's	interest	to	do	so	as	those	validators	are	proven	to	be	malicious	and	unreliable.
High-risk.
Fred	creates	an	ETH/USD	price	oracle,	which	functions	by	allowing	Ethereum	validators	to
participate	and	vote.	There	are	no	incentives.	Low-risk.
George	creates	an	ETH/USD	price	oracle,	which	functions	by	allowing	ETH	holders	to
participate	and	vote.	To	protect	against	laziness	and	creeping	bribes,	they	add	an	incentive
mechanism	where	the	participants	that	give	an	answer	within	1%	of	the	median	answer	get	1%
of	the	ETH	of	any	participants	that	gave	an	answer	further	than	1%	from	the	median.	When
asked	"what	if	someone	credibly	offers	to	bribe	all	the	participants,	everyone	starts	submitting
the	wrong	answer,	and	so	honest	people	get	10	million	of	their	ETH	taken	away?",	George
replies:	then	Ethereum	will	have	to	fork	out	the	bad	participants'	money.	High-risk.

George	conspicuously	stays	away	from	making	replies.	Medium-high	risk	(as	the	project
could	create	incentives	to	attempt	such	a	fork,	and	hence	the	expectation	that	it	will	be
attmpted,	even	without	formal	encouragement)
George	replies:	"then	the	attacker	wins,	and	we'll	give	up	on	using	this	oracle".	Medium-
low	risk	(not	quite	"low"	only	because	the	mechanism	does	create	a	large	set	of	actors	who
in	a	51%	attack	might	be	incentivized	to	indepently	advocate	for	a	fork	to	protect	their
deposits)

Hermione	creates	a	successful	layer	2,	and	argues	that	because	her	layer	2	is	the	largest,	it	is
inherently	the	most	secure,	because	if	there	is	a	bug	that	causes	funds	to	be	stolen,	the	losses
will	be	so	large	that	the	community	will	have	no	choice	but	to	fork	to	recover	the	users'	funds.
High-risk.

If	you're	designing	a	protocol	where,	even	if	everything	completely	breaks,	the	losses	are	kept
contained	to	the	validators	and	users	who	opted	in	to	participating	in	and	using	your	protocol,	this	is
low-risk.	If,	on	the	other	hand,	you	have	the	intent	to	rope	in	the	broader	Ethereum	ecosystem	social
consensus	to	fork	or	reorg	to	solve	your	problems,	this	is	high-risk,	and	I	argue	that	we	should
strongly	resist	all	attempts	to	create	such	expectations.

A	middle	ground	is	situations	that	start	off	in	the	low-risk	category	but	give	their	participants
incentives	to	slide	into	the	higher-risk	category;	SchellingCoin-style	techniques,	especially
mechanisms	with	heavy	penalties	for	deviating	from	the	majority,	are	a	major	example.

So	what's	so	wrong	with	stretching	Ethereum	consensus,
anyway?
It	is	the	year	2025.	Frustrated	with	the	existing	options,	a	group	has	decided	to	make	a	new
ETH/USD	price	oracle,	which	works	by	allowing	validators	to	vote	on	the	price	every	hour.	If	a
validator	votes,	they	would	be	unconditionally	rewarded	with	a	portion	of	fees	from	the	system.	But
soon	participants	became	lazy:	they	connected	to	centralized	APIs,	and	when	those	APIs	got	cyber-
attacked,	they	either	dropped	out	or	started	reporting	false	values.	To	solve	this,	incentives	were
introduced:	the	oracle	also	votes	retrospectively	on	the	price	one	week	ago,	and	if	your	(real	time	or
retrospective)	vote	is	more	than	1%	away	from	the	median	retrospective	vote,	you	are	heavily
penalized,	with	the	penalty	going	to	those	who	voted	"correctly".

Within	a	year,	over	90%	of	validators	are	participating.	Someone	asked:	what	if	Lido	bands	together
with	a	few	other	large	stakers	to	51%	attack	the	vote,	forcing	through	a	fake	ETH/USD	price	value,
extracting	heavy	penalties	from	everyone	who	does	not	participate	in	the	attack?	The	oracle's
proponents,	at	this	point	heavily	invested	in	the	scheme,	reply:	well	if	that	happens,	Ethereum	will
surely	fork	to	kick	the	bad	guys	out.

At	first,	the	scheme	is	limited	to	ETH/USD,	and	it	appears	resilient	and	stable.	But	over	the	years,
other	indices	get	added:	ETH/EUR,	ETH/CNY,	and	eventually	rates	for	all	countries	in	the	G20.

But	in	2034,	things	start	to	go	wrong.	Brazil	has	an	unexpectedly	severe	political	crisis,	leading	to	a
disputed	election.	One	political	party	ends	up	in	control	of	the	capital	and	75%	of	the	country,	but
another	party	ends	up	in	control	of	some	northern	areas.	Major	Western	media	argue	that	the
northern	party	is	clearly	the	legitimate	winner	because	it	acted	legally	and	the	southern	party	acted
illegally	(and	by	the	way	are	fascist).	Indian	and	Chinese	official	sources,	and	Elon	Musk,	argue	that
the	southern	party	has	actual	control	of	most	of	the	country,	and	the	international	community	should
not	try	to	be	a	world	police	and	should	instead	accept	the	outcome.

By	this	point,	Brazil	has	a	CBDC,	which	splits	into	two	forks:	the	(northern)	BRL-N,	and	the
(southern)	BRL-S.	When	voting	in	the	oracle,	60%	of	Ethereum	stakers	provide	the	ETH/BRL-S	rate.
Major	community	leaders	and	businesses	decry	the	stakers'	craven	capitulation	to	fascism,	and
propose	to	fork	the	chain	to	only	include	the	"good	stakers"	providing	the	ETH/BRL-N	rate,	and	drain
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the	other	stakers'	balances	to	near-zero.	Within	their	social	media	bubble,	they	believe	that	they	will
clearly	win.	However,	once	the	fork	hits,	the	BRL-S	side	proves	unexpectedly	strong.	What	they
expected	to	be	a	landslide	instead	proves	to	be	pretty	much	a	50-50	community	split.

At	this	point,	the	two	sides	are	in	their	two	separate	universes	with	their	two	chains,	with	no
practical	way	of	coming	back	together.	Ethereum,	a	global	permissionless	platform	created	in	part	to
be	a	refuge	from	nations	and	geopolitics,	instead	ends	up	cleaved	in	half	by	any	one	of	the	twenty
G20	member	states	having	an	unexpectedly	severe	internal	issue.

That's	a	nice	scifi	story	you	got	there.	Could	even	make	a
good	movie.	But	what	can	we	actually	learn	from	it?
A	blockchain's	"purity",	in	the	sense	of	it	being	a	purely	mathematical	construct	that	attempts	to
come	to	consensus	only	on	purely	mathematical	things,	is	a	huge	advantage.	As	soon	as	a	blockchain
tries	to	"hook	in"	to	the	outside	world,	the	outside	world's	conflicts	start	to	impact	on	the	blockchain
too.	Given	a	sufficiently	extreme	political	event	-	in	fact,	not	that	extreme	a	political	event,	given	that
the	above	story	was	basically	a	pastiche	of	events	that	have	actually	happened	in	various	major
(>25m	population)	countries	all	within	the	past	decade	-	even	something	as	benign	as	a	currency
oracle	could	tear	the	community	apart.

Here	are	a	few	more	possible	scenarios:

One	of	the	currencies	that	the	oracle	tracks	(which	could	even	be	USD)	simply	hyperinflates,
and	markets	break	down	to	the	point	that	at	some	points	in	time	there	is	no	clear	specific
market	price.
If	Ethereum	adds	a	price	oracle	to	another	cryptocurrency,	then	a	controversial	split	like	in	the
story	above	is	not	hypothetical:	it's	something	that	has	already	happened,	including	in	the
histories	of	both	Bitcoin	and	Ethereum	itself.
If	strict	capital	controls	become	operational,	then	which	price	to	report	as	the	legitimate	market
price	between	two	currencies	becomes	a	political	question.

But	more	importantly,	I'd	argue	that	there	is	a	Schelling	fence	at	play:	once	a	blockchain	starts
incorporating	real-world	price	indices	as	a	layer-1	protocol	feature,	it	could	easily	succumb	to
interpreting	more	and	more	real-world	information.	Introducing	layer-1	price	indices	also	expands
the	blockchain's	legal	attack	surface:	instead	of	being	just	a	neutral	technical	platform,	it	becomes
much	more	explicitly	a	financial	tool.

What	about	risks	from	examples	other	than	price	indices?
Any	expansion	of	the	"duties"	of	Ethereum's	consensus	increases	the	costs,	complexities	and	risks	of
running	a	validator.	Validators	become	required	to	take	on	the	human	effort	of	paying	attention	and
running	and	updating	additional	software	to	make	sure	that	they	are	acting	correctly	according	to
whatever	other	protocols	are	being	introduced.	Other	communities	gain	the	ability	to	externalize
their	dispute	resolution	needs	onto	the	Ethereum	community.	Validators	and	the	Ethereum
community	as	a	whole	become	forced	to	make	far	more	decisions,	each	of	which	has	some	risk	of
causing	a	community	split.	Even	if	there	is	no	split,	the	desire	to	avoid	such	pressure	creates
additional	incentives	to	externalize	the	decisions	to	centralized	entities	through	stake-pooling.

The	possibility	of	a	split	would	also	greatly	strengthen	perverse	too-big-to-fail	mechanics.	There	are
so	many	layer-2	and	application-layer	projects	on	Ethereum	that	it	would	be	impractical	for
Ethereum	social	consensus	to	be	willing	to	fork	to	solve	all	of	their	problems.	Hence,	larger	projects
would	inevitably	get	a	larger	chance	of	getting	a	bailout	than	smaller	ones.	This	would	in	turn	lead	to
larger	projects	getting	a	moat:	would	you	rather	have	your	coins	on	Arbitrum	or	Optimism,	where	if
something	goes	wrong	Ethereum	will	fork	to	save	the	day,	or	on	Taiko,	where	because	it's	smaller
(and	non-Western,	hence	less	socially	connected	to	core	dev	circles),	an	L1-backed	rescue	is	much
less	likely?

But	bugs	are	a	risk,	and	we	need	better	oracles.	So	what
should	we	do?
The	best	solutions	to	these	problems	are,	in	my	view,	case-by-case,	because	the	various	problems	are
inherently	so	different	from	each	other.	Some	solutions	include:

Price	oracles:	either	not-quite-cryptoeconomic	decentralized	oracles,	or	validator-voting-based
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oracles	that	explicitly	commit	to	their	emergency	recovery	strategies	being	something
other	than	appealing	to	L1	consensus	for	recovery	(or	some	combination	of	both).	For
example,	a	price	oracle	could	count	on	a	trust	assumption	that	voting	participants	get	corrupted
slowly,	and	so	users	would	have	early	warning	of	an	attack	and	could	exit	any	systems	that
depend	on	the	oracle.	Such	an	oracle	could	intentionally	give	its	reward	only	after	a	long	delay,
so	that	if	that	instance	of	the	protocol	falls	into	disuse	(eg.	because	the	oracle	fails	and	the
community	forks	toward	another	version),	the	participants	do	not	get	the	reward.
More	complex	truth	oracles	reporting	on	facts	more	subjective	than	price:	some	kind	of
decentralized	court	system	built	on	a	not-quite-cryptoeconomic	DAO.
Layer	2	protocols:

In	the	short	term,	rely	on	partial	training	wheels	(what	this	post	calls	stage	1)
In	the	medium	term,	rely	on	multiple	proving	systems.	Trusted	hardware	(eg.	SGX)	could
be	included	here;	I	strongly	anti-endorse	SGX-like	systems	as	a	sole	guarantor	of	security,
but	as	a	member	of	a	2-of-3	system	they	could	be	valuable.
In	the	longer	term,	hopefully	complex	functionalities	such	as	"EVM	validation"	will
themselves	eventually	be	enshrined	in	the	protocol

Cross-chain	bridges:	similar	logic	as	oracles,	but	also,	try	to	minimize	how	much	you	rely	on
bridges	at	all:	hold	assets	on	the	chain	where	they	originate	and	use	atomic	swap	protocols	to
move	value	between	different	chains.
Using	the	Ethereum	validator	set	to	secure	other	chains:	one	reason	why	the	(safer)
Dogecoin	approach	in	the	list	of	examples	above	might	be	insufficient	is	that	while	it	does
protect	against	51%	finality-reversion	attacks,	it	does	not	protect	against	51%	censorship
attacks.	However,	if	you	are	already	relying	on	Ethereum	validators,	then	one	possible	direction
to	take	is	to	move	away	from	trying	to	manage	an	independent	chain	entirely,	and	become	a
validium	with	proofs	anchored	into	Ethereum.	If	a	chain	does	this,	its	protection	against	finality-
reversion	attacks	becomes	as	strong	as	Ethereum's,	and	it	becomes	secure	against	censorship
up	to	99%	attacks	(as	opposed	to	49%).

Conclusions
Blockchain	communities'	social	consensus	is	a	fragile	thing.	It's	necessary	-	because	upgrades
happen,	bugs	happen,	and	51%	attacks	are	always	a	possibility	-	but	because	it	has	such	a	high	risk
of	causing	chain	splits,	in	mature	communities	it	should	be	used	sparingly.	There	is	a	natural	urge	to
try	to	extend	the	blockchain's	core	with	more	and	more	functionality,	because	the	blockchain's	core
has	the	largest	economic	weight	and	the	largest	community	watching	it,	but	each	such	extention
makes	the	core	itself	more	fragile.

We	should	be	wary	of	application-layer	projects	taking	actions	that	risk	increasing	the	"scope"	of
blockchain	consensus	to	anything	other	than	verifying	the	core	Ethereum	protocol	rules.	It	is	natural
for	application-layer	projects	to	attempt	such	a	strategy,	and	indeed	such	ideas	are	often	simply
conceived	without	appreciation	of	the	risks,	but	its	result	can	easily	become	very	misaligned	with	the
goals	of	the	community	as	a	whole.	Such	a	process	has	no	limiting	principle,	and	could	easily	lead	to
a	blockchain	community	having	more	and	more	"mandates"	over	time,	pushing	it	into	an
uncomfortable	choice	between	a	high	yearly	risk	of	splitting	and	some	kind	of	de-facto	formalized
bureaucracy	that	has	ultimate	control	of	the	chain.

We	should	instead	preserve	the	chain's	minimalism,	support	uses	of	re-staking	that	do	not	look	like
slippery	slopes	to	extending	the	role	of	Ethereum	consensus,	and	help	developers	find	alternate
strategies	to	achieve	their	security	goals.
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Travel	time	~=	750	*	distance	^	0.6

As	another	exercise	in	using	ChatGPT	3.5	to	do	weird	things	and	seeing	what	happens,	I	decided	to
explore	an	interesting	question:	how	does	the	time	it	takes	to	travel	from	point	A	to	point	B	scale
with	distance,	in	the	real	world?	That	is	to	say,	if	you	sample	randomly	from	positions	where	people
are	actually	at	(so,	for	example,	56%	of	points	you	choose	would	be	in	cities),	and	you	use	public
transportation,	how	does	travel	time	scale	with	distance?

Obviously,	travel	time	would	grow	slower	than	linearly:	the	further	you	have	to	go,	the	more
opportunity	you	have	to	resort	to	forms	of	transportation	that	are	faster,	but	have	some	fixed
overhead.	Outside	of	a	very	few	lucky	cases,	there	is	no	practical	way	to	take	a	bus	to	go	faster	if
your	destination	is	170	meters	away,	but	if	your	destination	is	170	kilometers	away,	you	suddenly	get
more	options.	And	if	it's	1700	kilometers	away,	you	get	airplanes.

So	I	asked	ChatGPT	for	the	ingredients	I	would	need:

file:///home/runner/index.html
https://www.worldbank.org/en/topic/urbandevelopment/overview


I	went	with	the	GeoLife	dataset.	I	did	notice	that	while	it	claims	to	be	about	users	around	the	world,

https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/


primarily	it	seems	to	focus	on	people	in	Seattle	and	Beijing,	though	they	do	occasionally	visit	other
cities.	That	said,	I'm	not	a	perfectionist	and	I	was	fine	with	it.	I	asked	ChatGPT	to	write	me	a	script	to
interpret	the	dataset	and	extract	a	randomly	selected	coordinate	from	each	file:

Amazingly,	it	almost	succeeded	on	the	first	try.	It	did	make	the	mistake	of	assuming	every	item	in	the
list	would	be	a	number	(values	=	[float(x)	for	x	in	line.strip().split(',')]),	though	perhaps	to
some	extent	that	was	my	fault:	when	I	said	"the	first	two	values"	it	probably	interpreted	that	as
implying	that	the	entire	line	was	made	up	of	"values"	(ie.	numbers).

I	fixed	the	bug	manually.	Now,	I	have	a	way	to	get	some	randomly	selected	points	where	people	are
at,	and	I	have	an	API	to	get	the	public	transit	travel	time	between	the	points.

I	asked	it	for	more	coding	help:

Asking	how	to	get	an	API	key	for	the	Google	Maps	Directions	API	(it	gave	an	answer	that	seems
to	be	outdated,	but	that	succeeded	at	immediately	pointing	me	to	the	right	place)
Writing	a	function	to	compute	the	straight-line	distance	between	two	GPS	coordinates	(it	gave
the	correct	answer	on	the	first	try)
Given	a	list	of	(distance,	time)	pairs,	drawing	a	scatter	plot,	with	time	and	distance	as	axes,
both	axes	logarithmically	scaled	(it	gave	the	correct	answer	on	the	first	try)
Doing	a	linear	regression	on	the	logarithms	of	distance	and	time	to	try	to	fit	the	data	to	a	power
law	(it	bugged	on	the	first	try,	succeeded	on	the	second)

This	gave	me	some	really	nice	data	(this	is	filtered	for	distances	under	500km,	as	above	500km	the
best	path	almost	certainly	includes	flying,	and	the	Google	Maps	directions	don't	take	into	account
flights):



The	power	law	fit	that	the	linear	regression	gave	is:	travel_time	=	965.8020738916074	*
distance^0.6138556361612214	(time	in	seconds,	distance	in	km).

Now,	I	needed	travel	time	data	for	longer	distances,	where	the	optimal	route	would	include	flights.
Here,	APIs	could	not	help	me:	I	asked	ChatGPT	if	there	were	APIs	that	could	do	such	a	thing,	and	it
did	not	give	a	satisfactory	answer.	I	resorted	to	doing	it	manually:

I	used	the	same	script,	but	modified	it	slightly	to	only	output	pairs	of	points	which	were	more
than	500km	apart	from	each	other.
I	took	the	first	8	results	within	the	United	States,	and	the	first	8	with	at	least	one	end	outside
the	United	States,	skipping	over	results	that	represented	a	city	pair	that	had	already	been
covered.
For	each	result	I	manually	obtained:

to_airport:	the	public	transit	travel	time	from	the	starting	point	to	the	nearest	airport,
using	Google	Maps	outside	China	and	Baidu	Maps	inside	China.
from_airport:	the	public	transit	travel	time	to	the	end	point	from	the	nearest	airport
flight_time:	the	flight	time	from	the	starting	point	to	the	end	point.	I	used	Google	Flights)
and	always	took	the	top	result,	except	in	cases	where	the	top	result	was	completely	crazy
(more	than	2x	the	length	of	the	shortest),	in	which	case	I	took	the	shortest.

I	computed	the	travel	time	as	(to_airport)	*	1.5	+	(90	if	international	else	60)	+	flight_time
+	from_airport.	The	first	part	is	a	fairly	aggressive	formula	(I	personally	am	much	more
conservative	than	this)	for	when	to	leave	for	the	airport:	aim	to	arrive	60	min	before	if	domestic
and	90	min	before	if	international,	and	multiply	expected	travel	time	by	1.5x	in	case	there	are
any	mishaps	or	delays.

This	was	boring	and	I	was	not	interested	in	wasting	my	time	to	do	more	than	16	of	these;	I	presume	if
I	was	a	serious	researcher	I	would	already	have	an	account	set	up	on	TaskRabbit	or	some	similar
service	that	would	make	it	easier	to	hire	other	people	to	do	this	for	me	and	get	much	more	data.	In
any	case,	16	is	enough;	I	put	my	resulting	data	here.

Finally,	just	for	fun,	I	added	some	data	for	how	long	it	would	take	to	travel	to	various	locations	in
space:	the	moon	(I	added	12	hours	to	the	time	to	take	into	account	an	average	person's	travel	time	to
the	launch	site),	Mars,	Pluto	and	Alpha	Centauri.	You	can	find	my	complete	code	here.

Here's	the	resulting	chart:
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travel_time	=	733.002223593754	*	distance^0.591980777827876

WAAAAAT?!?!!	From	this	chart	it	seems	like	there	is	a	surprisingly	precise	relationship	governing
travel	time	from	point	A	to	point	B	that	somehow	holds	across	such	radically	different	transit	media
as	walking,	subways	and	buses,	airplanes	and	(!!)	interplanetary	and	hypothetical	interstellar
spacecraft.	I	swear	that	I	am	not	cherrypicking;	I	did	not	throw	out	any	data	that	was	inconvenient,
everything	(including	the	space	stuff)	that	I	checked	I	put	on	the	chart.

ChatGPT	3.5	worked	impressively	well	this	time;	it	certainly	stumbled	and	fell	much	less	than	my
previous	misadventure,	where	I	tried	to	get	it	to	help	me	convert	IPFS	bafyhashes	into	hex.	In
general,	ChatGPT	seems	uniquely	good	at	teaching	me	about	libraries	and	APIs	I've	never	heard	of
before	but	that	other	people	use	all	the	time;	this	reduces	the	barrier	to	entry	between	amateurs	and
professionals	which	seems	like	a	very	positive	thing.

So	there	we	go,	there	seems	to	be	some	kind	of	really	weird	fractal	law	of	travel	time.	Of	course,
different	transit	technologies	could	change	this	relationship:	if	you	replace	public	transit	with	cars
and	commercial	flights	with	private	jets,	travel	time	becomes	somewhat	more	linear.	And	once	we
upload	our	minds	onto	computer	hardware,	we'll	be	able	to	travel	to	Alpha	Centauri	on	much	crazier
vehicles	like	ultralight	craft	propelled	by	Earth-based	lightsails)	that	could	let	us	go	anywhere	at	a
significant	fraction	of	the	speed	of	light.	But	for	now,	it	does	seem	like	there	is	a	strangely	consistent
relationship	that	puts	time	much	closer	to	the	square	root	of	distance.
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How	will	Ethereum's	multi-client	philosophy	interact	with	ZK-
EVMs?

Special	thanks	to	Justin	Drake	for	feedback	and	review

One	underdiscussed,	but	nevertheless	very	important,	way	in	which	Ethereum	maintains	its	security	and	decentralization	is	its	multi-
client	philosophy.	Ethereum	intentionally	has	no	"reference	client"	that	everyone	runs	by	default:	instead,	there	is	a	collaboratively-
managed	specification	(these	days	written	in	the	very	human-readable	but	very	slow	Python)	and	there	are	multiple	teams	making
implementations	of	the	spec	(also	called	"clients"),	which	is	what	users	actually	run.

Each	Ethereum	node	runs	a	consensus	client	and	an	execution	client.	As	of	today,	no	consensus	or	execution	client	makes	up	more	than	2/3	of	the	network.
If	a	client	with	less	than	1/3	share	in	its	category	has	a	bug,	the	network	would	simply	continue	as	normal.	If	a	client	with	between	1/3	and	2/3	share	in	its

category	(so,	Prysm,	Lighthouse	or	Geth)	has	a	bug,	the	chain	would	continue	adding	blocks,	but	it	would	stop	finalizing	blocks,	giving	time	for	developers	to
intervene.

One	underdiscussed,	but	nevertheless	very	important,	major	upcoming	transition	in	the	way	the	Ethereum	chain	gets	validated	is	the	rise
of	ZK-EVMs.	SNARKs	proving	EVM	execution	have	been	under	development	for	years	already,	and	the	technology	is	actively	being	used
by	layer	2	protocols	called	ZK	rollups.	Some	of	these	ZK	rollups	are	active	on	mainnet	today,	with	more	coming	soon.	But	in	the	longer
term,	ZK-EVMs	are	not	just	going	to	be	for	rollups;	we	want	to	use	them	to	verify	execution	on	layer	1	as	well	(see	also:	the	Verge).

Once	that	happens,	ZK-EVMs	de-facto	become	a	third	type	of	Ethereum	client,	just	as	important	to	the	network's	security	as	execution
clients	and	consensus	clients	are	today.	And	this	naturally	raises	a	question:	how	will	ZK-EVMs	interact	with	the	multi-client	philosophy?
One	of	the	hard	parts	is	already	done:	we	already	have	multiple	ZK-EVM	implementations	that	are	being	actively	developed.	But	other
hard	parts	remain:	how	would	we	actually	make	a	"multi-client"	ecosystem	for	ZK-proving	correctness	of	Ethereum	blocks?	This	question
opens	up	some	interesting	technical	challenges	-	and	of	course	the	looming	question	of	whether	or	not	the	tradeoffs	are	worth	it.

What	was	the	original	motivation	for	Ethereum's	multi-client	philosophy?
Ethereum's	multi-client	philosophy	is	a	type	of	decentralization,	and	like	decentralization	in	general,	one	can	focus	on	either	the
technical	benefits	of	architectural	decentralization	or	the	social	benefits	of	political	decentralization.	Ultimately,	the	multi-client
philosophy	was	motivated	by	both	and	serves	both.

Arguments	for	technical	decentralization

The	main	benefit	of	technical	decentralization	is	simple:	it	reduces	the	risk	that	one	bug	in	one	piece	of	software	leads	to	a	catastrophic
breakdown	of	the	entire	network.	A	historical	situation	that	exemplifies	this	risk	is	the	2010	Bitcoin	overflow	bug.	At	the	time,	the	Bitcoin
client	code	did	not	check	that	the	sum	of	the	outputs	of	a	transaction	does	not	overflow	(wrap	around	to	zero	by	summing	to	above	the
maximum	integer	of	\(2^{64}	-	1\)),	and	so	someone	made	a	transaction	that	did	exactly	that,	giving	themselves	billions	of	bitcoins.	The
bug	was	discovered	within	hours,	and	a	fix	was	rushed	through	and	quickly	deployed	across	the	network,	but	had	there	been	a	mature
ecosystem	at	the	time,	those	coins	would	have	been	accepted	by	exchanges,	bridges	and	other	structures,	and	the	attackers	could	have
gotten	away	with	a	lot	of	money.	If	there	had	been	five	different	Bitcoin	clients,	it	would	have	been	very	unlikely	that	all	of	them	had	the
same	bug,	and	so	there	would	have	been	an	immediate	split,	and	the	side	of	the	split	that	was	buggy	would	have	probably	lost.

There	is	a	tradeoff	in	using	the	multi-client	approach	to	minimize	the	risk	of	catastrophic	bugs:	instead,	you	get	consensus	failure	bugs.
That	is,	if	you	have	two	clients,	there	is	a	risk	that	the	clients	have	subtly	different	interpretations	of	some	protocol	rule,	and	while	both
interpretations	are	reasonable	and	do	not	allow	stealing	money,	the	disagreement	would	cause	the	chain	to	split	in	half.	A	serious	split	of
that	type	happened	once	in	Ethereum's	history	(there	have	been	other	much	smaller	splits	where	very	small	portions	of	the	network
running	old	versions	of	the	code	forked	off).	Defenders	of	the	single-client	approach	point	to	consensus	failures	as	a	reason	to	not	have
multiple	implementations:	if	there	is	only	one	client,	that	one	client	will	not	disagree	with	itself.	Their	model	of	how	number	of	clients
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translates	into	risk	might	look	something	like	this:

I,	of	course,	disagree	with	this	analysis.	The	crux	of	my	disagreement	is	that	(i)	2010-style	catastrophic	bugs	matter	too,	and	(ii)	you
never	actually	have	only	one	client.	The	latter	point	is	made	most	obvious	by	the	Bitcoin	fork	of	2013:	a	chain	split	occurred	because
of	a	disagreement	between	two	different	versions	of	the	Bitcoin	client,	one	of	which	turned	out	to	have	an	accidental	and	undocumented
limit	on	the	number	of	objects	that	could	be	modified	in	a	single	block.	Hence,	one	client	in	theory	is	often	two	clients	in	practice,	and
five	clients	in	theory	might	be	six	or	seven	clients	in	practice	-	so	we	should	just	take	the	plunge	and	go	on	the	right	side	of	the	risk
curve,	and	have	at	least	a	few	different	clients.

Arguments	for	political	decentralization

Monopoly	client	developers	are	in	a	position	with	a	lot	of	political	power.	If	a	client	developer	proposes	a	change,	and	users	disagree,
theoretically	they	could	refuse	to	download	the	updated	version,	or	create	a	fork	without	it,	but	in	practice	it's	often	difficult	for	users	to
do	that.	What	if	a	disagreeable	protocol	change	is	bundled	with	a	necessary	security	update?	What	if	the	main	team	threatens	to	quit	if
they	don't	get	their	way?	Or,	more	tamely,	what	if	the	monopoly	client	team	ends	up	being	the	only	group	with	the	greatest	protocol
expertise,	leaving	the	rest	of	the	ecosystem	in	a	poor	position	to	judge	technical	arguments	that	the	client	team	puts	forward,	leaving	the
client	team	with	a	lot	of	room	to	push	their	own	particular	goals	and	values,	which	might	not	match	with	the	broader	community?

Concern	about	protocol	politics,	particularly	in	the	context	of	the	2013-14	Bitcoin	OP_RETURN	wars	where	some	participants	were
openly	in	favor	of	discriminating	against	particular	usages	of	the	chain,	was	a	significant	contributing	factor	in	Ethereum's	early
adoption	of	a	multi-client	philosophy,	which	was	aimed	to	make	it	harder	for	a	small	group	to	make	those	kinds	of	decisions.	Concerns
specific	to	the	Ethereum	ecosystem	-	namely,	avoiding	concentration	of	power	within	the	Ethereum	Foundation	itself	-	provided	further
support	for	this	direction.	In	2018,	a	decision	was	made	to	intentionally	have	the	Foundation	not	make	an	implementation	of	the
Ethereum	PoS	protocol	(ie.	what	is	now	called	a	"consensus	client"),	leaving	that	task	entirely	to	outside	teams.

How	will	ZK-EVMs	come	in	on	layer	1	in	the	future?
Today,	ZK-EVMs	are	used	in	rollups.	This	increases	scaling	by	allowing	expensive	EVM	execution	to	happen	only	a	few	times	off-chain,
with	everyone	else	simply	verifying	SNARKs	posted	on-chain	that	prove	that	the	EVM	execution	was	computed	correctly.	It	also	allows
some	data	(particularly	signatures)	to	not	be	included	on-chain,	saving	on	gas	costs.	This	gives	us	a	lot	of	scalability	benefits,	and	the
combination	of	scalable	computation	with	ZK-EVMs	and	scalable	data	with	data	availability	sampling	could	let	us	scale	very	far.

However,	the	Ethereum	network	today	also	has	a	different	problem,	one	that	no	amount	of	layer	2	scaling	can	solve	by	itself:	the	layer	1
is	difficult	to	verify,	to	the	point	where	not	many	users	run	their	own	node.	Instead,	most	users	simply	trust	third-party	providers.	Light
clients	such	as	Helios	and	Succinct	are	taking	steps	toward	solving	the	problem,	but	a	light	client	is	far	from	a	fully	verifying	node:	a
light	client	merely	verifies	the	signatures	of	a	random	subset	of	validators	called	the	sync	committee,	and	does	not	verify	that	the	chain
actually	follows	the	protocol	rules.	To	bring	us	to	a	world	where	users	can	actually	verify	that	the	chain	follows	the	rules,	we	would	have
to	do	something	different.

Option	1:	constrict	layer	1,	force	almost	all	activity	to	move	to	layer	2

We	could	over	time	reduce	the	layer	1	gas-per-block	target	down	from	15	million	to	1	million,	enough	for	a	block	to	contain	a	single
SNARK	and	a	few	deposit	and	withdraw	operations	but	not	much	else,	and	thereby	force	almost	all	user	activity	to	move	to	layer	2
protocols.	Such	a	design	could	still	support	many	rollups	committing	in	each	block:	we	could	use	off-chain	aggregation	protocols	run	by
customized	builders	to	gather	together	SNARKs	from	multiple	layer	2	protocols	and	combine	them	into	a	single	SNARK.	In	such	a
world,	the	only	function	of	layer	1	would	be	to	be	a	clearinghouse	for	layer	2	protocols,	verifying	their	proofs	and
occasionally	facilitating	large	funds	transfers	between	them.
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This	approach	could	work,	but	it	has	several	important	weaknesses:

It's	de-facto	backwards-incompatible,	in	the	sense	that	many	existing	L1-based	applications	become	economically	nonviable.
User	funds	up	to	hundreds	or	thousands	of	dollars	could	get	stuck	as	fees	become	so	high	that	they	exceed	the	cost	of	emptying
those	accounts.	This	could	be	addressed	by	letting	users	sign	messages	to	opt	in	to	an	in-protocol	mass	migration	to	an	L2	of	their
choice	(see	some	early	implementation	ideas	here),	but	this	adds	complexity	to	the	transition,	and	making	it	truly	cheap	enough
would	require	some	kind	of	SNARK	at	layer	1	anyway.	I'm	generally	a	fan	of	breaking	backwards	compatibility	when	it	comes	to
things	like	the	SELFDESTRUCT	opcode,	but	in	this	case	the	tradeoff	seems	much	less	favorable.
It	might	still	not	make	verification	cheap	enough.	Ideally,	the	Ethereum	protocol	should	be	easy	to	verify	not	just	on	laptops
but	also	inside	phones,	browser	extensions,	and	even	inside	other	chains.	Syncing	the	chain	for	the	first	time,	or	after	a	long	time
offline,	should	also	be	easy.	A	laptop	node	could	verify	1	million	gas	in	~20	ms,	but	even	that	implies	54	seconds	to	sync	after	one
day	offline	(assuming	single	slot	finality	increases	slot	times	to	32s),	and	for	phones	or	browser	extensions	it	would	take	a	few
hundred	milliseconds	per	block	and	might	still	be	a	non-negligible	battery	drain.	These	numbers	are	manageable,	but	they	are	not
ideal.
Even	in	an	L2-first	ecosystem,	there	are	benefits	to	L1	being	at	least	somewhat	affordable.	Validiums	can	benefit	from	a
stronger	security	model	if	users	can	withdraw	their	funds	if	they	notice	that	new	state	data	is	no	longer	being	made	available.
Arbitrage	becomes	more	efficient,	especially	for	smaller	tokens,	if	the	minimum	size	of	an	economically	viable	cross-L2	direct
transfer	is	smaller.

Hence,	it	seems	more	reasonable	to	try	to	find	a	way	to	use	ZK-SNARKs	to	verify	the	layer	1	itself.

Option	2:	SNARK-verify	the	layer	1

A	type	1	(fully	Ethereum-equivalent)	ZK-EVM	can	be	used	to	verify	the	EVM	execution	of	a	(layer	1)	Ethereum	block.	We	could	write
more	SNARK	code	to	also	verify	the	consensus	side	of	a	block.	This	would	be	a	challenging	engineering	problem:	today,	ZK-EVMs	take
minutes	to	hours	to	verify	Ethereum	blocks,	and	generating	proofs	in	real	time	would	require	one	or	more	of	(i)	improvements	to
Ethereum	itself	to	remove	SNARK-unfriendly	components,	(ii)	either	large	efficiency	gains	with	specialized	hardware,	and	(iii)
architectural	improvements	with	much	more	parallelization.	However,	there	is	no	fundamental	technological	reason	why	it	cannot	be
done	-	and	so	I	expect	that,	even	if	it	takes	many	years,	it	will	be	done.

Here	is	where	we	see	the	intersection	with	the	multi-client	paradigm:	if	we	use	ZK-EVMs	to	verify	layer	1,	which	ZK-EVM	do
we	use?

I	see	three	options:

1.	 Single	ZK-EVM:	abandon	the	multi-client	paradigm,	and	choose	a	single	ZK-EVM	that	we	use	to	verify	blocks.
2.	 Closed	multi	ZK-EVM:	agree	on	and	enshrine	in	consensus	a	specific	set	of	multiple	ZK-EVMs,	and	have	a	consensus-layer

protocol	rule	that	a	block	needs	proofs	from	more	than	half	of	the	ZK-EVMs	in	that	set	to	be	considered	valid.
3.	 Open	multi	ZK-EVM:	different	clients	have	different	ZK-EVM	implementations,	and	each	client	waits	for	a	proof	that	is	compatible

with	its	own	implementation	before	accepting	a	block	as	valid.

To	me,	(3)	seems	ideal,	at	least	until	and	unless	our	technology	improves	to	the	point	where	we	can	formally	prove	that	all	of	the	ZK-EVM
implementations	are	equivalent	to	each	other,	at	which	point	we	can	just	pick	whichever	one	is	most	efficient.	(1)	would	sacrifice	the
benefits	of	the	multi-client	paradigm,	and	(2)	would	close	off	the	possibility	of	developing	new	clients	and	lead	to	a	more	centralized
ecosystem.	(3)	has	challenges,	but	those	challenges	seem	smaller	than	the	challenges	of	the	other	two	options,	at	least	for	now.

Implementing	(3)	would	not	be	too	hard:	one	might	have	a	p2p	sub-network	for	each	type	of	proof,	and	a	client	that	uses	one	type	of
proof	would	listen	on	the	corresponding	sub-network	and	wait	until	they	receive	a	proof	that	their	verifier	recognizes	as	valid.

The	two	main	challenges	of	(3)	are	likely	the	following:

The	latency	challenge:	a	malicious	attacker	could	publish	a	block	late,	along	with	a	proof	valid	for	one	client.	It	would	realistically
take	a	long	time	(even	if	eg.	15	seconds)	to	generate	proofs	valid	for	other	clients.	This	time	would	be	long	enough	to	potentially
create	a	temporary	fork	and	disrupt	the	chain	for	a	few	slots.
Data	inefficiency:	one	benefit	of	ZK-SNARKs	is	that	data	that	is	only	relevant	to	verification	(sometimes	called	"witness	data")
could	be	removed	from	a	block.	For	example,	once	you've	verified	a	signature,	you	don't	need	to	keep	the	signature	in	a	block,	you
could	just	store	a	single	bit	saying	that	the	signature	is	valid,	along	with	a	single	proof	in	the	block	confirming	that	all	of	the	valid
signatures	exist.	However,	if	we	want	it	to	be	possible	to	generate	proofs	of	multiple	types	for	a	block,	the	original	signatures	would
need	to	actually	be	published.

The	latency	challenge	could	be	addressed	by	being	careful	when	designing	the	single-slot	finality	protocol.	Single-slot	finality	protocols
will	likely	require	more	than	two	rounds	of	consensus	per	slot,	and	so	one	could	require	the	first	round	to	include	the	block,	and	only
require	nodes	to	verify	proofs	before	signing	in	the	third	(or	final)	round.	This	ensures	that	a	significant	time	window	is	always	available
between	the	deadline	for	publishing	a	block	and	the	time	when	it's	expected	for	proofs	to	be	available.

The	data	efficiency	issue	would	have	to	be	addressed	by	having	a	separate	protocol	for	aggregating	verification-related	data.	For
signatures,	we	could	use	BLS	aggregation,	which	ERC-4337	already	supports.	Another	major	category	of	verification-related	data	is	ZK-
SNARKs	used	for	privacy.	Fortunately,	these	often	tend	to	have	their	own	aggregation	protocols.

It	is	also	worth	mentioning	that	SNARK-verifying	the	layer	1	has	an	important	benefit:	the	fact	that	on-chain	EVM	execution	no	longer
needs	to	be	verified	by	every	node	makes	it	possible	to	greatly	increase	the	amount	of	EVM	execution	taking	place.	This	could	happen
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either	by	greatly	increasing	the	layer	1	gas	limit,	or	by	introducing	enshrined	rollups,	or	both.

Conclusions
Making	an	open	multi-client	ZK-EVM	ecosystem	work	well	will	take	a	lot	of	work.	But	the	really	good	news	is	that	much	of	this	work	is
happening	or	will	happen	anyway:

We	have	multiple	strong	ZK-EVM	implementations	already.	These	implementations	are	not	yet	type	1	(fully	Ethereum-equivalent),
but	many	of	them	are	actively	moving	in	that	direction.
The	work	on	light	clients	such	as	Helios	and	Succinct	may	eventually	turn	into	a	more	full	SNARK-verification	of	the	PoS	consensus
side	of	the	Ethereum	chain.
Clients	will	likely	start	experimenting	with	ZK-EVMs	to	prove	Ethereum	block	execution	on	their	own,	especially	once	we	have
stateless	clients	and	there's	no	technical	need	to	directly	re-execute	every	block	to	maintain	the	state.	We	will	probably	get	a	slow
and	gradual	transition	from	clients	verifying	Ethereum	blocks	by	re-executing	them	to	most	clients	verifying	Ethereum	blocks	by
checking	SNARK	proofs.
The	ERC-4337	and	PBS	ecosystems	are	likely	to	start	working	with	aggregation	technologies	like	BLS	and	proof	aggregation	pretty
soon,	in	order	to	save	on	gas	costs.	On	BLS	aggregation,	work	has	already	started.

With	these	technologies	in	place,	the	future	looks	very	good.	Ethereum	blocks	would	be	smaller	than	today,	anyone	could	run	a	fully
verifying	node	on	their	laptop	or	even	their	phone	or	inside	a	browser	extension,	and	this	would	all	happen	while	preserving	the	benefits
of	Ethereum's	multi-client	philosophy.

In	the	longer-term	future,	of	course	anything	could	happen.	Perhaps	AI	will	super-charge	formal	verification	to	the	point	where	it	can
easily	prove	ZK-EVM	implementations	equivalent	and	identify	all	the	bugs	that	cause	differences	between	them.	Such	a	project	may	even
be	something	that	could	be	practical	to	start	working	on	now.	If	such	a	formal	verification-based	approach	succeeds,	different
mechanisms	would	need	to	be	put	in	place	to	ensure	continued	political	decentralization	of	the	protocol;	perhaps	at	that	point,	the
protocol	would	be	considered	"complete"	and	immutability	norms	would	be	stronger.	But	even	if	that	is	the	longer-term	future,	the	open
multi-client	ZK-EVM	world	seems	like	a	natural	stepping	stone	that	is	likely	to	happen	anyway.

In	the	nearer	term,	this	is	still	a	long	journey.	ZK-EVMs	are	here,	but	ZK-EVMs	becoming	truly	viable	at	layer	1	would	require	them	to
become	type	1,	and	make	proving	fast	enough	that	it	can	happen	in	real	time.	With	enough	parallelization,	this	is	doable,	but	it	will	still
be	a	lot	of	work	to	get	there.	Consensus	changes	like	raising	the	gas	cost	of	KECCAK,	SHA256	and	other	hash	function	precompiles	will
also	be	an	important	part	of	the	picture.	That	said,	the	first	steps	of	the	transition	may	happen	sooner	than	we	expect:	once	we	switch	to
Verkle	trees	and	stateless	clients,	clients	could	start	gradually	using	ZK-EVMs,	and	a	transition	to	an	"open	multi-ZK-EVM"	world	could
start	happening	all	on	its	own.
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Some	personal	user	experiences

In	2013,	I	went	to	a	sushi	restaurant	beside	the	Internet	Archive	in	San	Francisco,	because	I	had	heard	that	it	accepted	bitcoin	for	payments	and	I	wanted	to
try	it	out.	When	it	came	time	to	pay	the	bill,	I	asked	to	pay	in	BTC.	I	scanned	the	QR	code,	and	clicked	"send".	To	my	surprise,	the	transaction	did	not	go
through;	it	appeared	to	have	been	sent,	but	the	restaurant	was	not	receiving	it.	I	tried	again,	still	no	luck.	I	soon	figured	out	that	the	problem	was	that	my
mobile	internet	was	not	working	well	at	the	time.	I	had	to	walk	over	50	meters	toward	the	Internet	Archive	nearby	to	access	its	wifi,	which	finally	allowed	me
to	send	the	transaction.

Lesson	learned:	internet	is	not	100%	reliable,	and	customer	internet	is	less	reliable	than	merchant	internet.	We	need	in-person	payment	systems	to	have
some	functionality	(NFC,	customer	shows	a	QR	code,	whatever)	to	allow	customers	to	transfer	their	transaction	data	directly	to	the	merchant	if	that's	the	best
way	to	get	it	broadcasted.

In	2021,	I	attempted	to	pay	for	tea	for	myself	and	my	friends	at	a	coffee	shop	in	Argentina.	In	their	defense,	they	did	not	intentionally	accept	cryptocurrency:
the	owner	simply	recognized	me,	and	showed	me	that	he	had	an	account	at	a	cryptocurrency	exchange,	so	I	suggested	to	pay	in	ETH	(using	cryptocurrency
exchange	accounts	as	wallets	is	a	standard	way	to	do	in-person	payments	in	Latin	America).	Unfortunately,	my	first	transaction	of	0.003	ETH	did	not	get
accepted,	probably	because	it	was	under	the	exchange's	0.01	ETH	deposit	minimum.	I	sent	another	0.007	ETH.	Soon,	both	got	confirmed.	(I	did	not	mind	the
3x	overpayment	and	treated	it	as	a	tip).

In	2022,	I	attempted	to	pay	for	tea	at	a	different	location.	The	first	transaction	failed,	because	the	default	transaction	from	my	mobile	wallet	sent	with	only
21000	gas,	and	the	receiving	account	was	a	contract	that	required	extra	gas	to	process	the	transfer.	Attempts	to	send	a	second	transaction	failed,	because	a
UI	glitch	in	my	phone	wallet	made	it	not	possible	to	scroll	down	and	edit	the	field	that	contained	the	gas	limit.

Lesson	learned:	simple-and-robust	UIs	are	better	than	fancy-and-sleek	ones.	But	also,	most	users	don't	even	know	what	gas	limits	are,	so	we	really	just	need
to	have	better	defaults.

Many	times,	there	has	been	a	surprisingly	long	time	delay	between	my	transaction	getting	accepted	on-chain,	and	the	service	acknowledging	the
transaction,	even	as	"unconfirmed".	Some	of	those	times,	I	definitely	got	worried	that	there	was	some	glitch	with	the	payment	system	on	their	side.

Many	times,	there	has	been	a	surprisingly	long	and	unpredictable	time	delay	between	sending	a	transaction,	and	that	transaction	getting	accepted	in	a
block.	Sometimes,	a	transaction	would	get	accepted	in	a	few	seconds,	but	other	times,	it	would	take	minutes	or	even	hours.	Recently,	EIP-1559	significantly
improved	this,	ensuring	that	most	transactions	get	accepted	into	the	next	block,	and	even	more	recently	the	Merge	improved	things	further	by	stabilizing
block	times.

Diagram	from	this	report	by	Yinhong	(William)	Zhao	and	Kartik	Nayak.

However,	outliers	still	remain.	If	you	send	a	transaction	at	the	same	time	as	when	many	others	are	sending	transactions	and	the	base	fee	is	spiking	up,	you
risk	the	base	fee	going	too	high	and	your	transaction	not	getting	accepted.	Even	worse,	wallet	UIs	suck	at	showing	this.	There	are	no	big	red	flashing	alerts,
and	very	little	clear	indication	of	what	you're	supposed	to	do	to	solve	this	problem.	Even	to	an	expert,	who	knows	that	in	this	case	you're	supposed	to	"speed
up"	the	transaction	by	publishing	a	new	transaction	with	identical	data	but	a	higher	max-basefee,	it's	often	not	clear	where	the	button	to	do	that	actually	is.

Lesson	learned:	UX	around	transaction	inclusion	needs	to	be	improved,	though	there	are	fairly	simple	fixes.	Credit	to	the	Brave	wallet	team	for	taking	my
suggestions	on	this	topic	seriously,	and	first	increasing	the	max-basefee	tolerance	from	12.5%	to	33%,	and	more	recently	exploring	ways	to	make	stuck
transactions	more	obvious	in	the	UI.

In	2019,	I	was	testing	out	one	of	the	earliest	wallets	that	was	attempting	to	provide	social	recovery.	Unlike	my	preferred	approach,	which	is	smart-contract-
based,	their	approach	was	to	use	Shamir's	secret	sharing	to	split	up	the	private	key	to	the	account	into	five	pieces,	in	such	a	way	that	any	three	of	those
pieces	could	be	used	to	recover	the	private	key.	Users	were	expected	to	choose	five	friends	("guardians"	in	modern	lingo),	convince	them	to	download	a
separate	mobile	application,	and	provide	a	confirmation	code	that	would	be	used	to	create	an	encrypted	connection	from	the	user's	wallet	to	the	friend's
application	through	Firebase	and	send	them	their	share	of	the	key.

This	approach	quickly	ran	into	problems	for	me.	A	few	months	later,	something	happened	to	my	wallet	and	I	needed	to	actually	use	the	recovery
procedure	to	recover	it.	I	asked	my	friends	to	perform	the	recovery	procedure	with	me	through	their	apps	-	but	it	did	not	go	as	planned.	Two	of	them	lost
their	key	shards,	because	they	switched	phones	and	forgot	to	move	the	recovery	application	over.	For	a	third,	the	Firebase	connection	mechanism	did	not
work	for	a	long	time.	Eventually,	we	figured	out	how	to	fix	the	issue,	and	recover	the	key.	A	few	months	after	that,	however,	the	wallet	broke	again.	This	time,
a	regular	software	update	somehow	accidentally	reset	the	app's	storage	and	deleted	its	key.	But	I	had	not	added	enough	recovery	partners,	because	the
Firebase	connection	mechanism	was	too	broken	and	was	not	letting	me	successfully	do	that.	I	ended	up	losing	a	small	amount	of	BTC	and	ETH.

Lesson	learned:	secret-sharing-based	off-chain	social	recovery	is	just	really	fragile	and	a	bad	idea	unless	there	are	no	other	options.	Your	recovery	guardians
should	not	have	to	download	a	separate	application,	because	if	you	have	an	application	only	for	an	exceptional	situation	like	recovery,	it's	too	easy	to	forget
about	it	and	lose	it.	Additionally,	requiring	separate	centralized	communication	channels	comes	with	all	kinds	of	problems.	Instead,	the	way	to	add	guardians
should	be	to	provide	their	ETH	address,	and	recovery	should	be	done	by	smart	contract,	using	ERC-4337	account	abstraction	wallets.	This	way,	the	guardians
would	only	need	to	not	lose	their	Ethereum	wallets,	which	is	something	that	they	already	care	much	more	about	not	losing	for	other	reasons.

In	2021,	I	was	attempting	to	save	on	fees	when	using	Tornado	Cash,	by	using	the	"self-relay"	option.	Tornado	Cash	uses	a	"relay"	mechanism	where	a	third
party	pushes	the	transaction	on-chain,	because	when	you	are	withdrawing	you	generally	do	not	yet	have	coins	in	your	withdrawal	address,	and	you	don't	want
to	pay	for	the	transaction	with	your	deposit	address	because	that	creates	a	public	link	between	the	two	addresses,	which	is	the	whole	problem	that	Tornado
Cash	is	trying	to	prevent.	The	problem	is	that	the	relay	mechanism	is	often	expensive,	with	relays	charging	a	percentage	fee	that	could	go	far	above	the
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actual	gas	fee	of	the	transaction.

To	save	costs,	one	time	I	used	the	relay	for	a	first	small	withdrawal	that	would	charge	lower	fees,	and	then	used	the	"self-relay"	feature	in	Tornado	Cash	to
send	a	second	larger	withdrawal	myself	without	using	relays.	The	problem	is,	I	screwed	up	and	accidentally	did	this	while	logged	in	to	my	deposit	address,	so
the	deposit	address	paid	the	fee	instead	of	the	withdrawal	address.	Oops,	I	created	a	public	link	between	the	two.

Lesson	learned:	wallet	developers	should	start	thinking	much	more	explicitly	about	privacy.	Also,	we	need	better	forms	of	account	abstraction	to	remove	the
need	for	centralized	or	even	federated	relays,	and	commoditize	the	relaying	role.

Miscellaneous	stuff

Many	apps	still	do	not	work	with	the	Brave	wallet	or	the	Status	browser;	this	is	likely	because	they	didn't	do	their	homework	properly	and	rely	on
Metamask-specific	APIs.	Even	Gnosis	Safe	did	not	work	with	these	wallets	for	a	long	time,	leading	me	to	have	to	write	my	own	mini	Javascript	dapp	to
make	confirmations.	Fortunately,	the	latest	UI	has	fixed	this	issue.
The	ERC20	transfers	pages	on	Etherscan	(eg.	https://etherscan.io/address/0xd8da6bf26964af9d7eed9e03e53415d37aa96045#tokentxns)	are	very	easy
to	spam	with	fakes.	Anyone	can	create	a	new	ERC20	token	with	logic	that	can	issue	a	log	that	claims	that	I	or	any	other	specific	person	sent	someone
else	tokens.	This	is	sometimes	used	to	trick	people	into	thinking	that	I	support	some	scam	token	when	I	actually	have	never	even	heard	of	it.
Uniswap	used	to	offer	the	functionality	of	being	able	to	swap	tokens	and	have	the	output	sent	to	a	different	address.	This	was	really	convenient	for	when
I	have	to	pay	someone	in	USDC	but	I	don't	have	any	already	on	me.	Now,	the	interface	doesn't	offer	that	function,	and	so	I	have	to	convert	and	then	send
in	a	separate	transaction,	which	is	less	convenient	and	wastes	more	gas.	I	have	since	learned	that	Cowswap	and	Paraswap	offer	the	functionality,	though
Paraswap...	currently	does	not	seem	to	work	with	the	Brave	wallet.
Sign	in	with	Ethereum	is	great,	but	it's	still	difficult	to	use	if	you	are	trying	to	sign	in	on	multiple	devices,	and	your	Ethereum	wallet	is	only	available	on
one	device.

Conclusions

Good	user	experience	is	not	about	the	average	case,	it	is	about	the	worst	case.	A	UI	that	is	clean	and	sleek,	but	does	some	weird	and	unexplainable	thing
0.723%	of	the	time	that	causes	big	problems,	is	worse	than	a	UI	that	exposes	more	gritty	details	to	the	user	but	at	least	makes	it	easier	to	understand	what's
going	on	and	fix	any	problem	that	does	arise.

Along	with	the	all-important	issue	of	high	transaction	fees	due	to	scaling	not	yet	being	fully	solved,	user	experience	is	a	key	reason	why	many	Ethereum
users,	especially	in	the	Global	South,	often	opt	for	centralized	solutions	instead	of	on-chain	decentralized	alternatives	that	keep	power	in	the	hands	of	the
user	and	their	friends	and	family	or	local	community.	User	experience	has	made	great	strides	over	the	years	-	in	particular,	going	from	an	average	transaction
taking	minutes	to	get	included	before	EIP-1559	to	an	average	transaction	taking	seconds	to	get	included	after	EIP-1559	and	the	merge,	has	been	a	night-and-
day	change	to	how	pleasant	it	is	to	use	Ethereum.	But	more	still	needs	to	be	done.

https://etherscan.io/address/0xd8da6bf26964af9d7eed9e03e53415d37aa96045#tokentxns
https://login.xyz/


2023	Jan	20 See	all	posts

An	incomplete	guide	to	stealth	addresses

Special	thanks	to	Ben	DiFrancesco,	Matt	Solomon,	Toni	Wahrstätter	and	Antonio	Sanso	for	feedback
and	review

One	of	the	largest	remaining	challenges	in	the	Ethereum	ecosystem	is	privacy.	By	default,	anything
that	goes	onto	a	public	blockchain	is	public.	Increasingly,	this	means	not	just	money	and	financial
transactions,	but	also	ENS	names,	POAPs,	NFTs,	soulbound	tokens,	and	much	more.	In	practice,
using	the	entire	suite	of	Ethereum	applications	involves	making	a	significant	portion	of	your	life
public	for	anyone	to	see	and	analyze.

Improving	this	state	of	affairs	is	an	important	problem,	and	this	is	widely	recognized.	So	far,
however,	discussions	on	improving	privacy	have	largely	centered	around	one	specific	use	case:
privacy-preserving	transfers	(and	usually	self-transfers)	of	ETH	and	mainstream	ERC20	tokens.	This
post	will	describe	the	mechanics	and	use	cases	of	a	different	category	of	tool	that	could	improve	the
state	of	privacy	on	Ethereum	in	a	number	of	other	contexts:	stealth	addresses.

What	is	a	stealth	address	system?
Suppose	that	Alice	wants	to	send	Bob	an	asset.	This	could	be	some	quantity	of	cryptocurrency	(eg.	1
ETH,	500	RAI),	or	it	could	be	an	NFT.	When	Bob	receives	the	asset,	he	does	not	want	the	entire
world	to	know	that	it	was	he	who	got	it.	Hiding	the	fact	that	a	transfer	happened	is	impossible,
especially	if	it's	an	NFT	of	which	there	is	only	one	copy	on-chain,	but	hiding	who	is	the	recipient	may
be	much	more	viable.	Alice	and	Bob	are	also	lazy:	they	want	a	system	where	the	payment	workflow	is
exactly	the	same	as	it	is	today.	Bob	sends	Alice	(or	registers	on	ENS)	some	kind	of	"address"
encoding	how	someone	can	pay	him,	and	that	information	alone	is	enough	for	Alice	(or	anyone	else)
to	send	him	the	asset.

Note	that	this	is	a	different	kind	of	privacy	than	what	is	provided	by	eg.	Tornado	Cash.	Tornado	Cash
can	hide	transfers	of	mainstream	fungible	assets	such	as	ETH	or	major	ERC20s	(though	it's	most
easily	useful	for	privately	sending	to	yourself),	but	it's	very	weak	at	adding	privacy	to	transfers	of
obscure	ERC20s,	and	it	cannot	add	privacy	to	NFT	transfers	at	all.

The	ordinary	workflow	of	making	a	payment	with	cryptocurrency.	We	want	to	add	privacy	(no	one	can	tell	that	it
was	Bob	who	received	the	asset),	but	keep	the	workflow	the	same.

Stealth	addresses	provide	such	a	scheme.	A	stealth	address	is	an	address	that	can	be	generated	by
either	Alice	or	Bob,	but	which	can	only	be	controlled	by	Bob.	Bob	generates	and	keeps	secret	a
spending	key,	and	uses	this	key	to	generate	a	stealth	meta-address.	He	passes	this	meta-address
to	Alice	(or	registers	it	on	ENS).	Alice	can	perform	a	computation	on	this	meta-address	to	generate	a

file:///home/runner/index.html
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stealth	address	belonging	to	Bob.	She	can	then	send	any	assets	she	wants	to	send	to	this	address,
and	Bob	will	have	full	control	over	them.	Along	with	the	transfer,	she	publishes	some	extra
cryptographic	data	(an	ephemeral	pubkey)	on-chain	that	helps	Bob	discover	that	this	address
belongs	to	him.

Another	way	to	look	at	it	is:	stealth	addresses	give	the	same	privacy	properties	as	Bob	generating	a
fresh	address	for	each	transaction,	but	without	requiring	any	interaction	from	Bob.

The	full	workflow	of	a	stealth	address	scheme	can	be	viewed	as	follows:

1.	 Bob	generates	his	root	spending	key	(m)	and	stealth	meta-address	(M).
2.	 Bob	adds	an	ENS	record	to	register	M	as	the	stealth	meta-address	for	bob.eth.
3.	 We	assume	Alice	knows	that	Bob	is	bob.eth.	Alice	looks	up	his	stealth	meta-address	M	on	ENS.
4.	 Alice	generates	an	ephemeral	key	that	only	she	knows,	and	that	she	only	uses	once	(to

generate	this	specific	stealth	address).
5.	 Alice	uses	an	algorithm	that	combines	her	ephemeral	key	and	Bob's	meta-address	to	generate	a

stealth	address.	She	can	now	send	assets	to	this	address.
6.	 Alice	also	generates	her	ephemeral	public	key,	and	publishes	it	to	the	ephemeral	public

key	registry	(this	can	be	done	in	the	same	transaction	as	the	first	transaction	sending	assets	to
this	stealth	address).

7.	 For	Bob	to	discover	stealth	addresses	belonging	to	him,	Bob	needs	to	scan	the	ephemeral
public	key	registry	for	the	entire	list	of	ephemeral	public	keys	published	by	anyone	for
any	reason	since	the	last	time	he	did	the	scan.

8.	 For	each	ephemeral	public	key,	Bob	attempts	to	combine	it	with	his	root	spending	key	to
generate	a	stealth	address,	and	checks	if	there	are	any	assets	in	that	address.	If	there	are,	Bob



computes	the	spending	key	for	that	address	and	remembers	it.

This	all	relies	on	two	uses	of	cryptographic	trickery.	First,	we	need	a	pair	of	algorithms	to	generate	a
shared	secret:	one	algorithm	which	uses	Alice's	secret	thing	(her	ephemeral	key)	and	Bob's	public
thing	(his	meta-address),	and	another	algorithm	which	uses	Bob's	secret	thing	(his	root	spending
key)	and	Alice's	public	thing	(her	ephemeral	public	key).	This	can	be	done	in	many	ways;	Diffie-
Hellman	key	exchange	was	one	of	the	results	that	founded	the	field	of	modern	cryptography,	and	it
accomplishes	exactly	this.

But	a	shared	secret	by	itself	is	not	enough:	if	we	just	generate	a	private	key	from	the	shared	secret,
then	Alice	and	Bob	could	both	spend	from	this	address.	We	could	leave	it	at	that,	leaving	it	up	to	Bob
to	move	the	funds	to	a	new	address,	but	this	is	inefficient	and	needlessly	reduces	security.	So	we	also
add	a	key	blinding	mechanism:	a	pair	of	algorithms	where	Bob	can	combine	the	shared	secret	with
his	root	spending	key,	and	Alice	can	combine	the	shared	secret	with	Bob's	meta-address,	in	such	a
way	that	Alice	can	generate	the	stealth	address,	and	Bob	can	generate	the	spending	key	for	that
stealth	address,	all	without	creating	a	public	link	between	the	stealth	address	and	Bob's	meta-
address	(or	between	one	stealth	address	and	another).

Stealth	addresses	with	elliptic	curve	cryptography
Stealth	addresses	using	elliptic	curve	cryptography	were	originally	introduced	in	the	context	of
Bitcoin	by	Peter	Todd	in	2014.	This	technique	works	as	follows	(this	assumes	prior	knowledge	of
basic	elliptic	curve	cryptography;	see	here,	here	and	here	for	some	tutorials):

Bob	generates	a	key	m,	and	computes	M	=	G	*	m,	where	G	is	a	commonly-agreed	generator	point
for	the	elliptic	curve.	The	stealth	meta-address	is	an	encoding	of	M.
Alice	generates	an	ephemeral	key	r,	and	publishes	the	ephemeral	public	key	R	=	G	*	r.
Alice	can	compute	a	shared	secret	S	=	M	*	r,	and	Bob	can	compute	the	same	shared	secret	S	=	m
*	R.
In	general,	in	both	Bitcoin	and	Ethereum	(including	correctly-designed	ERC-4337	accounts),	an
address	is	a	hash	containing	the	public	key	used	to	verify	transactions	from	that	address.	So	you
can	compute	the	address	if	you	compute	the	public	key.	To	compute	the	public	key,	Alice	or	Bob
can	compute	P	=	M	+	G	*	hash(S)
To	compute	the	private	key	for	that	address,	Bob	(and	Bob	alone)	can	compute	p	=	m	+	hash(S)

This	satisfies	all	of	our	requirements	above,	and	is	remarkably	simple!

There	is	even	an	EIP	trying	to	define	a	stealth	address	standard	for	Ethereum	today,	that	both
supports	this	approach	and	gives	space	for	users	to	develop	other	approaches	(eg.	that	support	Bob
having	separate	spending	and	viewing	keys,	or	that	use	different	cryptography	for	quantum-resistant
security).	Now	you	might	think:	stealth	addresses	are	not	too	difficult,	the	theory	is	already	solid,	and
getting	them	adopted	is	just	an	implementation	detail.	The	problem	is,	however,	that	there	are	some
pretty	big	implementation	details	that	a	truly	effective	implementation	would	need	to	get	through.

Stealth	addresses	and	paying	transaction	fees
Suppose	that	someone	sends	you	an	NFT.	Mindful	of	your	privacy,	they	send	it	to	a	stealth	address
that	you	control.	After	scanning	the	ephem	pubkeys	on-chain,	your	wallet	automatically	discovers
this	address.	You	can	now	freely	prove	ownership	of	the	NFT	or	transfer	it	to	someone	else.	But
there's	a	problem!	That	account	has	0	ETH	in	it,	and	so	there	is	no	way	to	pay	transaction	fees.	Even
ERC-4337	token	paymasters	won't	work,	because	those	only	work	for	fungible	ERC20	tokens.	And
you	can't	send	ETH	into	it	from	your	main	wallet,	because	then	you're	creating	a	publicly	visible	link.

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/004020.html
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https://eips.ethereum.org/EIPS/eip-4337
https://eips.ethereum.org/EIPS/eip-5564
https://eips.ethereum.org/EIPS/eip-4337


Inserting	memes	of	2017-era	(or	older)	crypto	scams	is	an	important	technique	that	writers	can	use	to	signal
erudition	and	respectableness,	because	it	shows	that	they	have	been	around	for	a	long	time	and	have	refined	tastes,

and	are	not	easily	swayed	by	current-thing	scam	figures	like	SBF.

There	is	one	"easy"	way	to	solve	the	problem:	just	use	ZK-SNARKs	to	transfer	funds	to	pay	for	the
fees!	But	this	costs	a	lot	of	gas,	an	extra	hundreds	of	thousands	of	gas	just	for	a	single	transfer.

Another	clever	approach	involves	trusting	specialized	transaction	aggregators	("searchers"	in	MEV
lingo).	These	aggregators	would	allow	users	to	pay	once	to	purchase	a	set	of	"tickets"	that	can	be
used	to	pay	for	transactions	on-chain.	When	a	user	needs	to	spend	an	NFT	in	a	stealth	address	that
contains	nothing	else,	they	provide	the	aggregator	with	one	of	the	tickets,	encoded	using	a	Chaumian
blinding	scheme.	This	is	the	original	protocol	that	was	used	in	centralized	privacy-preserving	e-cash
schemes	that	were	proposed	in	the	1980s	and	1990s.	The	searcher	accepts	the	ticket,	and	repeatedly
includes	the	transaction	in	their	bundle	for	free	until	the	transaction	is	successfully	accepted	in	a
block.	Because	the	quantity	of	funds	involved	is	low,	and	it	can	only	be	used	to	pay	for	transaction
fees,	trust	and	regulatory	issues	are	much	lower	than	a	"full"	implementation	of	this	kind	of
centralized	privacy-preserving	e-cash.

Stealth	addresses	and	separating	spending	and	viewing	keys
Suppose	that	instead	of	Bob	just	having	a	single	master	"root	spending	key"	that	can	do	everything,
Bob	wants	to	have	a	separate	root	spending	key	and	viewing	key.	The	viewing	key	can	see	all	of
Bob's	stealth	addresses,	but	cannot	spend	from	them.

In	the	elliptic	curve	world,	this	can	be	solved	using	a	very	simple	cryptographic	trick:

Bob's	meta-address	M	is	now	of	the	form	(K,	V),	encoding	G	*	k	and	G	*	v,	where	k	is	the
spending	key	and	v	is	the	viewing	key.
The	shared	secret	is	now	S	=	V	*	r	=	v	*	R,	where	r	is	still	Alice's	ephemeral	key	and	R	is	still
the	ephemeral	public	key	that	Alice	publishes.
The	stealth	address's	public	key	is	P	=	K	+	G	*	hash(S)	and	the	private	key	is	p	=	k	+	hash(S).

Notice	that	the	first	clever	cryptographic	step	(generating	the	shared	secret)	uses	the	viewing	key,
and	the	second	clever	cryptographic	step	(Alice	and	Bob's	parallel	algorithms	to	generate	the	stealth
address	and	its	private	key)	uses	the	root	spending	key.

This	has	many	use	cases.	For	example,	if	Bob	wants	to	receive	POAPs,	then	Bob	could	give	his	POAP
wallet	(or	even	a	not-very-secure	web	interface)	his	viewing	key	to	scan	the	chain	and	see	all	of	his
POAPs,	without	giving	this	interface	the	power	to	spend	those	POAPs.

https://en.wikipedia.org/wiki/Blind_signature


Stealth	addresses	and	easier	scanning
To	make	it	easier	to	scan	the	total	set	of	ephemeral	public	keys,	one	technique	is	to	add	a	view	tag
to	each	ephemeral	public	key.	One	way	to	do	this	in	the	above	mechanism	is	to	make	the	view	tag	be
one	byte	of	the	shared	secret	(eg.	the	x-coordinate	of	S	modulo	256,	or	the	first	byte	of	hash(S)).

This	way,	Bob	only	needs	to	do	a	single	elliptic	curve	multiplication	for	each	ephemeral	public	key	to
compute	the	shared	secret,	and	only	1/256	of	the	time	would	Bob	need	to	do	more	complex
calculation	to	generate	and	check	the	full	address.

Stealth	addresses	and	quantum-resistant	security
The	above	scheme	depends	on	elliptic	curves,	which	are	great	but	are	unfortunately	vulnerable	to
quantum	computers.	If	quantum	computers	become	an	issue,	we	would	need	to	switch	to	quantum-
resistant	algorithms.	There	are	two	natural	candidates	for	this:	elliptic	curve	isogenies	and	lattices.

Elliptic	curve	isogenies	are	a	very	different	mathematical	construction	based	on	elliptic	curves,	that
has	the	linearity	properties	that	let	us	do	similar	cryptographic	tricks	to	what	we	did	above,	but
cleverly	avoids	constructing	cyclic	groups	that	might	be	vulnerable	to	discrete	logarithm	attacks	with
quantum	computers.

The	main	weakness	of	isogeny-based	cryptography	is	its	highly	complicated	underlying	mathematics,
and	the	risk	that	possible	attacks	are	hidden	under	this	complexity.	Some	isogeny-based	protocols
were	broken	last	year,	though	others	remain	safe.	The	main	strength	of	isogenies	is	the	relatively
small	key	sizes,	and	the	ability	to	port	over	many	kinds	of	elliptic	curve-based	approaches	directly.

A	3-isogeny	in	CSIDH,	source	here.

Lattices	are	a	very	different	cryptographic	construction	that	relies	on	far	simpler	mathematics	than
elliptic	curve	isogenies,	and	is	capable	of	some	very	powerful	things	(eg.	fully	homomorphic
encryption).	Stealth	address	schemes	could	be	built	on	lattices,	though	designing	the	best	one	is	an
open	problem.	However,	lattice-based	constructions	tend	to	have	much	larger	key	sizes.
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Fully	homomorphic	encryption,	an	application	of	lattices.	FHE	could	also	be	used	to	help	stealth	address	protocols
in	a	different	way:	to	help	Bob	outsource	the	computation	of	checking	the	entire	chain	for	stealth	addresses

containing	assets	without	revealing	his	view	key.

A	third	approach	is	to	construct	a	stealth	address	scheme	from	generic	black-box	primitives:	basic
ingredients	that	lots	of	people	need	for	other	reasons.	The	shared	secret	generation	part	of	the
scheme	maps	directly	to	key	exchange,	a,	errr...	important	component	in	public	key	encryption
systems.	The	harder	part	is	the	parallel	algorithms	that	let	Alice	generate	only	the	stealth	address
(and	not	the	spending	key)	and	let	Bob	generate	the	spending	key.

Unfortunately,	you	cannot	build	stealth	addresses	out	of	ingredients	that	are	simpler	than	what	is
required	to	build	a	public-key	encryption	system.	There	is	a	simple	proof	of	this:	you	can	build	a
public-key	encryption	system	out	of	a	stealth	address	scheme.	If	Alice	wants	to	encrypt	a	message	to
Bob,	she	can	send	N	transactions,	each	transaction	going	to	either	a	stealth	address	belonging	to
Bob	or	to	a	stealth	address	belonging	to	herself,	and	Bob	can	see	which	transactions	he	received	to
read	the	message.	This	is	important	because	there	are	mathematical	proofs	that	you	can't	do	public
key	encryption	with	just	hashes,	whereas	you	can	do	zero-knowledge	proofs	with	just	hashes	-	hence,
stealth	addresses	cannot	be	done	with	just	hashes.

Here	is	one	approach	that	does	use	relatively	simple	ingredients:	zero	knowledge	proofs,	which	can
be	made	out	of	hashes,	and	(key-hiding)	public	key	encryption.	Bob's	meta-address	is	a	public
encryption	key	plus	a	hash	h	=	hash(x),	and	his	spending	key	is	the	corresponding	decryption	key
plus	x.	To	create	a	stealth	address,	Alice	generates	a	value	c,	and	publishes	as	her	ephemeral	pubkey
an	encryption	of	c	readable	by	Bob.	The	address	itself	is	an	ERC-4337	account	whose	code	verifies
transactions	by	requiring	them	to	come	with	a	zero-knowledge	proof	proving	ownership	of	values	x
and	c	such	that	k	=	hash(hash(x),	c)	(where	k	is	part	of	the	account's	code).	Knowing	x	and	c,	Bob
can	reconstruct	the	address	and	its	code	himself.

https://en.wikipedia.org/wiki/Key_exchange
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The	encryption	of	c	tells	no	one	other	than	Bob	anything,	and	k	is	a	hash,	so	it	reveals	almost	nothing
about	c.	The	wallet	code	itself	only	contains	k,	and	c	being	private	means	that	k	cannot	be	traced
back	to	h.

However,	this	requires	a	STARK,	and	STARKs	are	big.	Ultimately,	I	think	it	is	likely	that	a	post-
quantum	Ethereum	world	will	involve	many	applications	using	many	starks,	and	so	I	would	advocate
for	an	aggregation	protocol	like	that	described	here	to	combine	all	of	these	STARKs	into	a	single
recursive	STARK	to	save	space.

Stealth	addresses	and	social	recovery	and	multi-L2	wallets
I	have	for	a	long	time	been	a	fan	of	social	recovery	wallets:	wallets	that	have	a	multisig	mechanism
with	keys	shared	between	some	combination	of	institutions,	your	other	devices	and	your	friends,
where	some	supermajority	of	those	keys	can	recover	access	to	your	account	if	you	lose	your	primary
key.

However,	social	recovery	wallets	do	not	mix	nicely	with	stealth	addresses:	if	you	have	to	recover	your
account	(meaning,	change	which	private	key	controls	it),	you	would	also	have	to	perform	some	step
to	change	the	account	verification	logic	of	your	N	stealth	wallets,	and	this	would	require	N
transactions,	at	a	high	cost	to	fees,	convenience	and	privacy.

A	similar	concern	exists	with	the	interaction	of	social	recovery	and	a	world	of	multiple	layer-2
protocols:	if	you	have	an	account	on	Optimism,	and	on	Arbitrum,	and	on	Starknet,	and	on	Scroll,	and
on	Polygon,	and	possibly	some	of	these	rollups	have	a	dozen	parallel	instances	for	scaling	reasons
and	you	have	an	account	on	each	of	those,	then	changing	keys	may	be	a	really	complex	operation.

https://vitalik.ca/general/2022/09/17/layer_3.html#rollups-and-validiums-have-a-confirmation-time-vs-fixed-cost-tradeoff.-layer-3s-can-help-fix-this.-but-what-else-can
https://vitalik.ca/general/2021/01/11/recovery.html


Changing	the	keys	to	many	accounts	across	many	chains	is	a	huge	effort.

One	approach	is	to	bite	the	bullet	and	accept	that	recoveries	are	rare	and	it's	okay	for	them	to	be
costly	and	painful.	Perhaps	you	might	have	some	automated	software	transfer	the	assets	out	into	new
stealth	addresses	at	random	intervals	over	a	two-week	time	span	to	reduce	the	effectiveness	of	time-
based	linking.	But	this	is	far	from	perfect.	Another	approach	is	to	secret-share	the	root	key	between
the	guardians	instead	of	using	smart	contract	recovery.	However,	this	removes	the	ability	to	de-
activate	a	guardian's	power	to	help	recover	your	account,	and	so	is	long-run	risky.

A	more	sophisticated	approach	involves	zero-knowledge	proofs.	Consider	the	ZKP-based	scheme
above,	but	modifying	the	logic	as	follows.	Instead	of	the	account	holding	k	=	hash(hash(x),	c)
directly,	the	account	would	hold	a	(hiding)	commitment	to	the	location	of	k	on	the	chain.	Spending
from	that	account	would	then	require	providing	a	zero-knowledge	proof	that	(i)	you	know	the	location
on	the	chain	that	matches	that	commitment,	and	(ii)	the	object	in	that	location	contains	some	value	k
(which	you're	not	revealing),	and	that	you	have	some	values	x	and	c	that	satisfy	k	=	hash(hash(x),	c).

This	allows	many	accounts,	even	across	many	layer-2	protocols,	to	be	controlled	by	a	single	k	value
somewhere	(on	the	base	chain	or	on	some	layer-2),	where	changing	that	one	value	is	enough	to
change	the	ownership	of	all	your	accounts,	all	without	revealing	the	link	between	your	accounts	and
each	other.

Conclusions
Basic	stealth	addresses	can	be	implemented	fairly	quickly	today,	and	could	be	a	significant	boost	to
practical	user	privacy	on	Ethereum.	They	do	require	some	work	on	the	wallet	side	to	support	them.
That	said,	it	is	my	view	that	wallets	should	start	moving	toward	a	more	natively	multi-address	model
(eg.	creating	a	new	address	for	each	application	you	interact	with	could	be	one	option)	for	other
privacy-related	reasons	as	well.

However,	stealth	addresses	do	introduce	some	longer-term	usability	concerns,	such	as	difficulty	of
social	recovery.	It	is	probably	okay	to	simply	accept	these	concerns	for	now,	eg.	by	accepting	that
social	recovery	will	involve	either	a	loss	of	privacy	or	a	two-week	delay	to	slowly	release	the	recovery



transactions	to	the	various	assets	(which	could	be	handled	by	a	third-party	service).	In	the	longer
term,	these	problems	can	be	solved,	but	the	stealth	address	ecosystem	of	the	long	term	is	looking
like	one	that	would	really	heavily	depend	on	zero-knowledge	proofs.
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What	even	is	an	institution?

Special	thanks	to	Dennis	Pourteaux	and	Tina	Zhen	for	discussion	that	led	to	this	post.

A	recent	alternative	political	compass	proposed	by	Dennis	Pourteaux	proposes	that	the	most
important	political	divide	of	our	present	time	is	not	liberty	vs	authoritarianism	or	left	vs	right,	but
rather	how	we	think	about	"institutions".	Are	the	institutions	that	society	runs	on	today	good	or	bad,
and	is	the	solution	to	work	incrementally	to	improve	them,	replace	them	with	radically	different
institutions,	or	do	away	with	institutions	altogether?

This,	however,	raises	a	really	important	question:	what	even	is	an	"institution"	anyway?

The	word	"institution"	in	political	discourse	brings	to	mind	things	like	national	governments,	the	New
York	Times,	universities	and	maybe	the	local	public	library.	But	the	word	also	gets	used	to	describe
other	kinds	of	things.	The	phrase	"the	institution	of	marriage"	is	common	in	English-language
discourse,	and	gets	over	two	million	search	results	on	Google.	If	you	ask	Google	point-blank,	"is
family	an	institution",	it	answers	yes.

file:///home/runner/index.html
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https://www.google.com/search?q=%22the+institution+of+marriage%22


ChatGPT	agrees:

If	we	take	ChatGPT's	definition	that	"a	social	institution	is	a	pattern	of	behaviors	and	norms	that	exist
within	a	society	and	are	thought	to	be	essential	to	its	functioning"	seriously,	then	the	New	York
Times	is	not	an	institution	-	no	one	argues	that	it's	literally	essential,	and	many	people	consider	it	to
be	actively	harmful!	And	on	the	other	side,	we	can	think	of	examples	of	things	that	maybe	are
institutions	that	Pourteaux's	"anti-institutionalists"	would	approve	of!

Twitter
The	Bitcoin	or	Ethereum	blockchains
The	English	language
Substack
Markets
Standards	organizations	dealing	with	international	shipping

This	leads	us	to	two	related,	but	also	somewhat	separate,	questions:

1.	What	is	really	the	dividing	line	that	makes	some	things	"institutions"	in	people's	eyes
and	others	not?

2.	What	kind	of	world	do	people	who	consider	themselves	anti-institutionalists	actually
want	to	see?	And	what	should	an	anti-institutionalist	in	today's	world	be	doing?

A	survey	experiment
Over	the	past	week,	I	made	a	series	of	polls	on	Mastodon	where	I	provided	many	examples	of
different	objects,	practices	and	social	structures,	and	asked:	is	this	an	institution	or	not?	In	some
cases,	I	made	different	spins	on	the	same	concept	to	see	the	effects	of	changing	some	specific
variables.	There	were	some	fascinating	results.

Here	are	a	few	examples:

https://cryptodon.lol/@vbuterin/109570542347764470
https://cryptodon.lol/@vbuterin/109576148299374533


And:



And:



And,	of	course:



There's	more	fun	ones:	NYT	vs	Russia	Today	vs	Bitcoin	Magazine,	the	solar	system	vs	what	if	we
started	re-engineering	it,	prediction	markets,	various	social	customs,	and	a	lot	more.

Here,	we	can	already	start	to	see	some	common	factors.	Marriage	is	more	institution-y	than	romantic
relationships,	likely	because	of	its	official	stamp	of	recognition,	and	more	mainstream	relationship
styles	are	more	institution-y	than	less	mainstream	styles	(a	pattern	that	repeats	itself	when
comparing	NYT	vs	Russia	Today	vs	Bitcoin	Magazine).	Systems	with	clearly	visible	human	beings
making	decisions	are	more	institution-y	than	more	impersonal	algorithmic	structures,	even	if	their
outputs	are	ultimately	entirely	a	function	of	human-provided	inputs.

To	try	to	elucidate	things	further,	I	decided	to	do	a	more	systematic	analysis.

What	are	some	common	factors?
Robin	Hanson	recently	made	a	post	in	which	he	argued	that:

At	least	on	prestigious	topics,	most	people	want	relevant	institutions	to	take	the	following
ideal	form:

Masses	recognize	elites,	who	oversee	experts,	who	pick	details.

This	seemed	to	me	to	be	an	important	and	valuable	insight,	though	in	a	somewhat	different	direction:
yes,	that	is	the	style	of	institution	that	people	find	familiar	and	are	not	weirded	out	by	(as	they	might
when	they	see	many	of	the	"alternative	institutions"	that	Hanson	likes	to	propose),	but	it's	also
exactly	the	style	of	institutions	that	anti-institutionalists	tend	to	most	strongly	rail	against!	Mark
Zuckerberg's	very	institution-y	oversight	board	certainly	followed	the	"masses	recognize	elites	who
oversee	experts"	template	fairly	well,	but	it	did	not	really	make	a	lot	of	people	happy.

I	decided	to	give	this	theory	of	institution-ness,	along	with	some	other	theories,	a	test.	I	identified
seven	properties	that	seemed	to	me	possible	important	characteristics	of	institutions,	with	the	goal	of
identifying	which	ones	are	most	strongly	correlated	to	people	thinking	of	something	as	being	an
institution:

Does	it	have	a	"masses	recognize	elites"	pattern?
Does	it	have	a	"elites	oversee	experts"	pattern?
Is	it	mainstream?
Is	it	logically	centralized?
Does	it	involve	interaction	between	people?	(eg.	intermittent	fasting	doesn't,	as	everyone	just
chooses	whether	or	not	to	do	it	separately,	but	a	government	does)
Does	it	have	a	specific	structure	that	has	a	lot	of	intentional	design	behind	it?	(eg.
corporations	do,	friendship	doesn't)
Does	it	have	roles	that	take	on	a	life	independent	of	the	individuals	that	fill	them?	(eg.
democratically	elected	governments	do,	after	all	they	even	call	the	leader	"Mr.	President",	but	a
podcast	which	is	named	after	its	sole	host	does	not	at	all)

I	went	through	the	list	and	personally	graded	the	35	maybe-institutions	from	my	polls	on	these
categories.	For	example,	Tesla	got:

25%	on	"masses	recognize	elites"	(because	it's	run	by	Elon	Musk,	who	does	in	practice	have
a	lot	of	recognition	and	support	as	a	celebrity,	but	this	isn't	a	deeply	intrinsic	feature	of	Tesla,
Elon	won't	get	kicked	out	of	Tesla	if	he	loses	legitimacy,	etc)
100%	on	"elites	oversee	experts"	(all	large	corporations	follow	this	pattern)
75%	on	"is	mainstream"	(almost	everyone	knows	about	it,	lots	of	people	have	them,	but	it's
not	quite	a	New	York	Times-level	household	name)
100%	on	"logical	centralization"	(most	things	get	100%	on	this	score;	as	a	counterexample,
"dating	sites"	get	50%	because	there	are	many	dating	sites	and	"intermittent	fasting"	gets	0%)
100%	on	"involves	interaction	between	people"	(Tesla	produces	products	that	it	sells	to
people,	and	it	hires	employees,	has	investors,	etc)
75%	on	"intentional	structure"	(Tesla	definitely	has	a	deep	structure	with	shareholders,
directors,	management,	etc,	but	that	structure	isn't	really	part	of	its	identity	in	the	way	that,
say,	proof	of	stake	consensus	is	for	Ethereum	or	voting	and	congress	are	for	a	government)
50%	for	"roles	independent	of	individuals"	(while	roles	in	companies	are	generally
interchangeable,	Tesla	does	get	large	gains	from	being	part	of	the	Elon-verse	specifically)

https://cryptodon.lol/@vbuterin/109570543708271381
https://cryptodon.lol/@vbuterin/109570629589076709
https://cryptodon.lol/@vbuterin/109570548373455136
https://cryptodon.lol/@vbuterin/109576276734493858
https://cryptodon.lol/@vbuterin/109576290616996040
https://cryptodon.lol/@vbuterin/109576149554493641
https://cryptodon.lol/@vbuterin/109570587677425299
https://cryptodon.lol/@vbuterin/109570583709002906
https://www.overcomingbias.com/2022/12/elites-must-rule.html
https://mason.gmu.edu/~rhanson/altinst.html
https://transparency.fb.com/oversight/creation-of-oversight-board/
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274


The	full	data	is	here.	I	know	that	many	people	will	have	many	disagreements	over	various	individual
rankings	I	make,	and	readers	could	probably	convince	me	that	a	few	of	my	scores	are	wrong;	I	am
mainly	hoping	that	I've	included	a	sufficient	number	of	diverse	maybe-instiutions	in	the	list	that
individual	disagreement	or	errors	get	roughly	averaged	out.

Here's	the	table	of	correlations:

Masses	recognize	elites 0.491442156943094
Elites	oversee	experts 0.697483431580409
Is	mainstream 0.477135770662517
Logical	centralization 0.406758324754985
Interaction	between	people 0.570201749796132
Intelligently	designed	structure 0.365640100778201
Roles	independent	of	individuals 0.199412937985826

But	as	it	turns	out,	the	correlations	are	misleading.	"Interaction	between	people"	turns	out	to	be	an
almost	unquestionably	necessary	property	for	something	to	have	to	be	an	institution.	The	correlation
of	0.57	kind	of	shows	it,	but	it	understates	the	strength	of	the	relationship:

Literally	every	thing	that	I	labeled	as	clearly	involving	interaction	had	a	higher	percentage	of	people
considering	it	an	institution	than	every	thing	I	labeled	as	not	involving	interaction.	The	single	dot	in
the	center	is	my	hypothetical	example	of	an	island	where	people	with	odd-numbered	birthdays	are
not	allowed	to	eat	meat	before	12:00;	I	didn't	want	to	give	it	100%	because	the	not-meat-eating	is	a
private	activity,	but	the	question	still	strongly	implies	some	social	or	other	pressure	to	follow	the	rule
so	it's	also	not	really	0%.	This	is	a	place	where	Spearman's	coefficient	outperforms	Pearson's,	but
rather	than	spurting	out	exotic	numbers	I'd	rather	just	show	the	charts.	Here	are	the	other	six:

https://vitalik.ca/files/misc_files/institution_analysis.ods
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient


The	most	surprising	finding	for	me	is	that	"roles	independent	of	individuals"	is	by	far	the
weakest	correlation.	Twitter	run	by	a	democracy	is	the	most	institution-y	of	all,	but	Twitter	run	by	a
pay-to-govern	scheme	is	as	institution-y	as	Twitter	that's	just	run	by	Elon	directly.	Roles	being
independent	of	individuals	adds	a	guarantee	of	stability,	but	roles	being	independent	of	individuals	in
the	wrong	way	feels	too	unfamiliar,	or	casual,	or	otherwise	not	institution-like.	Dating	sites	are	more
independent	of	individuals	than	professional	matchmaking	agencies,	and	yet	it's	the	matchmaking
agencies	that	are	seen	as	more	institution-like.	Attempts	at	highly	role-driven	and	mechanistic
credibly-neutral	media,	(eg.	this	contraption,	which	I	actually	think	would	be	really	cool)	just	feel

https://cryptodon.lol/@vbuterin/109576172987142068


alien	-	perhaps	in	a	bad	way,	but	also	perhaps	in	a	good	way,	if	you	find	the	institutions	of	today
frustrating	and	you're	open-minded	about	possible	alternatives.

Correlations	with	"masses	recognize	elites"	and	"elites	oversee	experts"	were	high;	higher	for	the
second	than	the	first,	though	perhaps	Hanson	and	I	had	different	meanings	in	mind	for	"recognize".
The	"intentional	structure"	chart	has	an	empty	bottom-right	corner	but	a	full	top-left	corner,
suggesting	that	intentional	structure	is	necessary	but	not	sufficient	for	something	to	be	an
institution.

That	said,	my	main	conclusion	is	probably	that	the	term	"institution"	is	a	big	mess.	Rather
than	the	term	"institution"	referring	to	a	single	coherent	cluster	of	concepts	(as	eg.	"high
modernism"	does),	the	term	seems	to	have	a	number	of	different	definitions	at	play:

1.	 A	structure	that	fits	the	familiar	pattern	of	"masses	recognize	elites	who	oversee	experts"
2.	 Any	intentionally	designed	large-scale	structure	that	mediates	human	interaction	(including

things	like	financial	markets,	social	media	platforms	and	dating	sites)
3.	 Widely	spread	and	standardized	social	customs	in	general

I	suspect	that	anti-institutionalists	focus	their	suspicion	on	(1),	and	especially	instances	of	(1)	that
have	been	captured	by	the	wrong	tribe.	Whether	a	structure	is	personalistic	or	role-driven	does
not	seem	to	be	very	important	to	anti-institutionalists:	both	personalities	("Klaus	Schwab")	and
bureaucracies	("woke	academics")	are	equally	capable	of	coming	from	the	wrong	tribe.	Anti-
institutionalists	generally	do	not	oppose	(3),	and	indeed	in	many	cases	want	to	see	(3)	replace	(1)	as
much	as	possible.

Support	for	(2)	probably	maps	closely	to	Pourteaux's	"techno-optimist"	vs	"techno-
minimalist"	distinction.	Techno-minimalists	don't	see	things	like	Twitter,	Substack,	Bitcoin,
Ethereum,	etc	as	part	of	the	solution,	though	there	are	"Bitcoin	minimalists"	who	see	the	Bitcoin
blockchain	as	a	narrow	exception	and	otherwise	want	to	see	a	world	where	things	like	family	decide
more	of	the	outcomes.	"Techno-optimist	anti-institutionalists"	are	specifically	engaged	in	a	political
project	of	either	trying	to	replace	(1)	with	the	right	kind	of	(2),	or	trying	to	reform	(1)	by	introducing
more	elements	of	the	right	kind	of	(2).

Which	way	forward	for	anti-institutionalists	or	institutional
reformers?
It	would	be	wrong	to	ascribe	too	much	intentional	strategy	to	anti-institutionalists:	anti-
institutionalism	is	a	movement	that	is	much	more	united	in	what	is	against	than	in	support	of	any
specific	particular	alternative.	But	what	is	possible	is	to	recognize	this	pattern,	and	ask	the	question
of	which	paths	forward	make	sense	for	anti-institutionalists.

From	a	language	point	of	view,	even	using	the	word	"institution"	at	all	seems	more	likely	to
confuse	than	enlighten	at	this	point.	There	is	a	crucial	difference	between	(i)	a	desire	to	replace
structures	that	contain	enshrined	elite	roles	with	structures	that	don't,	(ii)	a	preference	for	small-
scale	and	informal	structures	over	large-scale	and	formal	ones,	(iii)	a	desire	to	simply	swap	the
current	elites	out	for	new	elites,	and	(iv)	a	kind	of	social	libertinist	position	that	individuals	should	be
driven	by	their	own	whims	and	not	by	incentives	created	by	other	people.	The	word	"institution"
obscures	that	divide,	and	probably	focuses	too	much	attention	on	what	is	being	torn	down	rather
than	what	is	to	be	built	up	in	its	place.

https://slatestarcodex.com/2017/03/16/book-review-seeing-like-a-state/
https://brief.bismarckanalysis.com/p/the-strategy-of-klaus-schwabs-world


Different	anti-institutionalists	have	different	goals	in	mind.	Sure,	the	person	on	Twitter	delivering	that	powerful
incisive	criticism	of	the	New	York	Times	agrees	with	you	on	how	society	should	not	be	run,	but	are	you	sure	they'll

be	your	ally	when	it	comes	time	to	decide	how	society	should	be	run?

The	challenge	with	avoiding	structures	entirely	is	clear:	prisoner's	dilemmas	exist	and	we	need
incentives.	The	challenge	with	small-scale	and	informal	structures	is	often	clear:	economies	of	scale
and	gains	from	standardization	-	though	sometimes	there	are	other	benefits	from	informal
approaches	that	are	worth	losing	those	gains.	The	challenge	with	simply	swapping	the	elites	is	clear:
it	has	no	path	to	socially	scale	into	a	cross-tribal	consensus.	If	the	goal	is	not	to	enshrine	a	new	set	of
elites	forever,	but	for	elites	to	permanently	be	high-churn	(cf.	Balaji's	founder	vs	inheritor
dichotomy),	that	is	more	credibly	neutral,	but	then	it	starts	getting	closer	to	the	territory	of	avoiding
enshrined	elites	in	general.

Creating	formal	structures	without	enshrined	elites	is	fascinating,	not	least	because	it's	under-
explored:	there's	a	strong	case	that	institutions	with	enshrined	elite	roles	might	be	an	unfortunate
historical	necessity	from	when	communication	was	more	constrained,	but	modern	information
technology	(including	the	internet	and	also	newer	spookier	stuff	like	zero-knowledge	cryptography,
blockchains	and	DAOs)	could	rapidly	expand	our	available	options.	That	said,	as	Hanson	points	out,
this	path	has	its	own	fair	share	of	challenges	too.

https://thenetworkstate.com/founding-vs-inheriting
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Updating	my	blog:	a	quick	GPT	chatbot
coding	experiment

The	GPT	chatbot	has	been	all	the	rage	the	last	few	days.	Along	with	many	important	use	cases	like
writing	song	lyrics,	acting	as	a	language	learning	buddy	and	coming	up	with	convincing-sounding
arguments	for	arbitrary	political	opinions,	one	of	the	things	that	many	people	are	excited	about	is	the
possibility	of	using	the	chatbot	to	write	code.

In	a	lot	of	cases,	it	can	succeed	and	write	some	pretty	good	code	especially	for	common	tasks.	In
cases	that	cover	less	well-trodden	ground,	however,	it	can	fail:	witness	its	hilariously	broken	attempt
to	write	a	PLONK	verifier:

(In	case	you	want	to	know	how	to	do	it	kinda-properly,	here	is	a	PLONK	verifier	written	by	me)

But	how	well	do	these	tools	actually	perform	in	the	average	case?	I	decided	to	take	the	GPT3	chatbot
for	a	spin,	and	see	if	I	could	get	it	to	solve	a	problem	very	relevant	to	me	personally:	changing	the
IPFS	hash	registered	in	my	vitalik.eth	ENS	record,	in	order	to	make	the	new	article	that	I	just
released	on	my	blog	viewable	through	ENS.

The	process	of	updating	the	ENS	view	of	my	blog	normally	consists	of	two	steps:	first,	publish	the
updated	contents	to	IPFS,	and	second,	update	my	ENS	record	to	contain	the	IPFS	hash	of	the	new
contents.	Fleek	has	automated	the	first	part	of	this	for	me	for	a	long	time:	I	just	push	the	contents	to
Github,	and	Fleek	uploads	the	new	version	to	IPFS	automatically.	I	have	been	told	that	I	could
change	the	settings	to	give	Fleek	the	power	to	also	edit	my	ENS,	but	here	I	want	to	be	fully	"self-
sovereign"	and	not	trust	third	parties,	so	I	have	not	done	this.	Instead,	so	far,	I	have	had	to	go	to	the
GUI	at	app.ens.domains,	click	a	few	times,	wait	for	a	few	loading	screens	to	pass,	and	finally	click
"ADD	/	EDIT	RECORD",	change	the	CONTENT	hash	and	click	"Confirm".	This	is	all	a	cumbersome
process,	and	so	today	I	finally	thought	that	I	would	write	a	script	in	javascript	to	automate	this	all
down	to	a	single	piece	of	Javascript	that	I	could	just	copy-paste	into	my	browser	console	in	the
future.

The	task	is	simple:	send	an	Ethereum	transaction	to	the	right	address	with	the	right	calldata	to
update	the	content	hash	record	in	the	ENS	contract	to	equal	the	IPFS	hash	that	Fleek	gives	to	me.
Yesterday,	I	did	this	all	manually	(twice,	once	to	publish	and	again	to	add	some	corrections),	and	the
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IPFS	hashes	I	got	were:

bafybeifvvseiarzdfoqadphxtfu5yjfgj3cr6x344qce4s4f7wqyf3zv4e

bafybeieg6fhbjlhkzhbyfnmyid3ko5ogxp3mykdarsfyw66lmq6lq5z73m

If	you	click	through	to	the	top	article	in	each	one,	you'll	see	the	two	different	versions.

This	hash	format	is	often	called	a	"bafyhash",	because	the	hashes	all	begin	with	"bafy".	But	there	is	a
problem:	the	format	of	the	hash	that	is	saved	in	Ethereum	is	not	a	bafyhash.	Here's	the	calldata	of
the	transaction	that	made	one	of	the	update	operations:

Yes,	I	checked,	that	is	not	hexadecimalized	ASCII.

I	do	know	that	the	IPFS	content	hash	is	the	last	two	rows	of	the	data.	How	do	I	know?	Well,	I
checked	the	two	different	transactions	I	sent	for	my	two	updates,	and	I	saw	that	the	top	row	is	the
same	and	the	bottom	two	rows	are	different.	Good	enough.

So	what	do	I	do	to	convert	from	a	bafyhash	into	a	binary	IPFS	content	hash?	Well,	let	me	try	asking
the	GPT3	chatbot!
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Noooo!!!!!!!!!!	Many	issues.	First,	two	things	that	are	my	fault:

1.	 I	forgot	to	mention	this,	but	I	wanted	Javascript,	not	python.
2.	 It	uses	external	dependencies.	I	want	my	javascript	copy-pasteable	into	the	console,	so	I	don't

want	any	libraries.

These	are	on	me	to	specify,	though,	and	in	my	next	instruction	to	the	chatbot	I	will.	But	now	we	get
to	the	things	that	are	its	fault:

1.	 Bafyhashes	are	base	32,	not	base	58.	There	is	a	base-58	format	for	IPFS	hashes,	but	those	are
called	"QM	hashes",	not	"bafyhashes".

2.	 By	"binary"	I	didn't	want	literal	ones	and	zeroes,	I	wanted	the	normal	binary	format,	a	bytes	or
bytearray.

That	said,	at	this	part	of	the	story	I	did	not	even	realize	that	bafyhashes	are	base	32.	I	fixed	the	two
issues	that	were	my	fault	first:



BAAAAAAAAAAAAAD,	the	AI	trainer	said	sheepishly!	The	atob	function	is	for	base	64,	not	base	58.

OK,	let's	keep	going.	A	few	rounds	later...

https://developer.mozilla.org/en-US/docs/Web/API/atob#:~:text=See%20also-,atob(),to%20decode%20the%20data%20again.


It's	hard	to	see	what's	going	on	at	first,	but	it's	incredibly	wrong.	Basically,	instead	of	converting	the
whole	string	from	base	58	to	base	16,	it's	converting	each	individual	digit	to	base	16.	Not	what	I
want	to	do!

Guess	I'll	have	to	tell	it	what	strategy	it	should	use:



Better!	I	soon	start	to	realize	that	I	don't	need	base	58,	I	need	base	32,	and	furthermore	I	need	the
lowercase	version	of	base	32.	I	also	want	the	code	wrapped	in	a	function.	For	these	simpler	steps,	it
gets	much	more	cooperative:



At	this	point,	I	try	actually	passing	the	bafyhashes	I	have	into	this	function,	and	I	get	unrecognizably
different	outputs.	Looks	like	I	can't	just	assume	this	is	generic	base	32,	and	I	have	to	poke	into	the
details.	Hmm,	can	I	perhaps	ask	the	GPT3	chatbot?



OK,	this	is	not	helpful.	Let	me	try	to	be	more	specific.



This	is	an....	interesting	guess,	but	it's	totally	wrong.	After	this	point,	I	give	up	on	the	GPT3	for	a
while,	and	keep	poking	at	the	generated	hex	and	the	actual	hex	in	python	until	I	find	similarities.
Eventually,	I	figure	it	out:	I	actually	do	convert	both	hexes	to	literal	binary,	and	search	from	a	binary
substring	of	one	in	the	other.	I	discover	that	there	is	an	offset	of	2	bits.

I	just	edit	the	code	manually,	compensating	for	the	offset	by	dividing	the	bigint	by	4:

Because	I	already	know	what	to	do,	I	also	just	code	the	part	that	generates	the	entire	calldata	myself:



Anyway,	then	I	switch	to	the	next	task:	the	portion	of	the	Javascript	that	actually	sends	a	transaction.
I	go	back	to	the	GPT3.

NOOOOO!	I	SAID	NO	LIBRARIES!!!!1!1!

I	tell	it	what	to	use	directly:



This	is	more	successful.	Two	errors	though:

1.	 A	from	address	actually	is	required.
2.	 You	can't	stick	an	integer	into	the	gas	field,	you	need	a	hex	value.

Also,	post	EIP-1559,	there	really	isn't	much	point	in	hard-coding	a	gasPrice.	From	here,	I	do	the	rest
of	the	work	myself.

function	bafyToHex(bafyString)	{
		//	Create	a	lookup	table	for	the	base32	alphabet
		var	alphabet	=	'abcdefghijklmnopqrstuvwxyz234567';
		var	base	=	alphabet.length;
		var	lookupTable	=	{};
		alphabet.split('').forEach(function(char,	i)	{
				lookupTable[char]	=	i;
		});

		//	Decode	the	base32-encoded	string	into	a	big	integer
		var	bigInt	=	bafyString.split('').reduce(function(acc,	curr)	{
				return	acc	*	BigInt(base)	+	BigInt(lookupTable[curr]);
		},	BigInt(0))	/	BigInt(4);

		//	Convert	the	big	integer	into	a	hexadecimal	string
		var	hexString	=	bigInt.toString(16);

		return	'e30101701220'	+	hexString.slice(-64);



I	ask	the	GPT-3	some	minor	questions:	how	to	declare	an	async	function,	and	what	keyword	to	use	in
Twitter	search	to	search	only	tweets	that	contain	images	(needed	to	write	this	post).	It	answers	both
flawlessly:	do	async	function	functionName	to	declare	an	async	function,	and	use	filter:images	to
filter	for	tweets	that	contain	images.

Conclusions
The	GPT-3	chatbot	was	helpful	as	a	programming	aid,	but	it	also	made	plenty	of	mistakes.	Ultimately,
I	was	able	to	get	past	its	mistakes	quickly	because	I	had	lots	of	domain	knowledge:

I	know	that	it	was	unlikely	that	browsers	would	have	a	builtin	for	base	58,	which	is	a	relatively
niche	format	mostly	used	in	the	crypto	world,	and	so	I	immediately	got	suspicious	of	its	attempt
to	suggest	atob
I	could	eventually	recall	that	the	hash	being	all-lowercase	means	it's	base	32	and	not	base	58
I	knew	that	the	data	in	the	Ethereum	transaction	had	to	encode	the	IPFS	hash	in	some	sensible
way,	which	led	me	to	eventually	come	up	with	the	idea	of	checking	bit	offsets
I	know	that	a	simple	"correct"	way	to	convert	between	base	A	and	base	B	is	to	go	through	some
abstract	integer	representation	as	an	in-between,	and	that	Javascript	supported	big	integers.
I	knew	about	window.ethereum.send
When	I	got	the	error	that	I	was	not	allowed	to	put	an	integer	into	the	gas	field,	I	knew
immediately	that	it	was	supposed	to	be	hex.

At	this	point,	AI	is	quite	far	from	being	a	substitute	for	human	programmers.	In	this	particular	case,
it	only	sped	me	up	by	a	little	bit:	I	could	have	figured	things	out	with	Google	eventually,	and	indeed
in	one	or	two	places	I	did	go	back	to	googling.	That	said,	it	did	introduce	me	to	some	coding	patterns
I	had	not	seen	before,	and	it	wrote	the	base	converter	faster	than	I	would	have	on	my	own.	For	the
boilerplate	operation	of	writing	the	Javascript	to	send	a	simple	transaction,	it	did	quite	well.

That	said,	AI	is	improving	quickly	and	I	expect	it	to	keep	improving	further	and	ironing	out	bugs	like
this	over	time.

Addendum:	while	writing	the	part	of	this	post	that	involved	more	copy-paste	than	thinking,	I	put	on
my	music	playlist	on	shuffle.	The	first	song	that	started	playing	was,	coincidentally,	Basshunter's
Boten	Anna	("Anna	The	Bot").

https://www.youtube.com/watch?v=1XK5-n4rR7Q
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What	in	the	Ethereum	application	ecosystem
excites	me

Special	thanks	to	Matt	Huang,	Santi	Siri	and	Tina	Zhen	for	feedback	and	review

Ten,	five,	or	even	two	years	ago,	my	opinions	on	what	Ethereum	and	blockchains	can	do	for	the	world
were	very	abstract.	"This	is	a	general-purpose	technology,	like	C++",	I	would	say;	of	course,	it	has
specific	properties	like	decentralization,	openness	and	censorship	resistance,	but	beyond	that	it's	just
too	early	to	say	which	specific	applications	are	going	to	make	the	most	sense.

Today's	world	is	no	longer	that	world.	Today,	enough	time	has	passed	that	there	are	few	ideas	that
are	completely	unexplored:	if	something	succeeds,	it	will	probably	be	some	version	of	something	that
has	already	been	discussed	in	blogs	and	forums	and	conferences	on	multiple	occasions.	We've	also
come	closer	to	identifying	fundamental	limits	of	the	space.	Many	DAOs	have	had	a	fair	chance	with
an	enthusiastic	audience	willing	to	participate	in	them	despite	the	inconveniences	and	fees,	and
many	have	underperformed.	Industrial	supply-chain	applications	have	not	gone	anywhere.
Decentralized	Amazon	on	the	blockchain	has	not	happened.	But	it's	also	a	world	where	we	have	seen
genuine	and	growing	adoption	of	a	few	key	applications	that	are	meeting	people's	real	needs	-	and
those	are	the	applications	that	we	need	to	focus	on.

Hence	my	change	in	perspective:	my	excitement	about	Ethereum	is	now	no	longer	based	in	the
potential	for	undiscovered	unknowns,	but	rather	in	a	few	specific	categories	of	applications	that	are
proving	themselves	already,	and	are	only	getting	stronger.	What	are	these	applications,	and	which
applications	am	I	no	longer	optimistic	about?	That	is	what	this	post	will	be	about.

1.	Money:	the	first	and	still	most	important	app
When	I	first	visited	Argentina	in	December	last	year,	one	of	the	experiences	I	remember	well	was
walking	around	on	Christmas	Day,	when	almost	everything	is	closed,	looking	for	a	coffee	shop.	After
passing	by	about	five	closed	ones,	we	finally	found	one	that	was	open.	When	we	walked	in,	the	owner
recognized	me,	and	immediately	showed	me	that	he	has	ETH	and	other	crypto-assets	on	his	Binance
account.	We	ordered	tea	and	snacks,	and	we	asked	if	we	could	pay	in	ETH.	The	coffee	shop	owner
obliged,	and	showed	me	the	QR	code	for	his	Binance	deposit	address,	to	which	I	sent	about	$20	of
ETH	from	my	Status	wallet	on	my	phone.

This	was	far	from	the	most	meaningful	use	of	cryptocurrency	that	is	taking	place	in	the	country.
Others	are	using	it	to	save	money,	transfer	money	internationally,	make	payments	for	large	and
important	transactions,	and	much	more.	But	even	still,	the	fact	that	I	randomly	found	a	coffee	shop
and	it	happened	to	accept	cryptocurrency	showed	the	sheer	reach	of	adoption.	Unlike	wealthy
countries	like	the	United	States,	where	financial	transactions	are	easy	to	make	and	8%	inflation	is
considered	extreme,	in	Argentina	and	many	other	countries	around	the	world,	links	to	global
financial	systems	are	more	limited	and	extreme	inflation	is	a	reality	every	day.	Cryptocurrency	often
steps	in	as	a	lifeline.
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In	addition	to	Binance,	there	is	also	an	increasing	number	of	local	exchanges,	and	you	can	see	advertisements	for
them	everywhere	including	at	airports.

The	one	issue	with	my	coffee	transaction	is	that	it	did	not	really	make	pragmatic	sense.	The	fee	was
high,	about	a	third	of	the	value	of	the	transaction.	The	transaction	took	several	minutes	to	confirm:	I
believe	that	at	the	time,	Status	did	not	yet	support	sending	proper	EIP-1559	transactions	that	more
reliably	confirm	quickly.	If,	like	many	other	Argentinian	crypto	users,	I	had	simply	had	a	Binance
wallet,	the	transfer	would	have	been	free	and	instant.

A	year	later,	however,	the	calculus	is	different.	As	a	side	effect	of	the	Merge,	transactions	get
included	significantly	more	quickly	and	the	chain	has	become	more	stable,	making	it	safer	to	accept
transactions	after	fewer	confirmations.	Scaling	technology	such	as	optimistic	and	ZK	rollups	is
proceeding	quickly.	Social	recovery	and	multisig	wallets	are	becoming	more	practical	with	account
abstraction.	These	trends	will	take	years	to	play	out	as	the	technology	develops,	but	progress	is
already	being	made.	At	the	same	time,	there	is	an	important	"push	factor"	driving	interest	in
transacting	on-chain:	the	FTX	collapse,	which	has	reminded	everyone,	Latin	Americans	included,
that	even	the	most	trustworthy-seeming	centralized	services	may	not	be	trustworthy	after	all.

Cryptocurrency	in	wealthy	countries

In	wealthy	countries,	the	more	extreme	use	cases	around	surviving	high	inflation	and	doing	basic
financial	activities	at	all	usually	do	not	apply.	But	cryptocurrency	still	has	significant	value.	As
someone	who	has	used	it	to	make	donations	(to	quite	normal	organizations	in	many	countries),	I	can
personally	confirm	that	it	is	far	more	convenient	than	traditional	banking.	It's	also	valuable	for
industries	and	activities	at	risk	of	being	deplatformed	by	payment	processors	-	a	category	which
includes	many	industries	that	are	perfectly	legal	under	most	countries'	laws.

There	is	also	the	important	broader	philosophical	case	for	cryptocurrency	as	private	money:	the
transition	to	a	"cashless	society"	is	being	taken	advantage	of	by	many	governments	as	an	opportunity
to	introduce	levels	of	financial	surveillance	that	would	be	unimaginable	100	years	ago.
Cryptocurrency	is	the	only	thing	currently	being	developed	that	can	realistically	combine
the	benefits	of	digitalization	with	cash-like	respect	for	personal	privacy.

But	in	either	case,	cryptocurrency	is	far	from	perfect.	Even	with	all	the	technical,	user	experience
and	account	safety	problems	solved,	it	remains	a	fact	that	cryptocurrency	is	volatile,	and	the
volatility	can	make	it	difficult	to	use	for	savings	and	business.	For	that	reason,	we	have...

Stablecoins

The	value	of	stablecoins	has	been	understood	in	the	Ethereum	community	for	a	long	time.	Quoting	a
blog	post	from	2014:

Over	the	past	eleven	months,	Bitcoin	holders	have	lost	about	67%	of	their	wealth	and	quite
often	the	price	moves	up	or	down	by	as	much	as	25%	in	a	single	week.	Seeing	this	concern,
there	is	a	growing	interest	in	a	simple	question:	can	we	get	the	best	of	both	worlds?	Can
we	have	the	full	decentralization	that	a	cryptographic	payment	network	offers,	but	at	the
same	time	have	a	higher	level	of	price	stability,	without	such	extreme	upward	and
downward	swings?
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And	indeed,	stablecoins	are	very	popular	among	precisely	those	users	who	are	making	pragmatic	use
of	cryptocurrency	today.	That	said,	there	is	a	reality	that	is	not	congenial	to	cypherpunk	values
today:	the	stablecoins	that	are	most	successful	today	are	the	centralized	ones,	mostly	USDC,	USDT
and	BUSD.

Top	cryptocurrency	market	caps,	data	from	CoinGecko,	2022-11-30.	Three	of	the	top	six	are
centralized	stablecoins.

Stablecoins	issued	on-chain	have	many	convenient	properties:	they	are	open	for	use	by	anyone,	they
are	resistant	to	the	most	large-scale	and	opaque	forms	of	censorship	(the	issuer	can	blacklist	and
freeze	addresses,	but	such	blacklisting	is	transparent,	and	there	are	literal	transaction	fee	costs
associated	with	freezing	each	address),	and	they	interact	well	with	on-chain	infrastructure	(accounts,
DEXes,	etc).	But	it's	not	clear	how	long	this	state	of	affairs	will	last,	and	so	there	is	a	need	to	keep
working	on	other	alternatives.

I	see	the	stablecoin	design	space	as	basically	being	split	into	three	different	categories:	centralized
stablecoins,	DAO-governed	real-world-asset	backed	stablecoins	and	governance-minimized
crypto-backed	stablecoins.

Governance Advantages Disadvantages Examples

Centralized
stablecoins

Traditional	legal
entity

•	Maximum
efficiency	
•	Easy	to
understand

Vulnerable	to	risks
of	a	single	issuer
and	a	single
jurisdiction

USDC,	USDT,
BUSD

DAO-governed
RWA-backed
stablecoins

DAO	deciding	on
allowed	collateral
types	and
maximum	per	type

•	Adds	resilience
by	diversifying
issuers	and
jurisdictions	
•	Still	somewhat
capital	efficient

Vulnerable	to
repeated	issuer
fraud	or
coordinated
takedown

DAI

Governance-
minimized
crypto-backed
stablecoin

Price	oracle	only

•	Maximum
resilience	
•	No	outside
dependencies

•	High	collateral
requirements	
•	Limited	scale	
•	Sometimes	needs
negative	interest
rates

RAI,	
LUSD



From	the	user's	perspective,	the	three	types	are	arranged	on	a	tradeoff	spectrum	between
efficiency	and	resilience.	USDC	works	today,	and	will	almost	certainly	work	tomorrow.	But	in	the
longer	term,	its	ongoing	stability	depends	on	the	macroeconomic	and	political	stability	of	the	United
States,	a	continued	US	regulatory	environment	that	supports	making	USDC	available	to	everyone,
and	the	trustworthiness	of	the	issuing	organization.

RAI,	on	the	other	hand,	can	survive	all	of	these	risks,	but	it	has	a	negative	interest	rate:	at	the	time	of
this	writing,	-6.7%.	To	make	the	system	stable	(so,	not	be	vulnerable	to	collapse	like	LUNA),	every
holder	of	RAI	must	be	matched	by	a	holder	of	negative	RAI	(aka.	a	"borrower"	or	"CDP	holder")	who
puts	in	ETH	as	collateral.	This	rate	could	be	improved	with	more	people	engaging	in	arbitrage,
holding	negative	RAI	and	balancing	it	out	with	positive	USDC	or	even	interest-bearing	bank	account
deposits,	but	interest	rates	on	RAI	will	always	be	lower	than	in	a	functioning	banking	system,	and	the
possibility	of	negative	rates,	and	the	user	experience	headaches	that	they	imply,	will	always	be	there.

The	RAI	model	is	ultimately	ideal	for	the	more	pessimistic	lunarpunk	world:	it	avoids	all	connection
to	non-crypto	financial	systems,	making	it	much	more	difficult	to	attack.	Negative	interest	rates
prevent	it	from	being	a	convenient	proxy	for	the	dollar,	but	one	way	to	adapt	would	be	to	embrace
the	disconnection:	a	governance-minimized	stablecoin	could	track	some	non-currency	asset
like	a	global	average	CPI	index,	and	advertise	itself	as	representing	abstract	"best-effort
price	stability".	This	would	also	have	lower	inherent	regulatory	risk,	as	such	an	asset	would	not	be
attempting	to	provide	a	"digital	dollar"	(or	euro,	or...).

DAO-governed	RWA-backed	stablecoins,	if	they	can	be	made	to	work	well,	could	be	a	happy	medium.
Such	stablecoins	could	combine	enough	robustness,	censorship	resistance,	scale	and	economic
practicality	to	satisfy	the	needs	of	a	large	number	of	real-world	crypto	users.	But	making	this	work
requires	both	real-world	legal	work	to	develop	robust	issuers,	and	a	healthy	dose	of	resilience-
oriented	DAO	governance	engineering.

In	either	case,	any	kind	of	stablecoin	working	well	would	be	a	boon	for	many	kinds	of	currency	and
savings	applications	that	are	already	concretely	useful	for	millions	of	people	today.

2.	Defi:	keep	it	simple
Decentralized	finance	is,	in	my	view,	a	category	that	started	off	honorable	but	limited,	turned	into
somewhat	of	an	overcapitalized	monster	that	relied	on	unsustainable	forms	of	yield	farming,	and	is
now	in	the	early	stages	of	setting	down	into	a	stable	medium,	improving	security	and	refocusing	on	a
few	applications	that	are	particularly	valuable.	Decentralized	stablecoins	are,	and	probably	forever
will	be,	the	most	important	defi	product,	but	there	are	a	few	others	that	have	an	important	niche:

Prediction	markets:	these	have	been	a	niche	but	stable	pillar	of	decentralized	finance	since
the	launch	of	Augur	in	2015.	Since	then,	they	have	quietly	been	growing	in	adoption.	Prediction
markets	showed	their	value	and	their	limitations	in	the	2020	US	election,	and	this	year	in	2022,
both	crypto	prediction	markets	like	Polymarket	and	play-money	markets	like	Metaculus	are
becoming	more	and	more	widely	used.	Prediction	markets	are	valuable	as	an	epistemic	tool,	and
there	is	a	genuine	benefit	from	using	cryptocurrency	in	making	these	markets	more	trustworthy
and	more	globally	accessible.	I	expect	prediction	markets	to	not	make	extreme	multibillion-
dollar	splashes,	but	continue	to	steadily	grow	and	become	more	useful	over	time.
Other	synthetic	assets:	the	formula	behind	stablecoins	can	in	principle	be	replicated	to	other
real-world	assets.	Interesting	natural	candidates	include	major	stock	indices	and	real	estate.
The	latter	will	take	longer	to	get	right	due	to	the	inherent	heterogeneity	and	complexity	of	the
space,	but	it	could	be	valuable	for	precisely	the	same	reasons.	The	main	question	is	whether	or
not	someone	can	create	the	right	balance	of	decentralization	and	efficiency	that	gives	users
access	to	these	assets	at	reasonable	rates	of	return.
Glue	layers	for	efficiently	trading	between	other	assets:	if	there	are	assets	on-chain	that
people	want	to	use,	including	ETH,	centralized	or	decentralized	stablecoins,	more	advanced
synthetic	assets,	or	whatever	else,	there	will	be	value	in	a	layer	that	makes	it	easy	for	users	to
trade	between	them.	Some	users	may	want	to	hold	USDC	and	pay	transaction	fees	in	USDC.
Others	may	hold	some	assets,	but	want	to	be	able	to	instantly	convert	to	pay	someone	who
wants	to	be	paid	in	another	asset.	There	is	also	space	for	using	one	asset	as	collateral	to	take
out	loans	of	another	asset,	though	such	projects	are	most	likely	to	succeed	and	avoid	leading	to
tears	if	they	keep	leverage	very	limited	(eg.	not	more	than	2x).

3.	The	identity	ecosystem:	ENS,	SIWE,	PoH,	POAPs,	SBTs
"Identity"	is	a	complicated	concept	that	can	mean	many	things.	Some	examples	include:
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https://polymarket.com/
https://www.metaculus.com/questions/


Basic	authentication:	simply	proving	that	action	A	(eg.	sending	a	transaction	or	logging	into	a
website)	was	authorized	by	some	agent	that	has	some	identifier,	such	as	an	ETH	address	or	a
public	key,	without	attempting	to	say	anything	else	about	who	or	what	the	agent	is.
Attestations:	proving	claims	about	an	agent	made	by	other	agents	("Bob	attests	that	he	knows
Alice",	"the	government	of	Canada	attests	that	Charlie	is	a	citizen")
Names:	establishing	consensus	that	a	particular	human-readable	name	can	be	used	to	refer	to	a
particular	agent.
Proof	of	personhood:	proving	that	an	agent	is	human,	and	guaranteeing	that	each	human	can
only	obtain	one	identity	through	the	proof	of	personhood	system	(this	is	often	done	with
attestations,	so	it's	not	an	entirely	separate	category,	but	it's	a	hugely	important	special	case)

For	a	long	time,	I	have	been	bullish	on	blockchain	identity	but	bearish	on	blockchain	identity
platforms.	The	use	cases	mentioned	above	are	really	important	to	many	blockchain	use	cases,	and
blockchains	are	valuable	for	identity	applications	because	of	their	institution-independent	nature	and
the	interoperability	benefits	that	they	provide.	But	what	will	not	work	is	an	attempt	to	create	a
centralized	platform	to	achieve	all	of	these	tasks	from	scratch.	What	more	likely	will	work	is	an
organic	approach,	with	many	projects	working	on	specific	tasks	that	are	individually	valuable,	and
adding	more	and	more	interoperability	over	time.

And	this	is	exactly	what	has	happened	since	then.	The	Sign	In	With	Ethereum	(SIWE)	standard
allows	users	to	log	into	(traditional)	websites	in	much	the	same	way	that	you	can	use	Google	or
Facebook	accounts	to	log	into	websites	today.	This	is	actually	useful:	it	allows	you	to	interact	with	a
site	without	giving	Google	or	Facebook	access	to	your	private	information	or	the	ability	to	take	over
or	lock	you	out	of	your	account.	Techniques	like	social	recovery	could	give	users	account	recovery
options	in	case	they	forget	their	password	that	are	much	better	than	what	centralized	corporations
offer	today.	SIWE	is	supported	by	many	applications	today,	including	Blockscan	chat,	the	end-to-end-
encrypted	email	and	notes	service	Skiff,	and	various	blockchain-based	alternative	social	media
projects.

ENS	lets	users	have	usernames:	I	have	vitalik.eth.	Proof	of	Humanity	and	other	proof-of-personhood
systems	let	users	prove	that	they	are	unique	humans,	which	is	useful	in	many	applications	including
airdrops	and	governance.	POAP	(the	"proof	of	attendance	protocol",	pronounced	either	"pope"	or
"poe-app"	depending	on	whether	you're	a	brave	contrarian	or	a	sheep)	is	a	general-purpose	protocol
for	issuing	tokens	that	represent	attestations:	have	you	completed	an	educational	course?	Have	you
attended	an	event?	Have	you	met	a	particular	person?	POAPs	could	be	used	both	as	an	ingredient	in
a	proof-of-personhood	protocol	and	as	a	way	to	try	to	determine	whether	or	not	someone	is	a	member
of	a	particular	community	(valuable	for	governance	or	airdrops).

https://en.wikipedia.org/wiki/Proof_of_personhood
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https://app.skiff.com/
https://poap.xyz/
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An	NFC	card	that	contains	my	ENS	name,	and	allows	you	to	receive	a	POAP	verifying	that	you've	met
me.	I'm	not	sure	I	want	to	create	any	further	incentive	for	people	to	bug	me	really	hard	to	get	my

POAP,	but	this	seems	fun	and	useful	for	other	people.

Each	of	these	applications	are	useful	individually.	But	what	makes	them	truly	powerful	is	how	well
they	compose	with	each	other.	When	I	log	on	to	Blockscan	chat,	I	sign	in	with	Ethereum.	This	means
that	I	am	immediately	visible	as	vitalik.eth	(my	ENS	name)	to	anyone	I	chat	with.	In	the	future,	to
fight	spam,	Blockscan	chat	could	"verify"	accounts	by	looking	at	on-chain	activity	or	POAPs.	The
lowest	tier	would	simply	be	to	verify	that	the	account	has	sent	or	been	the	recipient	in	at	least	one
on-chain	transaction	(as	that	requires	paying	fees).	A	higher	level	of	verification	could	involve
checking	for	balances	of	specific	tokens,	ownership	of	specific	POAPs,	a	proof-of-personhood	profile,
or	a	meta-aggregator	like	Gitcoin	Passport.

The	network	effects	of	these	different	services	combine	to	create	an	ecosystem	that	provides	some
very	powerful	options	for	users	and	applications.	An	Ethereum-based	Twitter	alternative	(eg.
Farcaster)	could	use	POAPs	and	other	proofs	of	on-chain	activity	to	create	a	"verification"	feature
that	does	not	require	conventional	KYC,	allowing	anons	to	participate.	Such	platforms	could	create
rooms	that	are	gated	to	members	of	a	particular	community	-	or	hybrid	approaches	where	only
community	members	can	speak	but	anyone	can	listen.	The	equivalent	of	Twitter	polls	could	be
limited	to	particular	communities.

Equally	importantly,	there	are	much	more	pedestrian	applications	that	are	relevant	to	simply	helping
people	make	a	living:	verification	through	attestations	can	make	it	easier	for	people	to	prove	that
they	are	trustworthy	to	get	rent,	employment	or	loans.

The	big	future	challenge	for	this	ecosystem	is	privacy.	The	status	quo	involves	putting	large
amounts	of	information	on-chain,	which	is	something	that	is	"fine	until	it's	not",	and	eventually	will
become	unpalatable	if	not	outright	risky	to	more	and	more	people.	There	are	ways	to	solve	this
problem	by	combining	on-chain	and	off-chain	information	and	making	heavy	use	of	ZK-SNARKs,	but
this	is	something	that	will	actually	need	to	be	worked	on;	projects	like	Sismo	and	HeyAnon	are	an
early	start.	Scaling	is	also	a	challenge,	but	scaling	can	be	solved	generically	with	rollups	and	perhaps
validiums.	Privacy	cannot,	and	must	be	worked	on	intentionally	for	each	application.

4.	DAOs
"DAO"	is	a	powerful	term	that	captures	many	of	the	hopes	and	dreams	that	people	have	put	into	the
crypto	space	to	build	more	democratic,	resilient	and	efficient	forms	of	governance.	It's	also	an
incredibly	broad	term	whose	meaning	has	evolved	a	lot	over	the	years.	Most	generally,	a	DAO	is	a
smart	contract	that	is	meant	to	represent	a	structure	of	ownership	or	control	over	some	asset	or
process.	But	this	structure	could	be	anything,	from	the	lowly	multisig	to	highly	sophisticated	multi-
chamber	governance	mechanisms	like	those	proposed	for	the	Optimism	Collective.	Many	of	these
structures	work,	and	many	others	cannot,	or	at	least	are	very	mismatched	to	the	goals	that	they	are
trying	to	achieve.

There	are	two	questions	to	answer:

1.	 What	kinds	of	governance	structures	make	sense,	and	for	what	use	cases?
2.	 Does	it	make	sense	to	implement	those	structures	as	a	DAO,	or	through	regular	incorporation

and	legal	contracts?

A	particular	subtlety	is	that	the	word	"decentralized"	is	sometimes	used	to	refer	to	both:	a
governance	structure	is	decentralized	if	its	decisions	depend	on	decisions	taken	from	a	large	group
of	participants,	and	an	implementation	of	a	governance	structure	is	decentralized	if	it	is	built	on	a
decentralized	structure	like	a	blockchain	and	is	not	dependent	on	any	single	nation-state	legal
system.

Decentralization	for	robustness

One	way	to	think	about	the	distinction	is:	decentralized	governance	structure	protects	against
attackers	on	the	inside,	and	a	decentralized	implementation	protects	against	powerful
attackers	on	the	outside	("censorship	resistance").

First,	some	examples:

https://chat.blockscan.com/
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Higher	need	for	protection
from	inside

Lower	need	for	protection
from	inside

Higher	need	for	protection
from	outside Stablecoins The	Pirate	Bay,	Sci-Hub

Lower	need	for	protection
from	outside Regulated	financial	institutions Regular	businesses

The	Pirate	Bay	and	Sci-Hub	are	important	case	studies	of	something	that	is	censorship-resistant,	but
does	not	need	decentralization.	Sci-Hub	is	largely	run	by	one	person,	and	if	some	part	of	Sci-Hub
infrastructure	gets	taken	down,	she	can	simply	move	it	somewhere	else.	The	Sci-Hub	URL	has
changed	many	times	over	the	years.	The	Pirate	Bay	is	a	hybrid:	it	relies	on	BitTorrent,	which	is
decentralized,	but	the	Pirate	Bay	itself	is	a	centralized	convenience	layer	on	top.

The	difference	between	these	two	examples	and	blockchain	projects	is	that	they	do	not	attempt	to
protect	their	users	against	the	platform	itself.	If	Sci-Hub	or	The	Pirate	Bay	wanted	to	harm	their
users,	the	worst	they	could	do	is	either	serve	bad	results	or	shut	down	-	either	of	which	would	only
cause	minor	inconvenience	until	their	users	switch	to	other	alternatives	that	would	inevitably	pop	up
in	their	absence.	They	could	also	publish	user	IP	addresses,	but	even	if	they	did	that	the	total	harm	to
users	would	still	be	much	lower	than,	say,	stealing	all	the	users'	funds.

Stablecoins	are	not	like	this.	Stablecoins	are	trying	to	create	stable	credibly	neutral	global
commercial	infrastructure,	and	this	demands	both	lack	of	dependence	on	a	single	centralized	actor
on	the	outside	and	protection	against	attackers	from	the	inside.	If	a	stablecoin's	governance	is	poorly
designed,	an	attack	on	the	governance	could	steal	billions	of	dollars	from	users.

At	the	time	of	this	writing,	MakerDAO	has	$7.8	billion	in	collateral,	over	17x	the	market	cap	of	the
profit-taking	token,	MKR.	Hence,	if	governance	was	up	to	MKR	holders	with	no	safeguards,	someone
could	buy	up	half	the	MKR,	use	that	to	manipulate	the	price	oracles,	and	steal	a	large	portion	of	the
collateral	for	themselves.	In	fact,	this	actually	happened	with	a	smaller	stablecoin!	It	hasn't
happened	to	MKR	yet	largely	because	the	MKR	holdings	are	still	fairly	concentrated,	with	the
majority	of	the	MKR	held	by	a	fairly	small	group	that	would	not	be	willing	to	sell	because	they
believe	in	the	project.	This	is	a	fine	model	to	get	a	stablecoin	started,	but	not	a	good	one	for	the	long
term.	Hence,	making	decentralized	stablecoins	work	long	term	requires	innovating	in	decentralized
governance	that	does	not	have	these	kinds	of	flaws.

Two	possible	directions	include:

Some	kind	of	non-financialized	governance,	or	perhaps	a	bicameral	hybrid	where	decisions	need
to	be	passed	not	just	by	token	holders	but	also	by	some	other	class	of	user	(eg.	the	Optimism
Citizens'	House	or	stETH	holders	as	in	the	Lido	two-chamber	proposal)
Intentional	friction,	making	it	so	that	certain	kinds	of	decisions	can	only	take	effect	after	a	delay
long	enough	that	users	can	see	that	something	is	going	wrong	and	escape	the	system.

There	are	many	subtleties	in	making	governance	that	effectively	optimizes	for	robustness.	If	the
system's	robustness	depends	on	pathways	that	are	only	activated	in	extreme	edge	cases,	the	system
may	even	want	to	intentionally	test	those	pathways	once	in	a	while	to	make	sure	that	they	work	-
much	like	the	once-every-20-years	rebuilding	of	Ise	Jingu.	This	aspect	of	decentralization	for
robustness	continues	to	require	more	careful	thought	and	development.

Decentralization	for	efficiency

Decentralization	for	efficiency	is	a	different	school	of	thought:	decentralized	governance
structure	is	valuable	because	it	can	incorporate	opinions	from	more	diverse	voices	at
different	scales,	and	decentralized	implementation	is	valuable	because	it	can	sometimes	be
more	efficient	and	lower	cost	than	traditional	legal-system-based	approaches.

This	implies	a	different	style	of	decentralization.	Governance	decentralized	for	robustness
emphasizes	having	a	large	number	of	decision-makers	to	ensure	alignment	with	a	pre-set	goal,	and
intentionally	makes	pivoting	more	difficult.	Governance	decentralized	for	efficiency	preserves	the
ability	to	act	rapidly	and	pivot	if	needed,	but	tries	to	move	decisions	away	from	the	top	to	avoid	the
organization	becoming	a	sclerotic	bureaucracy.
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Pod-based	governance	in	Ukraine	DAO.	This	style	of	governance	improves	efficiency	by	maximizing	autonomy.

Decentralized	implementations	designed	for	robustness	and	decentralized	implementations	designed
for	efficiency	are	in	one	way	similar:	they	both	just	involve	putting	assets	into	smart	contracts.	But
decentralized	implementations	designed	for	efficiency	are	going	to	be	much	simpler:	just	a	basic
multisig	will	generally	suffice.

It's	worth	noting	that	"decentralizing	for	efficiency"	is	a	weak	argument	for	large-scale	projects	in
the	same	wealthy	country.	But	it's	a	stronger	argument	for	very-small-scale	projects,	highly
internationalized	projects,	and	projects	located	in	countries	with	inefficient	institutions	and	weak
rule	of	law.	Many	applications	of	"decentralizing	for	efficiency"	probably	could	also	be	done	on	a
central-bank-run	chain	run	by	a	stable	large	country;	I	suspect	that	both	decentralized	approaches
and	centralized	approaches	are	good	enough,	and	it's	the	path-dependent	question	of	which	one
becomes	viable	first	that	will	determine	which	approach	dominates.

Decentralization	for	interoperability

This	is	a	fairly	boring	class	of	reasons	to	decentralize,	but	it's	still	important:	it's	easier	and	more
secure	for	on-chain	things	to	interact	with	other	on-chain	things,	than	with	off-chain
systems	that	would	inevitably	require	an	(attackable)	bridge	layer.

If	a	large	organization	running	on	direct	democracy	holds	10,000	ETH	in	its	reserves,	that	would	be	a
decentralized	governance	decision,	but	it	would	not	be	a	decentralized	implementation:	in	practice,
that	country	would	have	a	few	people	managing	the	keys	and	that	storage	system	could	get	attacked.

There	is	also	a	governance	angle	to	this:	if	a	system	provides	services	to	other	DAOs	that	are	not
capable	of	rapid	change,	it	is	better	for	that	system	to	itself	be	incapable	of	rapid	change,	to	avoid
"rigidity	mismatch"	where	a	system's	dependencies	break	and	that	system's	rigidity	renders	it	unable
to	adapt	to	the	break.

These	three	"theories	of	decentralization"	can	be	put	into	a	chart	as	follows:

Why	decentralize	governance
structure

Why	decentralize
implementation

Decentralization	for
robustness

Defense	against	inside	threats
(eg.	SBF)

Defense	against	outside	threats,
and	censorship	resistance

Decentralization	for
efficiency

Greater	efficiency	from

accepting	input	from	more
voices	and	giving	room	for
autonomy

Smart	contracts	often	more
convenient	than	legal	systems



autonomy
Decentralization	for
interoperability

To	be	rigid	enough	to	be	safe	to
use	by	other	rigid	systems

To	more	easily	interact	with
other	decentralized	things

Decentralization	and	fancy	new	governance	mechanisms

Over	the	last	few	decades,	we've	seen	the	development	of	a	number	of	fancy	new	governance
mechanisms:

Quadratic	voting
Futarchy
Liquid	democracy
Decentralized	conversation	tools	like	Pol.is

These	ideas	are	an	important	part	of	the	DAO	story,	and	they	can	be	valuable	for	both	robustness	and
efficiency.	The	case	for	quadratic	voting	relies	on	a	mathematical	argument	that	it	makes	the	exactly
correct	tradeoff	between	giving	space	for	stronger	preferences	to	outcompete	weaker	but	more
popular	preferences	and	not	weighting	stronger	preferences	(or	wealthy	actors)	too	much.	But
people	who	have	used	it	have	found	that	it	can	improve	robustness	too.	Newer	ideas,	like	pairwise
matching,	intentionally	sacrifice	mathematically	provable	optimality	for	robustness	in	situations
where	the	mathematical	model's	assumptions	break.

These	ideas,	in	addition	to	more	"traditional"	centuries-old	ideas	around	multicameral	architectures
and	intentional	indirection	and	delays,	are	going	to	be	an	important	part	of	the	story	in	making	DAOs
more	effective,	though	they	will	also	find	value	in	improving	the	efficiency	of	traditional
organizations.

Case	study:	Gitcoin	Grants

We	can	analyze	the	different	styles	of	decentralization	through	an	interesting	edge-case:	Gitcoin
Grants.	Should	Gitcoin	Grants	be	an	on-chain	DAO,	or	should	it	just	be	a	centralized	org?

Here	are	some	possible	arguments	for	Gitcoin	Grants	to	be	a	DAO:

It	holds	and	deals	with	cryptocurrency,	because	most	of	its	users	and	funders	are	Ethereum
users
Secure	quadratic	funding	is	best	done	on-chain	(see	next	section	on	blockchain	voting,	and
implementation	of	on-chain	QF	here),	so	you	reduce	security	risks	if	the	result	of	the	vote	feeds
into	the	system	directly
It	deals	with	communities	all	around	the	world,	and	so	benefits	from	being	credibly	neutral	and
not	centered	around	a	single	country.
It	benefits	from	being	able	to	give	its	users	confidence	that	it	will	still	be	around	in	five	years,	so
that	public	goods	funders	can	start	projects	now	and	hope	to	be	rewarded	later.

These	arguments	lean	toward	decentralization	for	robustness	and	decentralization	for
interoperability	of	the	superstructure,	though	the	individual	quadratic	funding	rounds	are	more	in
the	"decentralization	for	efficiency"	school	of	thought	(the	theory	behind	Gitcoin	Grants	is	that
quadratic	funding	is	a	more	efficient	way	to	fund	public	goods).

If	the	robustness	and	interoperability	arguments	did	not	apply,	then	it	probably	would	have	been
better	to	simply	run	Gitcoin	Grants	as	a	regular	company.	But	they	do	apply,	and	so	Gitcoin	Grants
being	a	DAO	makes	sense.

There	are	plenty	of	other	examples	of	this	kind	of	argument	applying,	both	for	DAOs	that	people
increasingly	rely	on	for	their	day-to-day	lives,	and	for	"meta-DAOs"	that	provide	services	to	other
DAOs:

Proof	of	humanity
Kleros
Chainlink
Stablecoins
Blockchain	layer	2	protocol	governance

I	don't	know	enough	about	all	of	these	systems	to	testify	that	they	all	do	optimize	for
decentralization-for-robustness	enough	to	satisfy	my	standards,	but	hopefully	it	should	be	obvious	by

https://vitalik.ca/general/2019/12/07/quadratic.html
https://vitalik.ca/general/2021/02/18/election.html
https://en.wikipedia.org/wiki/Liquid_democracy
https://pol.is/
https://ethresear.ch/t/pairwise-coordination-subsidies-a-new-quadratic-funding-design/5553
https://clr.fund/
https://nakamoto.com/credible-neutrality/
https://kleros.io/
https://chain.link/


now	that	they	should.

The	main	thing	that	does	not	work	well	are	DAOs	that	require	pivoting	ability	that	is	in
conflict	with	robustness,	and	that	do	not	have	a	sufficient	case	to	"decentralize	for
efficiency".	Large-scale	companies	that	mainly	interface	with	US	users	would	be	one	example.	When
making	a	DAO,	the	first	thing	is	to	determine	whether	or	not	it	is	worth	it	to	structure	the	project	as
a	DAO,	and	the	second	thing	is	to	determine	whether	it's	targeting	robustness	or	efficiency:	if	the
former,	deep	thought	into	governance	design	is	also	required,	and	if	the	latter,	then	either	it's
innovating	on	governance	via	mechanisms	like	quadratic	funding,	or	it	should	just	be	a	multisig.

5.	Hybrid	applications
There	are	many	applications	that	are	not	entirely	on-chain,	but	that	take	advantage	of	both
blockchains	and	other	systems	to	improve	their	trust	models.

Voting	is	an	excellent	example.	High	assurances	of	censorship	resistance,	auditability	and	privacy
are	all	required,	and	systems	like	MACI	effectively	combine	blockchains,	ZK-SNARKs	and	a	limited
centralized	(or	M-of-N)	layer	for	scalability	and	coercion	resistance	to	achieve	all	of	these
guarantees.	Votes	are	published	to	the	blockchain,	so	users	have	a	way	independent	of	the	voting
system	to	ensure	that	their	votes	get	included.	But	votes	are	encrypted,	preserving	privacy,	and	a
ZK-SNARK-based	solution	is	used	to	ensure	that	the	final	result	is	the	correct	computation	of	the
votes.

Diagram	of	how	MACI	works,	combining	together	blockchains	for	censorship	resistance,	encryption	for	privacy,	and
ZK-SNARKs	to	ensure	the	result	is	correct	without	compromising	on	the	other	goals.

Voting	in	existing	national	elections	is	already	a	high-assurance	process,	and	it	will	take	a	long	time
before	countries	and	citizens	are	comfortable	with	the	security	assurances	of	any	electronic	ways	to
vote,	blockchain	or	otherwise.	But	technology	like	this	can	be	valuable	very	soon	in	two	other	places:

1.	 Increasing	the	assurance	of	voting	processes	that	already	happen	electronically	today	(eg.	social
media	votes,	polls,	petitions)

https://vitalik.ca/general/2021/05/25/voting2.html
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2.	 Creating	new	forms	of	voting	that	allow	citizens	or	members	of	groups	to	give	rapid	feedback,
and	baking	high	assurance	into	those	from	the	start

Going	beyond	voting,	there	is	an	entire	field	of	potential	"auditable	centralized	services"	that	could
be	well-served	by	some	form	of	hybrid	off-chain	validium	architecture.	The	easiest	example	of	this	is
proof	of	solvency	for	exchanges,	but	there	are	plenty	of	other	possible	examples:

Government	registries
Corporate	accounting
Games	(see	Dark	Forest	for	an	example)
Supply	chain	applications
Tracking	access	authorization
...

As	we	go	further	down	the	list,	we	get	to	use	cases	that	are	lower	and	lower	value,	but	it	is	important
to	remember	that	these	use	cases	are	also	quite	low	cost.	Validiums	do	not	require	publishing
everything	on-chain.	Rather,	they	can	be	simple	wrappers	around	existing	pieces	of	software	that
maintain	a	Merkle	root	(or	other	commitment)	of	the	database	and	occasionally	publish	the	root	on-
chain	along	with	a	SNARK	proving	that	it	was	updated	correctly.	This	is	a	strict	improvement	over
existing	systems,	because	it	opens	the	door	for	cross-institutional	proofs	and	public	auditing.

So	how	do	we	get	there?
Many	of	these	applications	are	being	built	today,	though	many	of	these	applications	are	seeing	only
limited	usage	because	of	the	limitations	of	present-day	technology.	Blockchains	are	not	scalable,
transactions	until	recently	took	a	fairly	long	time	to	reliably	get	included	on	the	chain,	and	present-
day	wallets	give	users	an	uncomfortable	choice	between	low	convenience	and	low	security.	In	the
longer	term,	many	of	these	applications	will	need	to	overcome	the	specter	of	privacy	issues.

These	are	all	problems	that	can	be	solved,	and	there	is	a	strong	drive	to	solve	them.	The	FTX	collapse
has	shown	many	people	the	importance	of	truly	decentralized	solutions	to	holding	funds,	and	the	rise
of	ERC-4337	and	account	abstraction	wallets	gives	us	an	opportunity	to	create	such	alternatives.
Rollup	technology	is	rapidly	progressing	to	solve	scalability,	and	transactions	already	get	included
much	more	quickly	on-chain	than	they	did	three	years	ago.

But	what	is	also	important	is	to	be	intentional	about	the	application	ecosystem	itself.	Many	of	the
more	stable	and	boring	applications	do	not	get	built	because	there	is	less	excitement	and	less	short-
term	profit	to	be	earned	around	them:	the	LUNA	market	cap	got	to	over	$30	billion,	while	stablecoins
striving	for	robustness	and	simplicity	often	get	largely	ignored	for	years.	Non-financial	applications
often	have	no	hope	of	earning	$30	billion	because	they	do	not	have	a	token	at	all.	But	it	is	these
applications	that	will	be	most	valuable	for	the	ecosystem	in	the	long	term,	and	that	will	bring	the
most	lasting	value	to	both	their	users	and	those	who	build	and	support	them.
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Having	a	safe	CEX:	proof	of	solvency	and
beyond

Special	thanks	to	Balaji	Srinivasan,	and	Coinbase,	Kraken	and	Binance	staff	for	discussion.

Every	time	a	major	centralized	exchange	blows	up,	a	common	question	that	comes	up	is	whether	or
not	we	can	use	cryptographic	techniques	to	solve	the	problem.	Rather	than	relying	solely	on	"fiat"
methods	like	government	licenses,	auditors	and	examining	the	corporate	governance	and	the
backgrounds	of	the	individuals	running	the	exchange,	exchanges	could	create	cryptographic	proofs
that	show	that	the	funds	they	hold	on-chain	are	enough	to	cover	their	liabilities	to	their	users.

Even	more	ambitiously,	an	exchange	could	build	a	system	where	it	can't	withdraw	a	depositor's	funds
at	all	without	their	consent.	Potentially,	we	could	explore	the	entire	spectrum	between	the	"don't	be
evil"	aspiring-good-guy	CEX	and	the	"can't	be	evil",	but	for-now	inefficient	and	privacy-leaking,	on-
chain	DEX.	This	post	will	get	into	the	history	of	attempts	to	move	exchanges	one	or	two	steps	closer
to	trustlessness,	the	limitations	of	these	techniques,	and	some	newer	and	more	powerful	ideas	that
rely	on	ZK-SNARKs	and	other	advanced	technologies.

Balance	lists	and	Merkle	trees:	old-school	proof-of-solvency
The	earliest	attempts	by	exchanges	to	try	to	cryptographically	prove	that	they	are	not	cheating	their
users	go	back	quite	far.	In	2011,	then-largest	Bitcoin	exchange	MtGox	proved	that	they	had	funds	by
sending	a	transaction	that	moved	424242	BTC	to	a	pre-announced	address.	In	2013,	discussions
started	on	how	to	solve	the	other	side	of	the	problem:	proving	the	total	size	of	customers'	deposits.	If
you	prove	that	customers'	deposits	equal	X	("proof	of	liabilities"),	and	prove	ownership	of	the
private	keys	of	X	coins	("proof	of	assets"),	then	you	have	a	proof	of	solvency:	you've	proven	the
exchange	has	the	funds	to	pay	back	all	of	its	depositors.

The	simplest	way	to	prove	deposits	is	to	simply	publish	a	list	of	(username,	balance)	pairs.	Each	user
can	check	that	their	balance	is	included	in	the	list,	and	anyone	can	check	the	full	list	to	see	that	(i)
every	balance	is	non-negative,	and	(ii)	the	total	sum	is	the	claimed	amount.	Of	course,	this	breaks
privacy,	so	we	can	change	the	scheme	a	little	bit:	publish	a	list	of	(hash(username,	salt),	balance)
pairs,	and	send	each	user	privately	their	salt	value.	But	even	this	leaks	balances,	and	it	leaks	the
pattern	of	changes	in	balances.	The	desire	to	preserve	privacy	brings	us	to	the	next	invention:	the
Merkle	tree	technique.
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Green:	Charlie's	node.	Blue:	nodes	Charlie	will	receive	as	part	of	his	proof.	Yellow:	root	node,
publicly	shown	to	everyone.

The	Merkle	tree	technique	consists	of	putting	the	table	of	customers'	balances	into	a	Merkle	sum
tree.	In	a	Merkle	sum	tree,	each	node	is	a	(balance,	hash)	pair.	The	bottom-layer	leaf	nodes
represent	the	balances	and	salted	username	hashes	of	individual	customers.	In	each	higher-layer
node,	the	balance	is	the	sum	of	the	two	balances	below,	and	the	hash	is	the	hash	of	the	two	nodes
below.	A	Merkle	sum	proof,	like	a	Merkle	proof,	is	a	"branch"	of	the	tree,	consisting	of	the	sister
nodes	along	the	path	from	a	leaf	to	the	root.

The	exchange	would	send	each	user	a	Merkle	sum	proof	of	their	balance.	The	user	would	then	have	a
guarantee	that	their	balance	is	correctly	included	as	part	of	the	total.	A	simple	example	code
implementation	can	be	found	here.

#	The	function	for	computing	a	parent	node	given	two	child	nodes
def	combine_tree_nodes(L,	R):
				L_hash,	L_balance	=	L
				R_hash,	R_balance	=	R
				assert	L_balance	>=	0	and	R_balance	>=	0
				new_node_hash	=	hash(
								L_hash	+	L_balance.to_bytes(32,	'big')	+
								R_hash	+	R_balance.to_bytes(32,	'big')
				)
				return	(new_node_hash,	L_balance	+	R_balance)

#	Builds	a	full	Merkle	tree.	Stored	in	flattened	form	where
#	node	i	is	the	parent	of	nodes	2i	and	2i+1
def	build_merkle_sum_tree(user_table:	"List[(username,	salt,	balance)]"):
				tree_size	=	get_next_power_of_2(len(user_table))
				tree	=	(
								[None]	*	tree_size	+
								[userdata_to_leaf(*user)	for	user	in	user_table]	+
								[EMPTY_LEAF	for	_	in	range(tree_size	-	len(user_table))]
				)
				for	i	in	range(tree_size	-	1,	0,	-1):
								tree[i]	=	combine_tree_nodes(tree[i*2],	tree[i*2+1])
				return	tree

#	Root	of	a	tree	is	stored	at	index	1	in	the	flattened	form
def	get_root(tree):
				return	tree[1]

#	Gets	a	proof	for	a	node	at	a	particular	index
def	get_proof(tree,	index):
				branch_length	=	log2(len(tree))	-	1

Privacy	leakage	in	this	design	is	much	lower	than	with	a	fully	public	list,	and	it	can	be	decreased
further	by	shuffling	the	branches	each	time	a	root	is	published,	but	some	privacy	leakage	is	still
there:	Charlie	learns	that	someone	has	a	balance	of	164	ETH,	some	two	users	have	balances	that	add
up	to	70	ETH,	etc.	An	attacker	that	controls	many	accounts	could	still	potentially	learn	a	significant
amount	about	the	exchange's	users.

One	important	subtlety	of	the	scheme	is	the	possibility	of	negative	balances:	what	if	an	exchange	that
has	1390	ETH	of	customer	balances	but	only	890	ETH	in	reserves	tries	to	make	up	the	difference	by
adding	a	-500	ETH	balance	under	a	fake	account	somewhere	in	the	tree?	It	turns	out	that	this

https://github.com/ethereum/research/blob/master/proof_of_solvency/merkle_sum_tree.py


possibility	does	not	break	the	scheme,	though	this	is	the	reason	why	we	specifically	need	a	Merkle
sum	tree	and	not	a	regular	Merkle	tree.	Suppose	that	Henry	is	the	fake	account	controlled	by	the
exchange,	and	the	exchange	puts	-500	ETH	there:

Greta's	proof	verification	would	fail:	the	exchange	would	have	to	give	her	Henry's	-500	ETH	node,
which	she	would	reject	as	invalid.	Eve	and	Fred's	proof	verification	would	also	fail,	because	the
intermediate	node	above	Henry	has	-230	total	ETH,	and	so	is	also	invalid!	To	get	away	with	the	theft,
the	exchange	would	have	to	hope	that	nobody	in	the	entire	right	half	of	the	tree	checks	their	balance
proof.

If	the	exchange	can	identify	500	ETH	worth	of	users	that	they	are	confident	will	either	not	bother	to
check	the	proof,	or	will	not	be	believed	when	they	complain	that	they	never	received	a	proof,	they
could	get	away	with	the	theft.	But	then	the	exchange	could	also	just	exclude	those	users	from	the
tree	and	have	the	same	effect.	Hence,	the	Merkle	tree	technique	is	basically	as	good	as	a	proof-of-
liabilities	scheme	can	be,	if	only	achieving	a	proof	of	liabilities	is	the	goal.	But	its	privacy	properties
are	still	not	ideal.	You	can	go	a	little	bit	further	by	using	Merkle	trees	in	more	clever	ways,	like
making	each	satoshi	or	wei	a	separate	leaf,	but	ultimately	with	more	modern	tech	there	are	even
better	ways	to	do	it.

Improving	privacy	and	robustness	with	ZK-SNARKs

ZK-SNARKs	are	a	powerful	technology.	ZK-SNARKs	may	be	to	cryptography	what	transformers	are
to	AI:	a	general-purpose	technology	that	is	so	powerful	that	it	will	completely	steamroll	a	whole
bunch	of	application-specific	techniques	for	a	whole	bunch	of	problems	that	were	developed	in	the
decades	prior.	And	so,	of	course,	we	can	use	ZK-SNARKs	to	greatly	simplify	and	improve	privacy	in
proof-of-liabilities	protocols.

The	simplest	thing	that	we	can	do	is	put	all	users'	deposits	into	a	Merkle	tree	(or,	even	simpler,	a
KZG	commitment),	and	use	a	ZK-SNARK	to	prove	that	all	balances	in	the	tree	are	non-negative	and
add	up	to	some	claimed	value.	If	we	add	a	layer	of	hashing	for	privacy,	the	Merkle	branch	(or	KZG
proof)	given	to	each	user	would	reveal	nothing	about	the	balance	of	any	other	user.
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Using	KZG	commitments	is	one	way	to	avoid	privacy	leakage,	as	there	is	no	need	to	provide	"sister
nodes"	as	proofs,	and	a	simple	ZK-SNARK	can	be	used	to	prove	the	sum	of	the	balances	and	that

each	balance	is	non-negative.

We	can	prove	the	sum	and	non-negativity	of	balances	in	the	above	KZG	with	a	special-purpose	ZK-
SNARK.	Here	is	one	simple	example	way	to	do	this.	We	introduce	an	auxiliary	polynomial	\(I(x)\),
which	"builds	up	the	bits"	of	each	balance	(we	assume	for	the	sake	of	example	that	balances	are
under	\(2^{15}\))	and	where	every	16th	position	tracks	a	running	total	with	an	offset	so	that	it	sums
to	zero	only	if	the	actual	total	matches	the	declared	total.	If	\(z\)	is	an	order-128	root	of	unity,	we
might	prove	the	equations:

\(I(z^{16x})	=	0\)

\(I(z^{16x	+	14})	=	P(\omega^{2x+1})\)

\(I(z^{i})	-	2*I(z^{i-1})	\in	\{0,	1\}\	\	if\	\	i\	\	mod\	16	\not	\in	\{0,	15\}\)

\(I(z^{16*x	+	15})	=	I(z^{16*x-1})	+	I(z^{16*x+14})	-	\frac{the\	declared\	total}{user\	count}\)

The	first	values	of	a	valid	setting	for	\(I(x)\)	would	be	0	0	0	0	0	0	0	0	0	0	1	2	5	10	20	-165	0	0	0	0	0	0
0	0	0	1	3	6	12	25	50	-300	...

See	here	and	here	in	my	post	on	ZK-SNARKs	for	further	explanation	of	how	to	convert	equations	like
these	into	a	polynomial	check	and	then	into	a	ZK-SNARK.	This	isn't	an	optimal	protocol,	but	it	does
show	how	these	days	these	kinds	of	cryptographic	proofs	are	not	that	spooky!

With	only	a	few	extra	equations,	constraint	systems	like	this	can	be	adapted	to	more	complex
settings.	For	example,	in	a	leverage	trading	system,	an	individual	users	having	negative	balances	is
acceptable	but	only	if	they	have	enough	other	assets	to	cover	the	funds	with	some	collateralization
margin.	A	SNARK	could	be	used	to	prove	this	more	complicated	constraint,	reassuring	users	that	the
exchange	is	not	risking	their	funds	by	secretly	exempting	other	users	from	the	rules.

In	the	longer-term	future,	this	kind	of	ZK	proof	of	liabilities	could	perhaps	be	used	not	just	for
customer	deposits	at	exchanges,	but	for	lending	more	broadly.	Anyone	taking	out	a	loan	would	put	a
record	into	a	polynomial	or	a	tree	containing	that	loan,	and	the	root	of	that	structure	would	get
published	on-chain.	This	would	let	anyone	seeking	a	loan	ZK-prove	to	the	lender	that	they	have	not
yet	taken	out	too	many	other	loans.	Eventually,	legal	innovation	could	even	make	loans	that	have
been	committed	to	in	this	way	higher-priority	than	loans	that	have	not.	This	leads	us	in	exactly	the
same	direction	as	one	of	the	ideas	that	was	discussed	in	the	"Decentralized	Society:	Finding	Web3's
Soul"	paper:	a	general	notion	of	negative	reputation	or	encumberments	on-chain	through	some	form
of	"soulbound	tokens".

Proof	of	assets
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The	simplest	version	of	proof	of	assets	is	the	protocol	that	we	saw	above:	to	prove	that	you	hold	X
coins,	you	simply	move	X	coins	around	at	some	pre-agreed	time	or	in	a	transaction	where	the	data
field	contains	the	words	"these	funds	belong	to	Binance".	To	avoid	paying	transaction	fees,	you	could
sign	an	off-chain	message	instead;	both	Bitcoin	and	Ethereum	have	standards	for	off-chain	signed
messages.

There	are	two	practical	problems	with	this	simple	proof-of-assets	technique:

Dealing	with	cold	storage
Collateral	dual-use

For	safety	reasons,	most	exchanges	keep	the	great	majority	of	customer	funds	in	"cold	storage":	on
offline	computers,	where	transactions	need	to	be	signed	and	carried	over	onto	the	internet	manually.
Literal	air-gapping	is	common:	a	cold	storage	setup	that	I	used	to	use	for	personal	funds	involved	a
permanently	offline	computer	generating	a	QR	code	containing	the	signed	transaction,	which	I	would
scan	from	my	phone.	Because	of	the	high	values	at	stake,	the	security	protocols	used	by	exchanges
are	crazier	still,	and	often	involve	using	multi-party	computation	between	several	devices	to	further
reduce	the	chance	of	a	hack	against	a	single	device	compromising	a	key.	Given	this	kind	of	setup,
making	even	a	single	extra	message	to	prove	control	of	an	address	is	an	expensive	operation!

There	are	several	paths	that	an	exchange	can	take:

Keep	a	few	public	long-term-use	addresses.	The	exchange	would	generate	a	few	addresses,
publish	a	proof	of	each	address	once	to	prove	ownership,	and	then	use	those	addresses
repeatedly.	This	is	by	far	the	simplest	option,	though	it	does	add	some	constraints	in	how	to
preserve	security	and	privacy.
Have	many	addresses,	prove	a	few	randomly.	The	exchange	would	have	many	addresses,
perhaps	even	using	each	address	only	once	and	retiring	it	after	a	single	transaction.	In	this	case,
the	exchange	may	have	a	protocol	where	from	time	to	time	a	few	addresses	get	randomly
selected	and	must	be	"opened"	to	prove	ownership.	Some	exchanges	already	do	something	like
this	with	an	auditor,	but	in	principle	this	technique	could	be	turned	into	a	fully	automated
procedure.
More	complicated	ZKP	options.	For	example,	an	exchange	could	set	all	of	its	addresses	to	be
1-of-2	multisigs,	where	one	of	the	keys	is	different	per	address,	and	the	other	is	a	blinded
version	of	some	"grand"	emergency	backup	key	stored	in	some	complicated	but	very	high-
security	way,	eg.	a	12-of-16	multisig.	To	preserve	privacy	and	avoid	revealing	the	entire	set	of
its	addresses,	the	exchange	could	even	run	a	zero	knowledge	proof	over	the	blockchain	where	it
proves	the	total	balance	of	all	addresses	on	chain	that	have	this	format.

The	other	major	issue	is	guarding	against	collateral	dual-use.	Shuttling	collateral	back	and	forth
between	each	other	to	do	proof	of	reserves	is	something	that	exchanges	could	easily	do,	and	would
allow	them	to	pretend	to	be	solvent	when	they	actually	are	not.	Ideally,	proof	of	solvency	would	be
done	in	real	time,	with	a	proof	that	updates	after	every	block.	If	this	is	impractical,	the	next	best
thing	would	be	to	coordinate	on	a	fixed	schedule	between	the	different	exchanges,	eg.	proving
reserves	at	1400	UTC	every	Tuesday.

One	final	issue	is:	can	you	do	proof-of-assets	on	fiat?	Exchanges	don't	just	hold	cryptocurrency,
they	also	hold	fiat	currency	within	the	banking	system.	Here,	the	answer	is:	yes,	but	such	a
procedure	would	inevitably	rely	on	"fiat"	trust	models:	the	bank	itself	can	attest	to	balances,	auditors
can	attest	to	balance	sheets,	etc.	Given	that	fiat	is	not	cryptographically	verifiable,	this	is	the	best
that	can	be	done	within	that	framework,	but	it's	still	worth	doing.

An	alternative	approach	would	be	to	cleanly	separate	between	one	entity	that	runs	the	exchange	and
deals	with	asset-backed	stablecoins	like	USDC,	and	another	entity	(USDC	itself)	that	handles	the
cash-in	and	cash-out	process	for	moving	between	crypto	and	traditional	banking	systems.	Because
the	"liabilities"	of	USDC	are	just	on-chain	ERC20	tokens,	proof	of	liabilities	comes	"for	free"	and	only
proof	of	assets	is	required.

Plasma	and	validiums:	can	we	make	CEXes	non-custodial?
Suppose	that	we	want	to	go	further:	we	don't	want	to	just	prove	that	the	exchange	has	the	funds	to
pay	back	its	users.	Rather,	we	want	to	prevent	the	exchange	from	stealing	users'	funds
completely.

The	first	major	attempt	at	this	was	Plasma,	a	scaling	solution	that	was	popular	in	Ethereum	research
circles	in	2017	and	2018.	Plasma	works	by	splitting	up	the	balance	into	a	set	of	individual	"coins",
where	each	coin	is	assigned	an	index	and	lives	in	a	particular	position	in	the	Merkle	tree	of	a	Plasma
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block.	Making	a	valid	transfer	of	a	coin	requires	putting	a	transaction	into	the	correct	position	of	a
tree	whose	root	gets	published	on-chain.

Oversimplified	diagram	of	one	version	of	Plasma.	Coins	are	held	in	a	smart	contract	that	enforces	the
rules	of	the	Plasma	protocol	at	withdrawal	time.

OmiseGo	attempted	to	make	a	decentralized	exchange	based	on	this	protocol,	but	since	then	they
have	pivoted	to	other	ideas	-	as	has,	for	that	matter,	Plasma	Group	itself,	which	is	now	the	optimistic
EVM	rollup	project	Optimism.

It's	not	worth	looking	at	the	technical	limitations	of	Plasma	as	conceived	in	2018	(eg.	proving	coin
defragmentation)	as	some	kind	of	morality	tale	about	the	whole	concept.	Since	the	peak	of	Plasma
discourse	in	2018,	ZK-SNARKs	have	become	much	more	viable	for	scaling-related	use	cases,	and	as
we	have	said	above,	ZK-SNARKs	change	everything.

The	more	modern	version	of	the	Plasma	idea	is	what	Starkware	calls	a	validium:	basically	the	same
as	a	ZK-rollup,	except	where	data	is	held	off-chain.	This	construction	could	be	used	for	a	lot	of	use
cases,	conceivably	anything	where	a	centralized	server	needs	to	run	some	code	and	prove	that	it's
executing	code	correctly.	In	a	validium,	the	operator	has	no	way	to	steal	funds,	though
depending	on	the	details	of	the	implementation	some	quantity	of	user	funds	could	get
stuck	if	the	operator	disappears.

This	is	all	really	good:	far	from	CEX	vs	DEX	being	a	binary,	it	turns	out	that	there	is	a	whole
spectrum	of	options,	including	various	forms	of	hybrid	centralization	where	you	gain	some	benefits
like	efficiency	but	still	have	a	lot	of	cryptographic	guardrails	preventing	the	centralized	operator
from	engaging	in	most	forms	of	abuses.

But	it's	worth	getting	to	the	fundamental	issue	with	the	right	half	of	this	design	space:	dealing	with
user	errors.	By	far	the	most	important	type	of	error	is:	what	if	a	user	forgets	their	password,	loses
their	devices,	gets	hacked,	or	otherwise	loses	access	to	their	account?

https://www.optimism.io/
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Exchanges	can	solve	this	problem:	first	e-mail	recovery,	and	if	even	that	fails,	more	complicated
forms	of	recovery	through	KYC.	But	to	be	able	to	solve	such	problems,	the	exchange	needs	to
actually	have	control	over	the	coins.	In	order	to	have	the	ability	to	recover	user	accounts'	funds	for
good	reasons,	exchanges	need	to	have	power	that	could	also	be	used	to	steal	user	accounts'	funds	for
bad	reasons.	This	is	an	unavoidable	tradeoff.

The	ideal	long-term	solution	is	to	rely	on	self-custody,	in	a	future	where	users	have	easy	access	to
technologies	such	as	multisig	and	social	recovery	wallets	to	help	deal	with	emergency	situations.	But
in	the	short	term,	there	are	two	clear	alternatives	that	have	clearly	distinct	costs	and	benefits:

Option Exchange-side	risk User-side	risk
Custodial	exchange	(eg.
Coinbase	today)

User	funds	may	be	lost	if	there	is
a	problem	on	the	exchange	side

Exchange	can	help	recover
account

Non-custodial	exchange	(eg.
Uniswap	today)

User	can	withdraw	even	if
exchange	acts	maliciously

User	funds	may	be	lost	if	user
screws	up

Another	important	issue	is	cross-chain	support:	exchanges	need	to	support	many	different	chains,
and	systems	like	Plasma	and	validiums	would	need	to	have	code	written	in	different	languages	to
support	different	platforms,	and	cannot	be	implemented	at	all	on	others	(notably	Bitcoin)	in	their
current	form.	In	the	long-term	future,	this	can	hopefully	be	fixed	with	technological	upgrades	and
standardization;	in	the	short	term,	however,	it's	another	argument	in	favor	of	custodial	exchanges
remaining	custodial	for	now.

Conclusions:	the	future	of	better	exchanges
In	the	short	term,	there	are	two	clear	"classes"	of	exchanges:	custodial	exchanges	and	non-custodial
exchanges.	Today,	the	latter	category	is	just	DEXes	such	as	Uniswap,	and	in	the	future	we	may	also
see	cryptographically	"constrained"	CEXes	where	user	funds	are	held	in	something	like	a	validium
smart	contract.	We	may	also	see	half-custodial	exchanges	where	we	trust	them	with	fiat	but	not
cryptocurrency.

Both	types	of	exchanges	will	continue	to	exist,	and	the	easiest	backwards-compatible	way	to	improve
the	safety	of	custodial	exchanges	is	to	add	proof	of	reserve.	This	consists	of	a	combination	of	proof	of
assets	and	proof	of	liabilities.	There	are	technical	challenges	in	making	good	protocols	for	both,	but
we	can	and	should	go	as	far	as	possible	to	make	headway	in	both,	and	open-source	the	software	and
processes	as	much	as	possible	so	that	all	exchanges	can	benefit.

In	the	longer-term	future,	my	hope	is	that	we	move	closer	and	closer	to	all	exchanges	being	non-
custodial,	at	least	on	the	crypto	side.	Wallet	recovery	would	exist,	and	there	may	need	to	be	highly
centralized	recovery	options	for	new	users	dealing	with	small	amounts,	as	well	as	institutions	that
require	such	arrangements	for	legal	reasons,	but	this	can	be	done	at	the	wallet	layer	rather	than
within	the	exchange	itself.	On	the	fiat	side,	movement	between	the	traditional	banking	system	and
the	crypto	ecosystem	could	be	done	via	cash	in	/	cash	out	processes	native	to	asset-backed
stablecoins	such	as	USDC.	However,	it	will	still	take	a	while	before	we	can	fully	get	there.

https://vitalik.ca/general/2021/01/11/recovery.html
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The	Revenue-Evil	Curve:	a	different	way	to
think	about	prioritizing	public	goods	funding

Special	thanks	to	Karl	Floersch,	Hasu	and	Tina	Zhen	for	feedback	and	review.

Public	goods	are	an	incredibly	important	topic	in	any	large-scale	ecosystem,	but	they	are	also	one
that	is	often	surprisingly	tricky	to	define.	There	is	an	economist	definition	of	public	goods	-	goods
that	are	non-excludable	and	non-rivalrous,	two	technical	terms	that	taken	together	mean	that	it's
difficult	to	provide	them	through	private	property	and	market-based	means.	There	is	a	layman's
definition	of	public	good:	"anything	that	is	good	for	the	public".	And	there	is	a	democracy
enthusiast's	definition	of	public	good,	which	includes	connotations	of	public	participation	in	decision-
making.

But	more	importantly,	when	the	abstract	category	of	non-excludable	non-rivalrous	public	goods
interacts	with	the	real	world,	in	almost	any	specific	case	there	are	all	kinds	of	subtle	edge	cases	that
need	to	be	treated	differently.	A	park	is	a	public	good.	But	what	if	you	add	a	$5	entrance	fee?	What	if
you	fund	it	by	auctioning	off	the	right	to	have	a	statue	of	the	winner	in	the	park's	central	square?
What	if	it's	maintained	by	a	semi-altruistic	billionaire	that	enjoys	the	park	for	personal	use,	and
designs	the	park	around	their	personal	use,	but	still	leaves	it	open	for	anyone	to	visit?

This	post	will	attempt	to	provide	a	different	way	of	analyzing	"hybrid"	goods	on	the	spectrum
between	private	and	public:	the	revenue-evil	curve.	We	ask	the	question:	what	are	the	tradeoffs	of
different	ways	to	monetize	a	given	project,	and	how	much	good	can	be	done	by	adding	external
subsidies	to	remove	the	pressure	to	monetize?	This	is	far	from	a	universal	framework:	it	assumes	a
"mixed-economy"	setting	in	a	single	monolithic	"community"	with	a	commercial	market	combined
with	subsidies	from	a	central	funder.	But	it	can	still	tell	us	a	lot	about	how	to	approach	funding
public	goods	in	crypto	communities,	countries	and	many	other	real-world	contexts	today.

The	traditional	framework:	excludability	and	rivalrousness
Let	us	start	off	by	understanding	how	the	usual	economist	lens	views	which	projects	are	private	vs
public	goods.	Consider	the	following	examples:

Alice	owns	1000	ETH,	and	wants	to	sell	it	on	the	market.
Bob	runs	an	airline,	and	sells	tickets	for	a	flight.
Charlie	builds	a	bridge,	and	charges	a	toll	to	pay	for	it.
David	makes	and	releases	a	podcast.
Eve	makes	and	releases	a	song.
Fred	invents	a	new	and	better	cryptographic	algorithm	for	making	zero	knowledge	proofs.

We	put	these	situations	on	a	chart	with	two	axes:

Rivalrousness:	to	what	extent	does	one	person	enjoying	the	good	reduce	another	person's
ability	to	enjoy	it?
Excludability:	how	difficult	is	it	to	prevent	specific	individuals,	eg.	those	who	do	not	pay,	from
enjoying	the	good?

Such	a	chart	might	look	like	this:
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Alice's	ETH	is	completely	excludable	(she	has	total	power	to	choose	who	gets	her	coins),	and
crypto	coins	are	rivalrous	(if	one	person	owns	a	particular	coin,	no	one	else	owns	that	same
coin)
Bob's	plane	tickets	are	excludable,	but	a	tiny	bit	less	rivalrous:	there's	a	chance	the	plane	won't
be	full.
Charlie's	bridge	is	a	bit	less	excludable	than	plane	tickets,	because	adding	a	gate	to	verify
payment	of	tolls	takes	extra	effort	(so	Charlie	can	exclude	but	it's	costly,	both	to	him	and	to
users),	and	its	rivalrousness	depends	on	whether	the	road	is	congested	or	not.
David's	podcast	and	Eve's	song	are	not	rivalrous:	one	person	listening	to	it	does	not	interfere
with	another	person	doing	the	same.	They're	a	little	bit	excludable,	because	you	can	make	a
paywall	but	people	can	circumvent	the	paywall.
And	Fred's	cryptographic	algorithm	is	close	to	not	excludable	at	all:	it	needs	to	be	open-source
for	people	to	trust	it,	and	if	Fred	tries	to	patent	it,	the	target	user	base	(open-source-loving
crypto	users)	may	well	refuse	to	use	the	algorithm	and	even	cancel	him	for	it.

This	is	all	a	good	and	important	analysis.	Excludability	tells	us	whether	or	not	you	can	fund	the
project	by	charging	a	toll	as	a	business	model,	and	rivalrousness	tells	us	whether	exclusion	is	a	tragic
waste	or	if	it's	just	an	unavoidable	property	of	the	good	in	question	that	if	one	person	gets	it	another
does	not.	But	if	we	look	at	some	of	the	examples	carefully,	especially	the	digital	examples,	we	start	to
see	that	it	misses	a	very	important	issue:	there	are	many	business	models	available	other	than
exclusion,	and	those	business	models	have	tradeoffs	too.

Consider	one	particular	case:	David's	podcast	versus	Eve's	song.	In	practice,	a	huge	number	of
podcasts	are	released	mostly	or	completely	freely,	but	songs	are	more	often	gated	with	licensing	and
copyright	restrictions.	To	see	why,	we	need	only	look	at	how	these	podcasts	are	funded:
sponsorships.	Podcast	hosts	typically	find	a	few	sponsors,	and	talk	about	the	sponsors	briefly	at	the
start	or	middle	of	each	episode.	Sponsoring	songs	is	harder:	you	can't	suddenly	start	talking	about
how	awesome	Athletic	Greens*	are	in	the	middle	of	a	love	song,	because	come	on,	it	kills	the	vibe,
man!

Can	we	get	beyond	focusing	solely	on	exclusion,	and	talk	about	monetization	and	the	harms	of
different	monetization	strategies	more	generally?	Indeed	we	can,	and	this	is	exactly	what	the
revenue/evil	curve	is	about.

The	revenue-evil	curve,	defined
The	revenue-evil	curve	of	a	product	is	a	two-dimensional	curve	that	plots	the	answer	to	the	following
question:

How	much	harm	would	the	product's	creator	have	to	inflict	on	their	potential
users	and	the	wider	community	to	earn	$N	of	revenue	to	pay	for	building	the
product?
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The	word	"evil"	here	is	absolutely	not	meant	to	imply	that	no	quantity	of	evil	is	acceptable,	and	that	if
you	can't	fund	a	project	without	committing	evil	you	should	not	do	it	at	all.	Many	projects	make	hard
tradeoffs	that	hurt	their	customers	and	community	in	order	to	ensure	sustainable	funding,	and	often
the	value	of	the	project	existing	at	all	greatly	outweighs	these	harms.	But	nevertheless,	the	goal	is	to
highlight	that	there	is	a	tragic	aspect	to	many	monetization	schemes,	and	public	goods
funding	can	provide	value	by	giving	existing	projects	a	financial	cushion	that	enables	them
to	avoid	such	sacrifices.

Here	is	a	rough	attempt	at	plotting	the	revenue-evil	curves	of	our	six	examples	above:

For	Alice,	selling	her	ETH	at	market	price	is	actually	the	most	compassionate	thing	she	could
do.	If	she	sells	more	cheaply,	she	will	almost	certainly	create	an	on-chain	gas	war,	trader	HFT
war,	or	other	similarly	value-destructive	financial	conflict	between	everyone	trying	to	claim	her
coins	the	fastest.	Selling	above	market	price	is	not	even	an	option:	no	one	would	buy.
For	Bob,	the	socially-optimal	price	to	sell	at	is	the	highest	price	at	which	all	tickets	get	sold	out.
If	Bob	sells	below	that	price,	tickets	will	sell	out	quickly	and	some	people	will	not	be	able	to	get
seats	at	all	even	if	they	really	need	them	(underpricing	may	have	a	few	countervailing	benefits
by	giving	opportunities	to	poor	people,	but	it	is	far	from	the	most	efficient	way	to	achieve	that
goal).	Bob	could	also	sell	above	market	price	and	potentially	earn	a	higher	profit	at	the	cost	of
selling	fewer	seats	and	(from	the	god's-eye	perspective)	needlessly	excluding	people.
If	Charlie's	bridge	and	the	road	leading	to	it	are	uncongested,	charging	any	toll	at	all	imposes	a
burden	and	needlessly	excludes	drivers.	If	they	are	congested,	low	tolls	help	by	reducing
congestion	and	high	tolls	needlessly	exclude	people.
David's	podcast	can	monetize	to	some	extent	without	hurting	listeners	much	by	adding
advertisements	from	sponsors.	If	pressure	to	monetize	increases,	David	would	have	to	adopt
more	and	more	intrusive	forms	of	advertising,	and	truly	maxing	out	on	revenue	would	require
paywalling	the	podcast,	a	high	cost	to	potential	listeners.
Eve	is	in	the	same	position	as	David,	but	with	fewer	low-harm	options	(perhaps	selling	an	NFT?).
Especially	in	Eve's	case,	paywalling	may	well	require	actively	participating	in	the	legal
apparatus	of	copyright	enforcement	and	suing	infringers,	which	carries	further	harms.
Fred	has	even	fewer	monetization	options.	He	could	patent	it,	or	potentially	do	exotic	things	like
auction	off	the	right	to	choose	parameters	so	that	hardware	manufacturers	that	favor	particular
values	would	bid	on	it.	All	options	are	high-cost.
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What	we	see	here	is	that	there	are	actually	many	kinds	of	"evil"	on	the	revenue-evil	curve:

Traditional	economic	deadweight	loss	from	exclusion:	if	a	product	is	priced	above	marginal
cost,	mutually	beneficial	transactions	that	could	have	taken	place	do	not	take	place
Race	conditions:	congestion,	shortages	and	other	costs	from	products	being	too	cheap.
"Polluting"	the	product	in	ways	that	make	it	appealing	to	a	sponsor,	but	is	harmful	to	a
(maybe	small,	maybe	large)	degree	to	listeners.
Engaging	in	offensive	actions	through	the	legal	system,	which	increases	everyone's	fear	and
need	to	spend	money	on	lawyers,	and	has	all	kinds	of	hard-to-predict	secondary	chilling	effects.
This	is	particularly	severe	in	the	case	of	patenting.
Sacrificing	on	principles	highly	valued	by	the	users,	the	community	and	even	the	people
working	on	the	project	itself.

In	many	cases,	this	evil	is	very	context-dependent.	Patenting	is	both	extremely	harmful	and
ideologically	offensive	within	the	crypto	space	and	software	more	broadly,	but	this	is	less	true	in
industries	building	physical	goods:	in	physical	goods	industries,	most	people	who	realistically	can
create	a	derivative	work	of	something	patented	are	going	to	be	large	and	well-organized	enough	to
negotiate	for	a	license,	and	capital	costs	mean	that	the	need	for	monetization	is	much	higher	and
hence	maintaining	purity	is	harder.	To	what	extent	advertisements	are	harmful	depends	on	the
advertiser	and	the	audience:	if	the	podcaster	understands	the	audience	very	well,	ads	can	even	be
helpful!	Whether	or	not	the	possibility	to	"exclude"	even	exists	depends	on	property	rights.

But	by	talking	about	committing	evil	for	the	sake	of	earning	revenue	in	general	terms,	we	gain	the
ability	to	compare	these	situations	against	each	other.

What	does	the	revenue-evil	curve	tell	us	about	funding
prioritization?
Now,	let's	get	back	to	the	key	question	of	why	we	care	about	what	is	a	public	good	and	what	is	not:
funding	prioritization.	If	we	have	a	limited	pool	of	capital	that	is	dedicated	to	helping	a	community
prosper,	which	things	should	we	direct	funding	to?	The	revenue-evil	curve	graphic	gives	us	a	simple
starting	point	for	an	answer:	direct	funds	toward	those	projects	where	the	slope	of	the
revenue-evil	curve	is	the	steepest.

We	should	focus	on	projects	where	each	$1	of	subsidies,	by	reducing	the	pressure	to	monetize,	most
greatly	reduces	the	evil	that	is	unfortunately	required	to	make	the	project	possible.	This	gives	us
roughly	this	ranking:

Top	of	the	line	are	"pure"	public	goods,	because	often	there	aren't	any	ways	to	monetize	them
at	all,	or	if	there	are,	the	economic	or	moral	costs	of	trying	to	monetize	are	extremely	high.
Second	priority	is	"naturally"	public	but	monetizable	goods	that	can	be	funded	through
commercial	channels	by	tweaking	them	a	bit,	like	songs	or	sponsorships	to	a	podcast.
Third	priority	is	non-commodity-like	private	goods	where	social	welfare	is	already	optimized
by	charging	a	fee,	but	where	profit	margins	are	high	or	more	generally	there	are	opportunities
to	"pollute"	the	product	to	increase	revenue,	eg.	by	keeping	accompanying	software	closed-
source	or	refusing	to	use	standards,	and	subsidies	could	be	used	to	push	such	projects	to	make
more	pro-social	choices	on	the	margin.

Notice	that	the	excludability	and	rivalrousness	framework	usually	outputs	similar	answers:	focus	on
non-excludable	and	non-rivalrous	goods	first,	excludable	goods	but	non-rivalrous	second,	and
excludable	and	partially	rivalrous	goods	last	-	and	excludable	and	rivalrous	goods	never	(if	you	have
capital	left	over,	it's	better	to	just	give	it	out	as	a	UBI).	There	is	a	rough	approximate	mapping
between	revenue/evil	curves	and	excludability	and	rivalrousness:	higher	excludability	means	lower
slope	of	the	revenue/evil	curve,	and	rivalrousness	tells	us	whether	the	bottom	of	the	revenue/evil
curve	is	zero	or	nonzero.	But	the	revenue/evil	curve	is	a	much	more	general	tool,	which	allows	us	to
talk	about	tradeoffs	of	monetization	strategies	that	go	far	beyond	exclusion.

One	practical	example	of	how	this	framework	can	be	used	to	analyze	decision-making	is	Wikimedia
donations.	I	personally	have	never	donated	to	Wikimedia,	because	I've	always	thought	that	they
could	and	should	fund	themselves	without	relying	on	limited	public-goods-funding	capital	by	just
adding	a	few	advertisements,	and	this	would	be	only	a	small	cost	to	their	user	experience	and
neutrality.	Wikipedia	admins,	however,	disagree;	they	even	have	a	wiki	page	listing	their	arguments
why	they	disagree.

We	can	understand	this	disagreement	as	a	dispute	over	revenue-evil	curves:	I	think	Wikimedia's
revenue-evil	curve	has	a	low	slope	("ads	are	not	that	bad"),	and	therefore	they	are	low	priority	for	my
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charity	dollars;	some	other	people	think	their	revenue-evil	curve	has	a	high	slope,	and	therefore	they
are	high	priority	for	their	charity	dollars.

Revenue-evil	curves	are	an	intellectual	tool,	NOT	a	good
direct	mechanism
One	important	conclusion	that	it	is	important	NOT	to	take	from	this	idea	is	that	we	should	try	to	use
revenue-evil	curves	directly	as	a	way	of	prioritizing	individual	projects.	There	are	severe	constraints
on	our	ability	to	do	this	because	of	limits	to	monitoring.

If	this	framework	is	widely	used,	projects	would	have	an	incentive	to	misrepresent	their	revenue-evil
curves.	Anyone	charging	a	toll	would	have	an	incentive	to	come	up	with	clever	arguments	to	try	to
show	that	the	world	would	be	much	better	if	the	toll	could	be	20%	lower,	but	because	they're
desperately	under-budget,	they	just	can't	lower	the	toll	without	subsidies.	Projects	would	have	an
incentive	to	be	more	evil	in	the	short	term,	to	attract	subsidies	that	help	them	become	less	evil.

For	these	reasons,	it	is	probably	best	to	use	the	framework	not	as	a	way	to	allocate	decisions	directly,
but	to	identify	general	principles	for	what	kinds	of	projects	to	prioritize	funding	for.	For	example,	the
framework	can	be	a	valid	way	to	determine	how	to	prioritize	whole	industries	or	whole	categories	of
goods.	It	can	help	you	answer	questions	like:	if	a	company	is	producing	a	public	good,	or	is	making
pro-social	but	financially	costly	choices	in	the	design	of	a	not-quite-public	good,	do	they	deserve
subsidies	for	that?	But	even	here,	it's	better	to	treat	revenue-evil	curves	as	a	mental	tool,	rather	than
attempting	to	precisely	measure	them	and	use	them	to	make	individual	decisions.

Conclusions
Excludability	and	rivalrousness	are	important	dimensions	of	a	good,	that	have	really	important
consequences	for	its	ability	to	monetize	itself,	and	for	answering	the	question	of	how	much	harm	can
be	averted	by	funding	it	out	of	some	public	pot.	But	especially	once	more	complex	projects	enter	the
fray,	these	two	dimensions	quickly	start	to	become	insufficient	for	determining	how	to	prioritize
funding.	Most	things	are	not	pure	public	goods:	they	are	some	hybrid	in	the	middle,	and	there	are
many	dimensions	on	which	they	could	become	more	or	less	public	that	do	not	easily	map	to
"exclusion".

Looking	at	the	revenue-evil	curve	of	a	project	gives	us	another	way	of	measuring	the	statistic	that
really	matters:	how	much	harm	can	be	averted	by	relieving	a	project	of	one	dollar	of	monetization
pressure?	Sometimes,	the	gains	from	relieving	monetization	pressure	are	decisive:	there	just	is	no
way	to	fund	certain	kinds	of	things	through	commercial	channels,	until	you	can	find	one	single	user
that	benefits	from	them	enough	to	fund	them	unilaterally.	Other	times,	commercial	funding	options
exist,	but	have	harmful	side	effects.	Sometimes	these	effects	are	smaller,	sometimes	they	are
greater.	Sometimes	a	small	piece	of	an	individual	project	has	a	clear	tradeoff	between	pro-social
choices	and	increasing	monetization.	And,	still	other	times,	projects	just	fund	themselves,	and	there
is	no	need	to	subsidize	them	-	or	at	least,	uncertainties	and	hidden	information	make	it	too	hard	to
create	a	subsidy	schedule	that	does	more	good	than	harm.	It's	always	better	to	prioritize	funding	in
order	of	greatest	gains	to	smallest;	and	how	far	you	can	go	depends	on	how	much	funding	you	have.

*	I	did	not	accept	sponsorship	money	from	Athletic	Greens.	But	the	podcaster	Lex	Fridman	did.	And	no,	I	did	not
accept	sponsorship	money	from	Lex	Fridman	either.	But	maybe	someone	else	did.	Whatevs	man,	as	long	as	we	can
keep	getting	podcasts	funded	so	they	can	be	free-to-listen	without	annoying	people	too	much,	it's	all	good,	you
know?

https://athleticgreens.com/en
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DAOs	are	not	corporations:	where
decentralization	in	autonomous	organizations
matters

Special	thanks	to	Karl	Floersch	and	Tina	Zhen	for	feedback	and	review	on	earlier	versions	of	this
article.

Recently,	there	has	been	a	lot	of	discourse	around	the	idea	that	highly	decentralized	DAOs	do	not
work,	and	DAO	governance	should	start	to	more	closely	resemble	that	of	traditional	corporations	in
order	to	remain	competitive.	The	argument	is	always	similar:	highly	decentralized	governance	is
inefficient,	and	traditional	corporate	governance	structures	with	boards,	CEOs	and	the	like	evolved
over	hundreds	of	years	to	optimize	for	the	goal	of	making	good	decisions	and	delivering	value	to
shareholders	in	a	changing	world.	DAO	idealists	are	naive	to	assume	that	egalitarian	ideals	of
decentralization	can	outperform	this,	when	attempts	to	do	this	in	the	traditional	corporate	sector
have	had	marginal	success	at	best.

This	post	will	argue	why	this	position	is	often	wrong,	and	offer	a	different	and	more	detailed
perspective	about	where	different	kinds	of	decentralization	are	important.	In	particular,	I	will	focus
on	three	types	of	situations	where	decentralization	is	important:

Decentralization	for	making	better	decisions	in	concave	environments,	where	pluralism
and	even	naive	forms	of	compromise	are	on	average	likely	to	outperform	the	kinds	of	coherency
and	focus	that	come	from	centralization.
Decentralization	for	censorship	resistance:	applications	that	need	to	continue	functioning
while	resisting	attacks	from	powerful	external	actors.
Decentralization	as	credible	fairness:	applications	where	DAOs	are	taking	on	nation-state-
like	functions	like	basic	infrastructure	provision,	and	so	traits	like	predictability,	robustness	and
neutrality	are	valued	above	efficiency.

Centralization	is	convex,	decentralization	is	concave
See	the	original	post:	https://vitalik.ca/general/2020/11/08/concave.html

One	way	to	categorize	decisions	that	need	to	be	made	is	to	look	at	whether	they	are	convex	or
concave.	In	a	choice	between	A	and	B,	we	would	first	look	not	at	the	question	of	A	vs	B	itself,	but
instead	at	a	higher-order	question:	would	you	rather	take	a	compromise	between	A	and	B	or	a	coin
flip?	In	expected	utility	terms,	we	can	express	this	distinction	using	a	graph:
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If	a	decision	is	concave,	we	would	prefer	a	compromise,	and	if	it's	convex,	we	would	prefer	a	coin
flip.	Often,	we	can	answer	the	higher-order	question	of	whether	a	compromise	or	a	coin	flip	is	better
much	more	easily	than	we	can	answer	the	first-order	question	of	A	vs	B	itself.

Examples	of	convex	decisions	include:

Pandemic	response:	a	100%	travel	ban	may	work	at	keeping	a	virus	out,	a	0%	travel	ban	won't
stop	viruses	but	at	least	doesn't	inconvenience	people,	but	a	50%	or	90%	travel	ban	is	the	worst
of	both	worlds.
Military	strategy:	attacking	on	front	A	may	make	sense,	attacking	on	front	B	may	make	sense,
but	splitting	your	army	in	half	and	attacking	at	both	just	means	the	enemy	can	easily	deal	with
the	two	halves	one	by	one
Technology	choices	in	crypto	protocols:	using	technology	A	may	make	sense,	using
technology	B	may	make	sense,	but	some	hybrid	between	the	two	often	just	leads	to	needless
complexity	and	even	adds	risks	of	the	two	interfering	with	each	other.

Examples	of	concave	decisions	include:

Judicial	decisions:	an	average	between	two	independently	chosen	judgements	is	probably
more	likely	to	be	fair,	and	less	likely	to	be	completely	ridiculous,	than	a	random	choice	of	one	of
the	two	judgements.
Public	goods	funding:	usually,	giving	$X	to	each	of	two	promising	projects	is	more	effective
than	giving	$2X	to	one	and	nothing	to	the	other.	Having	any	money	at	all	gives	a	much	bigger
boost	to	a	project's	ability	to	achieve	its	mission	than	going	from	$X	to	$2X	does.
Tax	rates:	because	of	quadratic	deadweight	loss	mechanics,	a	tax	rate	of	X%	is	often	only	a
quarter	as	harmful	as	a	tax	rate	of	2X%,	and	at	the	same	time	more	than	half	as	good	at	raising
revenue.	Hence,	moderate	taxes	are	better	than	a	coin	flip	between	low/no	taxes	and	high	taxes.

When	decisions	are	convex,	decentralizing	the	process	of	making	that	decision	can	easily	lead	to
confusion	and	low-quality	compromises.	When	decisions	are	concave,	on	the	other	hand,	relying	on
the	wisdom	of	the	crowds	can	give	better	answers.	In	these	cases,	DAO-like	structures	with	large
amounts	of	diverse	input	going	into	decision-making	can	make	a	lot	of	sense.	And	indeed,	people	who
see	the	world	as	a	more	concave	place	in	general	are	more	likely	to	see	a	need	for	decentralization	in
a	wider	variety	of	contexts.

Should	VitaDAO	and	Ukraine	DAO	be	DAOs?

Many	of	the	more	recent	DAOs	differ	from	earlier	DAOs,	like	MakerDAO,	in	that	whereas	the	earlier
DAOs	are	organized	around	providing	infrastructure,	the	newer	DAOs	are	organized	around
performing	various	tasks	around	a	particular	theme.	VitaDAO	is	a	DAO	funding	early-stage	longevity
research,	and	UkraineDAO	is	a	DAO	organizing	and	funding	efforts	related	to	helping	Ukrainian
victims	of	war	and	supporting	the	Ukrainian	defense	effort.	Does	it	make	sense	for	these	to	be	DAOs?

This	is	a	nuanced	question,	and	we	can	get	a	view	of	one	possible	answer	by	understanding	the
internal	workings	of	UkraineDAO	itself.	Typical	DAOs	tend	to	"decentralize"	by	gathering	large

https://mobile.twitter.com/lymanstoneky/status/1321254322064236544
https://en.wikipedia.org/wiki/Defeat_in_detail
https://eprint.iacr.org/2022/289.pdf
https://en.wikipedia.org/wiki/Deadweight_loss
https://vitadao.com/
https://ukrainedao.love/


amounts	of	capital	into	a	single	pool	and	using	token-holder	voting	to	fund	each	allocation.
UkraineDAO,	on	the	other	hand,	works	by	splitting	its	functions	up	into	many	pods,	where	each	pod
works	as	independently	as	possible.	A	top	layer	of	governance	can	create	new	pods	(in	principle,
governance	can	also	fund	pods,	though	so	far	funding	has	only	gone	to	external	Ukraine-related
organizations),	but	once	a	pod	is	made	and	endowed	with	resources,	it	functions	largely	on	its	own.
Internally,	individual	pods	do	have	leaders	and	function	in	a	more	centralized	way,	though	they	still
try	to	respect	an	ethos	of	personal	autonomy.

One	natural	question	that	one	might	ask	is:	isn't	this	kind	of	"DAO"	just	rebranding	the
traditional	concept	of	multi-layer	hierarchy?	I	would	say	this	depends	on	the	implementation:
it's	certainly	possible	to	take	this	template	and	turn	it	into	something	that	feels	authoritarian	in	the
same	way	stereotypical	large	corporations	do,	but	it's	also	possible	to	use	the	template	in	a	very
different	way.

Two	things	that	can	help	ensure	that	an	organization	built	this	way	will	actually	turn	out	to	be
meaningfully	decentralized	include:

1.	 A	truly	high	level	of	autonomy	for	pods,	where	the	pods	accept	resources	from	the	core	and
are	occasionally	checked	for	alignment	and	competence	if	they	want	to	keep	getting	those
resources,	but	otherwise	act	entirely	on	their	own	and	don't	"take	orders"	from	the	core.

2.	 Highly	decentralized	and	diverse	core	governance.	This	does	not	require	a	"governance
token",	but	it	does	require	broader	and	more	diverse	participation	in	the	core.	Normally,	broad
and	diverse	participation	is	a	large	tax	on	efficiency.	But	if	(1)	is	satisfied,	so	pods	are	highly
autonomous	and	the	core	needs	to	make	fewer	decisions,	the	effects	of	top-level	governance
being	less	efficient	become	smaller.

Now,	how	does	this	fit	into	the	"convex	vs	concave"	framework?	Here,	the	answer	is	roughly	as
follows:	the	(more	decentralized)	top	level	is	concave,	the	(more	centralized	within	each
pod)	bottom	level	is	convex.	Giving	a	pod	$X	is	generally	better	than	a	coin	flip	between	giving	it
$0	and	giving	it	$2X,	and	there	isn't	a	large	loss	from	having	compromises	or	"inconsistent"
philosophies	guiding	different	decisions.	But	within	each	individual	pod,	having	a	clear	opinionated
perspective	guiding	decisions	and	being	able	to	insist	on	many	choices	that	have	synergies	with	each
other	is	much	more	important.

Decentralization	and	censorship	resistance
The	most	often	publicly	cited	reason	for	decentralization	in	crypto	is	censorship	resistance:	a	DAO	or
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protocol	needs	to	be	able	to	function	and	defend	itself	despite	external	attack,	including	from	large
corporate	or	even	state	actors.	This	has	already	been	publicly	talked	about	at	length,	and	so	deserves
less	elaboration,	but	there	are	still	some	important	nuances.

Two	of	the	most	successful	censorship-resistant	services	that	large	numbers	of	people	use	today	are
The	Pirate	Bay	and	Sci-Hub.	The	Pirate	Bay	is	a	hybrid	system:	it's	a	search	engine	for	BitTorrent,
which	is	a	highly	decentralized	network,	but	the	search	engine	itself	is	centralized.	It	has	a	small
core	team	that	is	dedicated	to	keeping	it	running,	and	it	defends	itself	with	the	mole's	strategy	in
whack-a-mole:	when	the	hammer	comes	down,	move	out	of	the	way	and	re-appear	somewhere	else.
The	Pirate	Bay	and	Sci-Hub	have	both	frequently	changed	domain	names,	relied	on	arbitrage
between	different	jurisdictions,	and	used	all	kinds	of	other	techniques.	This	strategy	is	centralized,
but	it	has	allowed	them	both	to	be	successful	both	at	defense	and	at	product-improvement	agility.

DAOs	do	not	act	like	The	Pirate	Bay	and	Sci-Hub;	DAOs	act	like	BitTorrent.	And	there	is	a	reason
why	BitTorrent	does	need	to	be	decentralized:	it	requires	not	just	censorship	resistance,
but	also	long-term	investment	and	reliability.	If	BitTorrent	got	shut	down	once	a	year	and
required	all	its	seeders	and	users	to	switch	to	a	new	provider,	the	network	would	quickly	degrade	in
quality.	Censorship	resistance-demanding	DAOs	should	also	be	in	the	same	category:	they	should	be
providing	a	service	that	isn't	just	evading	permanent	censorship,	but	also	evading	mere	instability
and	disruption.	MakerDAO	(and	the	Reflexer	DAO	which	manages	RAI)	are	excellent	examples	of
this.	A	DAO	running	a	decentralized	search	engine	probably	does	not:	you	can	just	build	a	regular
search	engine	and	use	Sci-Hub-style	techniques	to	ensure	its	survival.

Decentralization	as	credible	fairness
Sometimes,	DAOs'	primary	concern	is	not	a	need	to	resist	nation	states,	but	rather	a	need	to	take	on
some	of	the	functions	of	nation	states.	This	often	involves	tasks	that	can	be	described	as	"maintaining
basic	infrastructure".	Because	governments	have	less	ability	to	oversee	DAOs,	DAOs	need	to	be
structured	to	take	on	a	greater	ability	to	oversee	themselves.	And	this	requires	decentralization.

Of	course,	it's	not	actually	possible	to	come	anywhere	close	to	eliminating	hierarchy	and	inequality	of	information
and	decision-making	power	in	its	entirety	etc	etc	etc,	but	what	if	we	can	get	even	30%	of	the	way	there?

Consider	three	motivating	examples:	algorithmic	stablecoins,	the	Kleros	court,	and	the	Optimism
retroactive	funding	mechanism.
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An	algorithmic	stablecoin	DAO	is	a	system	that	uses	on-chain	financial	contracts	to	create	a
crypto-asset	whose	price	tracks	some	stable	index,	often	but	not	necessarily	the	US	dollar.
Kleros	is	a	"decentralized	court":	a	DAO	whose	function	is	to	give	rulings	on	arbitration
questions	such	as	"is	this	Github	commit	an	acceptable	submission	to	this	on-chain	bounty?"
Optimism's	retroactive	funding	mechanism	is	a	component	of	the	Optimism	DAO	which
retroactively	rewards	projects	that	have	provided	value	to	the	Ethereum	and	Optimism
ecosystems.

In	all	three	cases,	there	is	a	need	to	make	subjective	judgements,	which	cannot	be	done
automatically	through	a	piece	of	on-chain	code.	In	the	first	case,	the	goal	is	simply	to	get	reasonably
accurate	measurements	of	some	price	index.	If	the	stablecoin	tracks	the	US	dollar,	then	you	just
need	the	ETH/USD	price.	If	hyperinflation	or	some	other	reason	to	abandon	the	US	dollar	arises,	the
stablecoin	DAO	might	need	to	manage	a	trustworthy	on-chain	CPI	calculation.	Kleros	is	all	about
making	unavoidably	subjective	judgements	on	any	arbitrary	question	that	is	submitted	to	it,	including
whether	or	not	submitted	questions	should	be	rejected	for	being	"unethical".	Optimism's	retroactive
funding	is	tasked	with	one	of	the	most	open-ended	subjective	questions	at	all:	what	projects	have
done	work	that	is	the	most	useful	to	the	Ethereum	and	Optimism	ecosystems?

All	three	cases	have	an	unavoidable	need	for	"governance",	and	pretty	robust	governance	too.	In	all
cases,	governance	being	attackable,	from	the	outside	or	the	inside,	can	easily	lead	to	very	big
problems.	Finally,	the	governance	doesn't	just	need	to	be	robust,	it	needs	to	credibly	convince	a	large
and	untrusting	public	that	it	is	robust.

The	algorithmic	stablecoin's	Achilles	heel:	the	oracle

Algorithmic	stablecoins	depend	on	oracles.	In	order	for	an	on-chain	smart	contract	to	know	whether
to	target	the	value	of	DAI	to	0.005	ETH	or	0.0005	ETH,	it	needs	some	mechanism	to	learn	the
(external-to-the-chain)	piece	of	information	of	what	the	ETH/USD	price	is.	And	in	fact,	this	"oracle"	is
the	primary	place	at	which	an	algorithmic	stablecoin	can	be	attacked.

This	leads	to	a	security	conundrum:	an	algorithmic	stablecoin	cannot	safely	hold	more	collateral,	and
therefore	cannot	issue	more	units,	than	the	market	cap	of	its	speculative	token	(eg.	MKR,	FLX...),
because	if	it	does,	then	it	becomes	profitable	to	buy	up	half	the	speculative	token	supply,	use	those
tokens	to	control	the	oracle,	and	steal	funds	from	users	by	feeding	bad	oracle	values	and	liquidating
them.

Here	is	a	possible	alternative	design	for	a	stablecoin	oracle:	add	a	layer	of	indirection.	Quoting	the
ethresear.ch	post:

We	set	up	a	contract	where	there	are	13	"providers";	the	answer	to	a	query	is	the	median
of	the	answer	returned	by	these	providers.	Every	week,	there	is	a	vote,	where	the	oracle
token	holders	can	replace	one	of	the	providers	...

The	security	model	is	simple:	if	you	trust	the	voting	mechanism,	you	can	trust	the	oracle
output,	unless	7	providers	get	corrupted	at	the	same	time.	If	you	trust	the	current	set	of
oracle	providers,	you	can	trust	the	output	for	at	least	the	next	six	weeks,	even	if	you
completely	do	not	trust	the	voting	mechanism.	Hence,	if	the	voting	mechanism	gets
corrupted,	there	will	be	able	time	for	participants	in	any	applications	that	depend	on	the
oracle	to	make	an	orderly	exit.

Notice	the	very	un-corporate-like	nature	of	this	proposal.	It	involves	taking	away	the	governance's
ability	to	act	quickly,	and	intentionally	spreading	out	oracle	responsibility	across	a	large	number	of
participants.	This	is	valuable	for	two	reasons.	First,	it	makes	it	harder	for	outsiders	to	attack	the
oracle,	and	for	new	coin	holders	to	quickly	take	over	control	of	the	oracle.	Second,	it	makes	it	harder
for	the	oracle	participants	themselves	to	collude	to	attack	the	system.	It	also	mitigates	oracle
extractable	value,	where	a	single	provider	might	intentionally	delay	publishing	to	personally	profit
from	a	liquidation	(in	a	multi-provider	system,	if	one	provider	doesn't	immediately	publish,	others
soon	will).

Fairness	in	Kleros

The	"decentralized	court"	system	Kleros	is	a	really	valuable	and	important	piece	of	infrastructure	for
the	Ethereum	ecosystem:	Proof	of	Humanity	uses	it,	various	"smart	contract	bug	insurance"	products
use	it,	and	many	other	projects	plug	into	it	as	some	kind	of	"adjudication	of	last	resort".

Recently,	there	have	been	some	public	concerns	about	whether	or	not	the	platform's	decision-making
is	fair.	Some	participants	have	made	cases,	trying	to	claim	a	payout	from	decentralized	smart
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contract	insurance	platforms	that	they	argue	they	deserve.	Perhaps	the	most	famous	of	these	cases	is
Mizu's	report	on	case	#1170.	The	case	blew	up	from	being	a	minor	language	intepretation	dispute
into	a	broader	scandal	because	of	the	accusation	that	insiders	to	Kleros	itself	were	making	a
coordinated	effort	to	throw	a	large	number	of	tokens	to	pushing	the	decision	in	the	direction	they
wanted.	A	participant	to	the	debate	writes:

The	incentives-based	decision-making	process	of	the	court	...	is	by	all	appearances	being
corrupted	by	a	single	dev	with	a	very	large	(25%)	stake	in	the	courts.

Of	course,	this	is	but	one	side	of	one	issue	in	a	broader	debate,	and	it's	up	to	the	Kleros	community	to
figure	out	who	is	right	or	wrong	and	how	to	respond.	But	zooming	out	from	the	question	of	this
individual	case,	what	is	important	here	is	the	the	extent	to	which	the	entire	value	proposition	of
something	like	Kleros	depends	on	it	being	able	to	convince	the	public	that	it	is	strongly	protected
against	this	kind	of	centralized	manipulation.	For	something	like	Kleros	to	be	trusted,	it	seems
necessary	that	there	should	not	be	a	single	individual	with	a	25%	stake	in	a	high-level	court.	Whether
through	a	more	widely	distributed	token	supply,	or	through	more	use	of	non-token-driven
governance,	a	more	credibly	decentralized	form	of	governance	could	help	Kleros	avoid	such	concerns
entirely.

Optimism	retro	funding

Optimism's	retroactive	founding	round	1	results	were	chosen	by	a	quadratic	vote	among	24	"badge
holders".	Round	2	will	likely	use	a	larger	number	of	badge	holders,	and	the	eventual	goal	is	to	move
to	a	system	where	a	much	larger	body	of	citizens	control	retro	funding	allocation,	likely	through
some	multilayered	mechanism	involving	sortition,	subcommittees	and/or	delegation.

There	have	been	some	internal	debates	about	whether	to	have	more	vs	fewer	citizens:	should
"citizen"	really	mean	something	closer	to	"senator",	an	expert	contributor	who	deeply	understands
the	Optimism	ecosystem,	should	it	be	a	position	given	out	to	just	about	anyone	who	has	significantly
participated	in	the	Optimism	ecosystem,	or	somewhere	in	between?	My	personal	stance	on	this
issue	has	always	been	in	the	direction	of	more	citizens,	solving	governance	inefficiency
issues	with	second-layer	delegation	instead	of	adding	enshrined	centralization	into	the
governance	protocol.	One	key	reason	for	my	position	is	the	potential	for	insider	trading	and
self-dealing	issues.

The	Optimism	retroactive	funding	mechanism	has	always	been	intended	to	be	coupled	with	a
prospective	speculation	ecosystem:	public-goods	projects	that	need	funding	now	could	sell	"project
tokens",	and	anyone	who	buys	project	tokens	becomes	eligible	for	a	large	retroactively-funded
compensation	later.	But	this	mechanism	working	well	depends	crucially	on	the	retroactive	funding
part	working	correctly,	and	is	very	vulnerable	to	the	retroactive	funding	mechanism	becoming
corrupted.	Some	example	attacks:

If	some	group	of	people	has	decided	how	they	will	vote	on	some	project,	they	can	buy	up	(or	if
overpriced,	short)	its	project	token	ahead	of	releasing	the	decision.
If	some	group	of	people	knows	that	they	will	later	adjudicate	on	some	specific	project,	they	can
buy	up	the	project	token	early	and	then	intentionally	vote	in	its	favor	even	if	the	project	does	not
actually	deserve	funding.
Funding	deciders	can	accept	bribes	from	projects.

There	are	typically	three	ways	of	dealing	with	these	types	of	corruption	and	insider	trading	issues:

Retroactively	punish	malicious	deciders.
Proactively	filter	for	higher-quality	deciders.
Add	more	deciders.

The	corporate	world	typically	focuses	on	the	first	two,	using	financial	surveillance	and	judicious
penalties	for	the	first	and	in-person	interviews	and	background	checks	for	the	second.	The
decentralized	world	has	less	access	to	such	tools:	project	tokens	are	likely	to	be	tradeable
anonymously,	DAOs	have	at	best	limited	recourse	to	external	judicial	systems,	and	the	remote	and
online	nature	of	the	projects	and	the	desire	for	global	inclusivity	makes	it	harder	to	do	background
checks	and	informal	in-person	"smell	tests"	for	character.	Hence,	the	decentralized	world	needs	to
put	more	weight	on	the	third	technique:	distribute	decision-making	power	among	more	deciders,	so
that	each	individual	decider	has	less	power,	and	so	collusions	are	more	likely	to	be	whistleblown	on
and	revealed.

Should	DAOs	learn	more	from	corporate	governance	or
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political	science?
Curtis	Yarvin,	an	American	philosopher	whose	primary	"big	idea"	is	that	corporations	are	much	more
effective	and	optimized	than	governments	and	so	we	should	improve	governments	by	making	them
look	more	like	corporations	(eg.	by	moving	away	from	democracy	and	closer	to	monarchy),	recently
wrote	an	article	expressing	his	thoughts	on	how	DAO	governance	should	be	designed.	Not
surprisingly,	his	answer	involves	borrowing	ideas	from	governance	of	traditional	corporations.	From
his	introduction:

Instead	the	basic	design	of	the	Anglo-American	limited-liability	joint-stock	company	has
remained	roughly	unchanged	since	the	start	of	the	Industrial	Revolution—which,	a
contrarian	historian	might	argue,	might	actually	have	been	a	Corporate	Revolution.	If	the
joint-stock	design	is	not	perfectly	optimal,	we	can	expect	it	to	be	nearly	optimal.

While	there	is	a	categorical	difference	between	these	two	types	of	organizations—we	could
call	them	first-order	(sovereign)	and	second-order	(contractual)	organizations—it	seems
that	society	in	the	current	year	has	very	effective	second-order	organizations,	but	not	very
effective	first-order	organizations.

Therefore,	we	probably	know	more	about	second-order	organizations.	So,	when	designing	a
DAO,	we	should	start	from	corporate	governance,	not	political	science.

Yarvin's	post	is	very	correct	in	identifying	the	key	difference	between	"first-order"	(sovereign)	and
"second-order"	(contractual)	organizations	-	in	fact,	that	exact	distinction	is	precisely	the	topic	of	the
section	in	my	own	post	above	on	credible	fairness.	However,	Yarvin's	post	makes	a	big,	and
surprising,	mistake	immediately	after,	by	immediately	pivoting	to	saying	that	corporate	governance
is	the	better	starting	point	for	how	DAOs	should	operate.	The	mistake	is	surprising	because	the	logic
of	the	situation	seems	to	almost	directly	imply	the	exact	opposite	conclusion.	Because	DAOs	do	not
have	a	sovereign	above	them,	and	are	often	explicitly	in	the	business	of	providing	services
(like	currency	and	arbitration)	that	are	typically	reserved	for	sovereigns,	it	is	precisely	the
design	of	sovereigns	(political	science),	and	not	the	design	of	corporate	governance,	that
DAOs	have	more	to	learn	from.

To	Yarvin's	credit,	the	second	part	of	his	post	does	advocate	an	"hourglass"	model	that	combines	a
decentralized	alignment	and	accountability	layer	and	a	centralized	management	and	execution	layer,
but	this	is	already	an	admission	that	DAO	design	needs	to	learn	at	least	as	much	from	first-order	orgs
as	from	second-order	orgs.

Sovereigns	are	inefficient	and	corporations	are	efficient	for	the	same	reason	why	number	theory	can
prove	very	many	things	but	abstract	group	theory	can	prove	much	fewer	things:	corporations	fail
less	and	accomplish	more	because	they	can	make	more	assumptions	and	have	more
powerful	tools	to	work	with.	Corporations	can	count	on	their	local	sovereign	to	stand	up	to	defend
them	if	the	need	arises,	as	well	as	to	provide	an	external	legal	system	they	can	lean	on	to	stabilize
their	incentive	structure.	In	a	sovereign,	on	the	other	hand,	the	biggest	challenge	is	often	what	to	do
when	the	incentive	structure	is	under	attack	and/or	at	risk	of	collapsing	entirely,	with	no	external
leviathan	standing	ready	to	support	it.

Perhaps	the	greatest	problem	in	the	design	of	successful	governance	systems	for	sovereigns	is	what
Samo	Burja	calls	"the	succession	problem":	how	to	ensure	continuity	as	the	system	transitions	from
being	run	by	one	group	of	humans	to	another	group	as	the	first	group	retires.	Corporations,	Burja
writes,	often	just	don't	solve	the	problem	at	all:

Silicon	Valley	enthuses	over	"disruption"	because	we	have	become	so	used	to	the
succession	problem	remaining	unsolved	within	discrete	institutions	such	as	companies.

DAOs	will	need	to	solve	the	succession	problem	eventually	(in	fact,	given	the	sheer	frequency	of	the
"get	rich	and	retire"	pattern	among	crypto	early	adopters,	some	DAOs	have	to	deal	with	succession
issues	already).	Monarchies	and	corporate-like	forms	often	have	a	hard	time	solving	the	succession
problem,	because	the	institutional	structure	gets	deeply	tied	up	with	the	habits	of	one	specific
person,	and	it	either	proves	difficult	to	hand	off,	or	there	is	a	very-high-stakes	struggle	over	whom	to
hand	it	off	to.	More	decentralized	political	forms	like	democracy	have	at	least	a	theory	of	how	smooth
transitions	can	happen.	Hence,	I	would	argue	that	for	this	reason	too,	DAOs	have	more	to	learn	from
the	more	liberal	and	democratic	schools	of	political	science	than	they	do	from	the	governance	of
corporations.

Of	course,	DAOs	will	in	some	cases	have	to	accomplish	specific	complicated	tasks,	and	some	use	of
corporate-like	forms	for	accomplishing	those	tasks	may	well	be	a	good	idea.	Additionally,	DAOs	need
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to	handle	unexpected	uncertainty.	A	system	that	was	intended	to	function	in	a	stable	and	unchanging
way	around	one	set	of	assumptions,	when	faced	with	an	extreme	and	unexpected	change	to	those
circumstances,	does	need	some	kind	of	brave	leader	to	coordinate	a	response.	A	prototypical
example	of	the	latter	is	stablecoins	handling	a	US	dollar	collapse:	what	happens	when	a	stablecoin
DAO	that	evolved	around	the	assumption	that	it's	just	trying	to	track	the	US	dollar	suddenly	faces	a
world	where	the	US	dollar	is	no	longer	a	viable	thing	to	be	tracking,	and	a	rapid	switch	to	some	kind
of	CPI	is	needed?

Stylized	diagram	of	the	internal	experience	of	the	RAI	ecosystem	going	through	an	unexpected
transition	to	a	CPI-based	regime	if	the	USD	ceases	to	be	a	viable	reference	asset.

Here,	corporate	governance-inspired	approaches	may	seem	better,	because	they	offer	a	ready-made
pattern	for	responding	to	such	a	problem:	the	founder	organizes	a	pivot.	But	as	it	turns	out,	the
history	of	political	systems	also	offers	a	pattern	well-suited	to	this	situation,	and	one	that	covers	the
question	of	how	to	go	back	to	a	decentralized	mode	when	the	crisis	is	over:	the	Roman	Republic
custom	of	electing	a	dictator	for	a	temporary	term	to	respond	to	a	crisis.

Realistically,	we	probably	only	need	a	small	number	of	DAOs	that	look	more	like	constructs
from	political	science	than	something	out	of	corporate	governance.	But	those	are	the	really
important	ones.	A	stablecoin	does	not	need	to	be	efficient;	it	must	first	and	foremost	be	stable	and
decentralized.	A	decentralized	court	is	similar.	A	system	that	directs	funding	for	a	particular	cause	-
whether	Optimism	retroactive	funding,	VitaDAO,	UkraineDAO	or	something	else	-	is	optimizing	for	a
much	more	complicated	purpose	than	profit	maximization,	and	so	an	alignment	solution	other	than
shareholder	profit	is	needed	to	make	sure	it	keeps	using	the	funds	for	the	purpose	that	was	intended.

By	far	the	greatest	number	of	organizations,	even	in	a	crypto	world,	are	going	to	be	"contractual"
second-order	organizations	that	ultimately	lean	on	these	first-order	giants	for	support,	and	for	these
organizations,	much	simpler	and	leader-driven	forms	of	governance	emphasizing	agility	are	often
going	to	make	sense.	But	this	should	not	distract	from	the	fact	that	the	ecosystem	would	not	survive
without	some	non-corporate	decentralized	forms	keeping	the	whole	thing	stable.
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What	kind	of	layer	3s	make	sense?

Special	thanks	to	Georgios	Konstantopoulos,	Karl	Floersch	and	the	Starkware	team	for	feedback	and	review.

One	topic	that	often	re-emerges	in	layer-2	scaling	discussions	is	the	concept	of	"layer	3s".	If	we	can	build	a	layer	2
protocol	that	anchors	into	layer	1	for	security	and	adds	scalability	on	top,	then	surely	we	can	scale	even	more	by
building	a	layer	3	protocol	that	anchors	into	layer	2	for	security	and	adds	even	more	scalability	on	top	of	that?

A	simple	version	of	this	idea	goes:	if	you	have	a	scheme	that	can	give	you	quadratic	scaling,	can	you	stack	the
scheme	on	top	of	itself	and	get	exponential	scaling?	Ideas	like	this	include	my	2015	scalability	paper,	the	multi-layer
scaling	ideas	in	the	Plasma	paper,	and	many	more.	Unfortunately,	such	simple	conceptions	of	layer	3s	rarely	quite
work	out	that	easily.	There's	always	something	in	the	design	that's	just	not	stackable,	and	can	only	give	you	a
scalability	boost	once	-	limits	to	data	availability,	reliance	on	L1	bandwidth	for	emergency	withdrawals,	or	many
other	issues.

Newer	ideas	around	layer	3s,	such	as	the	framework	proposed	by	Starkware,	are	more	sophisticated:	they	aren't
just	stacking	the	same	thing	on	top	of	itself,	they're	assigning	the	second	layer	and	the	third	layer	different
purposes.	Some	form	of	this	approach	may	well	be	a	good	idea	-	if	it's	done	in	the	right	way.	This	post	will	get	into
some	of	the	details	of	what	might	and	might	not	make	sense	to	do	in	a	triple-layered	architecture.

Why	you	can't	just	keep	scaling	by	stacking	rollups	on	top	of	rollups
Rollups	(see	my	longer	article	on	them	here)	are	a	scaling	technology	that	combines	different	techniques	to	address
the	two	main	scaling	bottlenecks	of	running	a	blockchain:	computation	and	data.	Computation	is	addressed	by	either
fraud	proofs	or	SNARKs,	which	rely	on	a	very	small	number	of	actors	to	process	and	verify	each	block,	requiring
everyone	else	to	perform	only	a	tiny	amount	of	computation	to	check	that	the	proving	process	was	done	correctly.
These	schemes,	especially	SNARKs,	can	scale	almost	without	limit;	you	really	can	just	keep	making	"a	SNARK	of
many	SNARKs"	to	scale	even	more	computation	down	to	a	single	proof.

Data	is	different.	Rollups	use	a	collection	of	compression	tricks	to	reduce	the	amount	of	data	that	a	transaction
needs	to	store	on-chain:	a	simple	currency	transfer	decreases	from	~100	to	~16	bytes,	an	ERC20	transfer	in	an
EVM-compatible	chain	from	~180	to	~23	bytes,	and	a	privacy-preserving	ZK-SNARK	transaction	could	be
compressed	from	~600	to	~80	bytes.	About	8x	compression	in	all	cases.	But	rollups	still	need	to	make	data	available
on-chain	in	a	medium	that	users	are	guaranteed	to	be	able	to	access	and	verify,	so	that	users	can	independently
compute	the	state	of	the	rollup	and	join	as	provers	if	existing	provers	go	offline.	Data	can	be	compressed	once,	but	it
cannot	be	compressed	again	-	if	it	can,	then	there's	generally	a	way	to	put	the	logic	of	the	second	compressor	into
the	first,	and	get	the	same	benefit	by	compressing	once.	Hence,	"rollups	on	top	of	rollups"	are	not	something	that
can	actually	provide	large	gains	in	scalability	-	though,	as	we	will	see	below,	such	a	pattern	can	serve	other
purposes.

So	what's	the	"sane"	version	of	layer	3s?
Well,	let's	look	at	what	Starkware,	in	their	post	on	layer	3s,	advocates.	Starkware	is	made	up	of	very	smart
cryptographers	who	are	actually	sane,	and	so	if	they	are	advocating	for	layer	3s,	their	version	will	be	much	more
sophisticated	than	"if	rollups	compress	data	8x,	then	obviously	rollups	on	top	of	rollups	will	compress	data	64x".

Here's	a	diagram	from	Starkware's	post:
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A	few	quotes:

An	example	of	such	an	ecosystem	is	depicted	in	Diagram	1.	Its	L3s	include:

A	StarkNet	with	Validium	data	availability,	e.g.,	for	general	use	by	applications	with	extreme
sensitivity	to	pricing.
App-specific	StarkNet	systems	customized	for	better	application	performance,	e.g.,	by	employing
designated	storage	structures	or	data	availability	compression.
StarkEx	systems	(such	as	those	serving	dYdX,	Sorare,	Immutable,	and	DeversiFi)	with	Validium	or
Rollup	data	availability,	immediately	bringing	battle-tested	scalability	benefits	to	StarkNet.
Privacy	StarkNet	instances	(in	this	example	also	as	an	L4)	to	allow	privacy-preserving	transactions
without	including	them	in	public	StarkNets.

We	can	compress	the	article	down	into	three	visions	of	what	"L3s"	are	for:

1.	 L2	is	for	scaling,	L3	is	for	customized	functionality,	for	example	privacy.	In	this	vision	there	is	no
attempt	to	provide	"scalability	squared";	rather,	there	is	one	layer	of	the	stack	that	helps	applications	scale,
and	then	separate	layers	for	customized	functionality	needs	of	different	use	cases.

2.	 L2	is	for	general-purpose	scaling,	L3	is	for	customized	scaling.	Customized	scaling	might	come	in
different	forms:	specialized	applications	that	use	something	other	than	the	EVM	to	do	their	computation,
rollups	whose	data	compression	is	optimized	around	data	formats	for	specific	applications	(including	separating
"data"	from	"proofs"	and	replacing	proofs	with	a	single	SNARK	per	block	entirely),	etc.

3.	 L2	is	for	trustless	scaling	(rollups),	L3	is	for	weakly-trusted	scaling	(validiums).	Validiums	are	systems
that	use	SNARKs	to	verify	computation,	but	leave	data	availability	up	to	a	trusted	third	party	or	committee.
Validiums	are	in	my	view	highly	underrated:	in	particular,	many	"enterprise	blockchain"	applications	may	well
actually	be	best	served	by	a	centralized	server	that	runs	a	validium	prover	and	regularly	commits	hashes	to
chain.	Validiums	have	a	lower	grade	of	security	than	rollups,	but	can	be	vastly	cheaper.

All	three	of	these	visions	are,	in	my	view,	fundamentally	reasonable.	The	idea	that	specialized	data	compression
requires	its	own	platform	is	probably	the	weakest	of	the	claims	-	it's	quite	easy	to	design	a	layer	2	with	a	general-
purpose	base-layer	compression	scheme	that	users	can	automatically	extend	with	application-specific	sub-
compressors	-	but	otherwise	the	use	cases	are	all	sound.	But	this	still	leaves	open	one	large	question:	is	a	three-
layer	structure	the	right	way	to	accomplish	these	goals?	What's	the	point	of	validiums,	and	privacy	systems,	and
customized	environments,	anchoring	into	layer	2	instead	of	just	anchoring	into	layer	1?	The	answer	to	this	question
turns	out	to	be	quite	complicated.

https://ethereum.org/en/developers/docs/scaling/validium/


Which	one	is	actually	better?

Does	depositing	and	withdrawing	become	cheaper	and	easier	within	a
layer	2's	sub-tree?
One	possible	argument	for	the	three-layer	model	over	the	two-layer	model	is:	a	three-layer	model	allows	an	entire
sub-ecosystem	to	exist	within	a	single	rollup,	which	allows	cross-domain	operations	within	that	ecosystem	to	happen
very	cheaply,	without	needing	to	go	through	the	expensive	layer	1.

But	as	it	turns	out,	you	can	do	deposits	and	withdrawals	cheaply	even	between	two	layer	2s	(or	even	layer	3s)	that
commit	to	the	same	layer	1!	The	key	realization	is	that	tokens	and	other	assets	do	not	have	to	be	issued	in	the
root	chain.	That	is,	you	can	have	an	ERC20	token	on	Arbitrum,	create	a	wrapper	of	it	on	Optimism,	and	move	back
and	forth	between	the	two	without	any	L1	transactions!

Let	us	examine	how	such	a	system	works.	There	are	two	smart	contracts:	the	base	contract	on	Arbitrum,	and	the
wrapper	token	contract	on	Optimism.	To	move	from	Arbitrum	to	Optimism,	you	would	send	your	tokens	to	the	base
contract,	which	would	generate	a	receipt.	Once	Arbitrum	finalizes,	you	can	take	a	Merkle	proof	of	that	receipt,
rooted	in	L1	state,	and	send	it	into	the	wrapper	token	contract	on	Optimism,	which	verifies	it	and	issues	you	a
wrapper	token.	To	move	tokens	back,	you	do	the	same	thing	in	reverse.

Even	though	the	Merkle	path	needed	to	prove	the	deposit	on	Arbitrum	goes	through	the	L1	state,	Optimism	only	needs	to	read	the
L1	state	root	to	process	the	deposit	-	no	L1	transactions	required.	Note	that	because	data	on	rollups	is	the	scarcest	resource,	a

practical	implementation	of	such	a	scheme	would	use	a	SNARK	or	a	KZG	proof,	rather	than	a	Merkle	proof	directly,	to	save	space.

Such	a	scheme	has	one	key	weakness	compared	to	tokens	rooted	on	L1,	at	least	on	optimistic	rollups:	depositing
also	requires	waiting	the	fraud	proof	window.	If	a	token	is	rooted	on	L1,	withdrawing	from	Arbitrum	or	Optimism
back	to	L1	takes	a	week	delay,	but	depositing	is	instant.	In	this	scheme,	however,	both	depositing	and	withdrawing
take	a	week	delay.	That	said,	it's	not	clear	that	a	three-layer	architecture	on	optimistic	rollups	is	better:	there's	a	lot



of	technical	complexity	in	ensuring	that	a	fraud	proof	game	happening	inside	a	system	that	itself	runs	on	a	fraud
proof	game	is	safe.

Fortunately,	neither	of	these	issues	will	be	a	problem	on	ZK	rollups.	ZK	rollups	do	not	require	a	week-long	waiting
window	for	security	reasons,	but	they	do	still	require	a	shorter	window	(perhaps	12	hours	with	first-generation
technology)	for	two	other	reasons.	First,	particularly	the	more	complex	general-purpose	ZK-EVM	rollups	need	a
longer	amount	of	time	to	cover	non-parallelizable	compute	time	of	proving	a	block.	Second,	there	is	the	economic
consideration	of	needing	to	submit	proofs	rarely	to	minimize	the	fixed	costs	associated	with	proof	transactions.
Next-gen	ZK-EVM	technology,	including	specialized	hardware,	will	solve	the	first	problem,	and	better-architected
batch	verification	can	solve	the	second	problem.	And	it's	precisely	the	issue	of	optimizing	and	batching	proof
submission	that	we	will	get	into	next.

Rollups	and	validiums	have	a	confirmation	time	vs	fixed	cost	tradeoff.
Layer	3s	can	help	fix	this.	But	what	else	can?
The	cost	of	a	rollup	per	transaction	is	cheap:	it's	just	16-60	bytes	of	data,	depending	on	the	application.	But	rollups
also	have	to	pay	a	high	fixed	cost	every	time	they	submit	a	batch	of	transactions	to	chain:	21000	L1	gas	per	batch
for	optimistic	rollups,	and	more	than	400,000	gas	for	ZK	rollups	(millions	of	gas	if	you	want	something	quantum-safe
that	only	uses	STARKs).

Of	course,	rollups	could	simply	choose	to	wait	until	there's	10	million	gas	worth	of	L2	transactions	to	submit	a	batch,
but	this	would	give	them	very	long	batch	intervals,	forcing	users	to	wait	much	longer	until	they	get	a	high-security
confirmation.	Hence,	they	have	a	tradeoff:	long	batch	intervals	and	optimum	costs,	or	shorter	batch	intervals	and
greatly	increased	costs.

To	give	us	some	concrete	numbers,	let	us	consider	a	ZK	rollup	that	has	600,000	gas	per-batch	costs	and	processes
fully	optimized	ERC20	transfers	(23	bytes),	which	cost	368	gas	per	transaction.	Suppose	that	this	rollup	is	in	early	to
mid	stages	of	adoption,	and	is	averaging	5	TPS.	We	can	compute	gas	per	transaction	vs	batch	intervals:

Batch	interval Gas	per	tx	(=	tx	cost	+	batch	cost	/	(TPS	*	batch
interval))

12s	(one	per	Ethereum	block) 10368
1	min 2368
10	min 568
1	h 401

If	we're	entering	a	world	with	lots	of	customized	validiums	and	application-specific	environments,	then	many	of
them	will	do	much	less	than	5	TPS.	Hence,	tradeoffs	between	confirmation	time	and	cost	start	to	become	a	very	big
deal.	And	indeed,	the	"layer	3"	paradigm	does	solve	this!	A	ZK	rollup	inside	a	ZK	rollup,	even	implemented	naively,
would	have	fixed	costs	of	only	~8,000	layer-1	gas	(500	bytes	for	the	proof).	This	changes	the	table	above	to:

Batch	interval Gas	per	tx	(=	tx	cost	+	batch	cost	/	(TPS	*	batch
interval))

12s	(one	per	Ethereum	block) 501
1	min 394
10	min 370
1	h 368

Problem	basically	solved.	So	are	layer	3s	good?	Maybe.	But	it's	worth	noticing	that	there	is	a	different	approach	to
solving	this	problem,	inspired	by	ERC	4337	aggregate	verification.

The	strategy	is	as	follows.	Today,	each	ZK	rollup	or	validium	accepts	a	state	root	if	it	receives	a	proof	proving	that	\
(S_{new}	=	STF(S_{old},	D)\):	the	new	state	root	must	be	the	result	of	correctly	processing	the	transaction	data	or
state	deltas	on	top	of	the	old	state	root.	In	this	new	scheme,	the	ZK	rollup	would	accept	a	message	from	a	batch
verifier	contract	that	says	that	it	has	verified	a	proof	of	a	batch	of	statements,	where	each	of	those	statements	is	of
the	form	\(S_{new}	=	STF(S_{old},	D)\).	This	batch	proof	could	be	constructed	via	a	recursive	SNARK	scheme	or
Halo	aggregation.
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This	would	be	an	open	protocol:	any	ZK-rollup	could	join,	and	any	batch	prover	could	aggregate	proofs	from	any
compatible	ZK-rollup,	and	would	get	compensated	by	the	aggregator	with	a	transaction	fee.	The	batch	handler
contract	would	verify	the	proof	once,	and	then	pass	off	a	message	to	each	rollup	with	the	\((S_{old},	S_{new},	D)\)
triple	for	that	rollup;	the	fact	that	the	triple	came	from	the	batch	handler	contract	would	be	evidence	that	the
transition	is	valid.

The	cost	per	rollup	in	this	scheme	could	be	close	to	8000	if	it's	well-optimized:	5000	for	a	state	write	adding	the	new
update,	1280	for	the	old	and	new	root,	and	an	extra	1720	for	miscellaneous	data	juggling.	Hence,	it	would	give	us
the	same	savings.	Starkware	actually	has	something	like	this	already,	called	SHARP,	though	it	is	not	(yet)	a
permissionless	open	protocol.

One	response	to	this	style	of	approach	might	be:	but	isn't	this	actually	just	another	layer	3	scheme?	Instead	of	base
layer	<-	rollup	<-	validium,	you	have	base	layer	<-	batch	mechanism	<-	rollup	or	validium.	From	some
philosophical	architectural	standpoint,	this	may	be	true.	But	there	is	an	important	difference:	instead	of	the	middle
layer	being	a	complicated	full	EVM	system,	the	middle	layer	is	a	simplified	and	highly	specialized	object,	and	so	it	is
more	likely	to	be	secure,	it	is	more	likely	to	be	built	at	all	without	needing	yet	another	specialized	token,	and	it	is
more	likely	to	be	governance-minimized	and	not	change	over	time.

Conclusion:	what	even	is	a	"layer"?
A	three-layer	scaling	architecture	that	consists	of	stacking	the	same	scaling	scheme	on	top	of	itself	generally	does
not	work	well.	Rollups	on	top	of	rollups,	where	the	two	layers	of	rollups	use	the	same	technology,	certainly	do	not.	A
three-layer	architecture	where	the	second	layer	and	third	layer	have	different	purposes,	however,	can	work.
Validiums	on	top	of	rollups	do	make	sense,	even	if	they're	not	certain	to	be	the	long-term	best	way	of	doing	things.

Once	we	start	getting	into	the	details	of	what	kind	of	architecture	makes	sense,	however,	we	get	into	the
philosophical	question:	what	is	a	"layer"	and	what	is	not?	The	base	layer	<-	batch	mechanism	<-	rollup	or	validium
pattern	does	the	same	job	as	a	base	layer	<-	rollup	<-	rollup	or	validium	pattern.	But	in	terms	of	how	it	works,	a
proof	aggregation	layer	looks	more	like	ERC-4337	than	like	a	rollup.	Typically,	we	don't	refer	to	ERC-4337	as	a
"layer	2".	Similarly,	we	don't	refer	to	Tornado	Cash	as	a	"layer	2"	-	and	so	if	we	were	to	be	consistent,	we	would	not
refer	to	a	privacy-focused	sub-system	that	lives	on	top	of	a	layer	2	as	a	layer	3.	So	there	is	an	unresolved	semantics
debate	of	what	deserves	the	title	of	"layer"	in	the	first	place.

There	are	many	possible	schools	of	thought	on	this.	My	personal	preference	would	be	to	keep	the	term	"layer	2"
restricted	to	things	with	the	following	properties:

Their	purpose	is	to	increase	scalability
They	follow	the	"blockchain	within	a	blockchain"	pattern:	they	have	their	own	mechanism	for	processing
transactions	and	their	own	internal	state
They	inherit	the	full	security	of	the	Ethereum	chain

So,	optimistic	rollups	and	ZK	rollups	are	layer	2s,	but	validiums,	proof	aggregation	schemes,	ERC	4337,	on-chain
privacy	systems	and	Solidity	are	something	else.	It	may	make	sense	to	call	some	of	them	layer	3s,	but	probably	not
all	of	them;	in	any	case,	it	seems	premature	to	settle	definitions	while	the	architecture	of	the	multi-rollup	ecosystem
is	far	from	set	in	stone	and	most	of	the	discussion	is	happening	only	in	theory.

That	said,	the	language	debate	is	less	important	than	the	technical	question	of	which	constructions	actually	make
the	most	sense.	There	is	clearly	an	important	role	to	be	played	by	"layers"	of	some	kind	that	serve	non-scaling	needs
like	privacy,	and	there	is	clearly	is	an	important	function	of	proof	aggregation	that	needs	to	be	filled	somehow,	and
preferably	by	an	open	protocol.	But	at	the	same	time,	there	are	good	technical	reasons	to	make	the	intermediary
layers	that	connect	user-facing	environments	to	the	layer	1	as	simple	as	possible;	the	"glue	layer"	being	an	EVM
rollup	is	probably	not	the	right	approach	in	many	cases.	I	suspect	more	sophisticated	(and	simpler)	constructions
such	as	those	described	in	this	post	will	start	to	have	a	bigger	role	to	play	as	the	layer	2	scaling	ecosystem	matures.

https://medium.com/starkware/recursive-starks-78f8dd401025
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Should	there	be	demand-based	recurring	fees
on	ENS	domains?

Special	thanks	to	Lars	Doucet,	Glen	Weyl	and	Nick	Johnson	for	discussion	and	feedback	on	various
topics.

ENS	domains	today	are	cheap.	Very	cheap.	The	cost	to	register	and	maintain	a	five-letter	domain
name	is	only	$5	per	year.	This	sounds	reasonable	from	the	perspective	of	one	person	trying	to
register	a	single	domain,	but	it	looks	very	different	when	you	look	at	the	situation	globally:	when
ENS	was	younger,	someone	could	have	registered	all	8938	five-letter	words	in	the	Scrabble	wordlist
(which	includes	exotic	stuff	like	"BURRS",	"FLUYT"	and	"ZORIL")	and	pre-paid	their	ownership	for	a
hundred	years,	all	for	the	price	of	a	dozen	lambos.	And	in	fact,	many	people	did:	today,	almost	all	of
those	five-letter	words	are	already	taken,	many	by	squatters	waiting	for	someone	to	buy	the	domain
from	them	at	a	much	higher	price.	A	random	scrape	of	OpenSea	shows	that	about	40%	of	all	these
domains	are	for	sale	or	have	been	sold	on	that	platform	alone.

The	question	worth	asking	is:	is	this	really	the	best	way	to	allocate	domains?	By	selling	off	these
domains	so	cheaply,	ENS	DAO	is	almost	certainly	gathering	far	less	revenue	than	it	could,	which
limits	its	ability	to	act	to	improve	the	ecosystem.	The	status	quo	is	also	bad	for	fairness:	being	able	to
buy	up	all	the	domains	cheaply	was	great	for	people	in	2017,	is	okay	in	2022,	but	the	consequences
may	severely	handicap	the	system	in	2050.	And	given	that	buying	a	five-letter-word	domain	in
practice	costs	anywhere	from	0.1	to	500	ETH,	the	notionally	cheap	registration	prices	are	not
actually	providing	cost	savings	to	users.	In	fact,	there	are	deep	economic	reasons	to	believe	that
reliance	on	secondary	markets	makes	domains	more	expensive	than	a	well-designed	in-protocol
mechanism.

Could	we	allocate	ongoing	ownership	of	domains	in	a	better	way?	Is	there	a	way	to	raise	more
revenue	for	ENS	DAO,	do	a	better	job	of	ensuring	domains	go	to	those	who	can	make	best	use	of
them,	and	at	the	same	time	preserve	the	credible	neutrality	and	the	accessible	very	strong
guarantees	of	long-term	ownership	that	make	ENS	valuable?

Problem	1:	there	is	a	fundamental	tradeoff	between	strength
of	property	rights	and	fairness
Suppose	that	there	are	\(N\)	"high-value	names"	(eg.	five-letter	words	in	the	Scrabble	dictionary,	but
could	be	any	similar	category).	Suppose	that	each	year,	users	grab	up	\(k\)	names,	and	some	portion	\
(p\)	of	them	get	grabbed	by	someone	who's	irrationally	stubborn	and	not	willing	to	give	them	up	(\(p\)
could	be	really	low,	it	just	needs	to	be	greater	than	zero).	Then,	after	\(\frac{N}{k	*	p}\)	years,	no
one	will	be	able	to	get	a	high-value	name	again.

This	is	a	two-line	mathematical	theorem,	and	it	feels	too	simple	to	be	saying	anything	important.	But
it	actually	gets	at	a	crucial	truth:	time-unlimited	allocation	of	a	finite	resource	is	incompatible	with
fairness	across	long	time	horizons.	This	is	true	for	land;	it's	the	reason	why	there	have	been	so	many
land	reforms	throughout	history,	and	it's	a	big	part	of	why	many	advocate	for	land	taxes	today.	It's
also	true	for	domains,	though	the	problem	in	the	traditional	domain	space	has	been	temporarily
alleviated	by	a	"forced	dilution"	of	early	.com	holders	in	the	form	of	a	mass	introduction	of	.io,	.me,
.network	and	many	other	domains.	ENS	has	soft-committed	to	not	add	new	TLDs	to	avoid	polluting
the	global	namespace	and	rupturing	its	chances	of	eventual	integration	with	mainstream	DNS,	so
such	a	dilution	is	not	an	option.

Fortunately,	ENS	charges	not	just	a	one-time	fee	to	register	a	domain,	but	also	a	recurring	annual
fee	to	maintain	it.	Not	all	decentralized	domain	name	systems	had	the	foresight	to	implement	this;
Unstoppable	Domains	did	not,	and	even	goes	so	far	as	to	proudly	advertise	its	preference	for	short-
term	consumer	appeal	over	long-term	sustainability	("No	renewal	fees	ever!").	The	recurring	fees	in
ENS	and	traditional	DNS	are	a	healthy	mitigation	to	the	worst	excesses	of	a	truly	unlimited	pay-once-
own-forever	model:	at	the	very	least,	the	recurring	fees	mean	that	no	one	will	be	able	to	accidentally
lock	down	a	domain	forever	through	forgetfulness	or	carelessness.	But	it	may	not	be	enough.	It's	still
possible	to	spend	$500	to	lock	down	an	ENS	domain	for	an	entire	century,	and	there	are	certainly
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some	types	of	domains	that	are	in	high	enough	demand	that	this	is	vastly	underpriced.

Problem	2:	speculators	do	not	actually	create	efficient
markets
Once	we	admit	that	a	first-come-first-serve	model	with	low	fixed	fees	has	these	problems,	a	common
counterargument	is	to	say:	yes,	many	of	the	names	will	get	bought	up	by	speculators,	but	speculation
is	natural	and	good.	It	is	a	free	market	mechanism,	where	speculators	who	actually	want	to	maximize
their	profit	are	motivated	to	resell	the	domain	in	such	a	way	that	it	goes	to	whoever	can	make	the
best	use	of	the	domain,	and	their	outsized	returns	are	just	compensation	for	this	service.

But	as	it	turns	out,	there	has	been	academic	research	on	this	topic,	and	it	is	not	actually	true	that
profit-maximizing	auctioneers	maximize	social	welfare!	Quoting	Myerson	1981:

By	announcing	a	reservation	price	of	50,	the	seller	risks	a	probability	\((1	/	2^n)\)	of
keeping	the	object	even	though	some	bidder	is	willing	to	pay	more	than	\(t_0\)	for	it;	but
the	seller	also	increases	his	expected	revenue,	because	he	can	command	a	higher	price
when	the	object	is	sold.

Thus	the	optimal	auction	may	not	be	ex-post	efficient.	To	see	more	clearly	why	this	can
happen,	consider	the	example	in	the	above	paragraph,	for	the	case	when	\(n	=	1\)	...	Ex
post	efficiency	would	require	that	the	bidder	must	always	get	the	object,	as	long	as	his
value	estimate	is	positive.	But	then	the	bidder	would	never	admit	to	more	than	an
infinitesimal	value	estimate,	since	any	positive	bid	would	win	the	object	...	In	fact	the
seller's	optimal	policy	is	to	refuse	to	sell	the	object	for	less	than	50.

Translated	into	diagram	form:

Maximizing	revenue	for	the	seller	almost	always	requires	accepting	some	probability	of	never	selling
the	domain	at	all,	leaving	it	unused	outright.	One	important	nuance	in	the	argument	is	that	seller-
revenue-maximizing	auctions	are	at	their	most	inefficient	when	there	is	one	possible	buyer	(or	at
least,	one	buyer	with	a	valuation	far	above	the	others),	and	the	inefficiency	decreases	quickly	once
there	are	many	competing	potential	buyers.	But	for	a	large	class	of	domains,	the	first	category	is
precisely	the	situation	they	are	in.	Domains	that	are	simply	some	person,	project	or	company's	name,
for	example,	have	one	natural	buyer:	that	person	or	project.	And	so	if	a	speculator	buys	up	such	a
name,	they	will	of	course	set	the	price	high,	accepting	a	large	chance	of	never	coming	to	a	deal	to
maximize	their	revenue	in	the	case	where	a	deal	does	arise.

Hence,	we	cannot	say	that	speculators	grabbing	a	large	portion	of	domain	allocation	revenues	is
merely	just	compensation	for	them	ensuring	that	the	market	is	efficient.	On	the	contrary,	speculators
can	easily	make	the	market	worse	than	a	well-designed	mechanism	in	the	protocol	that	encourages
domains	to	be	directly	available	for	sale	at	fair	prices.

https://pubsonline.informs.org/doi/abs/10.1287/moor.6.1.58


One	cheer	for	stricter	property	rights:	stability	of	domain
ownership	has	positive	externalities
The	monopoly	problems	of	overly-strict	property	rights	on	non-fungible	assets	have	been	known	for	a
long	time.	Resolving	this	issue	in	a	market-based	way	was	the	original	goal	of	Harberger	taxes:
require	the	owner	of	each	covered	asset	to	set	a	price	at	which	they	are	willing	to	sell	it	to	anyone
else,	and	charge	an	annual	fee	based	on	that	price.	For	example,	one	could	charge	0.5%	of	the	sale
price	every	year.	Holders	would	be	incentivized	to	leave	the	asset	available	for	purchase	at	prices
that	are	reasonable,	"lazy"	holders	who	refuse	to	sell	would	lose	money	every	year,	and	hoarding
assets	without	using	them	would	in	many	cases	become	economically	infeasible	outright.

But	the	risk	of	being	forced	to	sell	something	at	any	time	can	have	large	economic	and	psychological
costs,	and	it's	for	this	reason	that	advocates	of	Harberger	taxes	generally	focus	on	industrial
property	applications	where	the	market	participants	are	sophisticated.	Where	do	domains	fall	on	the
spectrum?	Let	us	consider	the	costs	of	a	business	getting	"relocated",	in	three	separate	cases:	a	data
center,	a	restaurant,	and	an	ENS	name.

Data	center Restaurant ENS	name

Confusion	from
people	expecting	old
location

An	employee	comes	to
the	old	location,	and
unexpectedly	finds	it
closed.

An	employee	or	a
customer	comes	to	the
old	location,	and
unexpectedly	finds	it
closed.

Someone	sends	a	big
chunk	of	money	to	the
wrong	address.

Loss	of	location-
specific	long-term
investment

Low

The	restaurant	will
probably	lose	many
long-term	customers	for
whom	the	new	location
is	too	far	away

The	owner	spent	years
building	a	brand	around
the	old	name	that
cannot	easily	carry	over.

As	it	turns	out,	domains	do	not	hold	up	very	well.	Domain	name	owners	are	often	not	sophisticated,
the	costs	of	switching	domain	names	are	often	high,	and	negative	externalities	of	a	name-change
gone	wrong	can	be	large.	The	highest-value	owner	of	coinbase.eth	may	not	be	Coinbase;	it	could	just
as	easily	be	a	scammer	who	would	grab	up	the	domain	and	then	immediately	make	a	fake	charity	or
ICO	claiming	it's	run	by	Coinbase	and	ask	people	to	send	that	address	their	money.	For	these
reasons,	Harberger	taxing	domains	is	not	a	great	idea.

Alternative	solution	1:	demand-based	recurring	pricing
Maintaining	ownership	over	an	ENS	domain	today	requires	paying	a	recurring	fee.	For	most
domains,	this	is	a	simple	and	very	low	$5	per	year.	The	only	exceptions	are	four-letter	domains	($160
per	year)	and	three-letter	domains	($640	per	year).	But	what	if	instead,	we	make	the	fee	somehow
depend	on	the	actual	level	of	market	demand	for	the	domain?

This	would	not	be	a	Harberger-like	scheme	where	you	have	to	make	the	domain	available	for
immediate	sale	at	a	particular	price.	Rather,	the	initiative	in	the	price-setting	procedure	would	fall	on
the	bidders.	Anyone	could	bid	on	a	particular	domain,	and	if	they	keep	an	open	bid	for	a	sufficiently
long	period	of	time	(eg.	4	weeks),	the	domain's	valuation	rises	to	that	level.	The	annual	fee	on	the
domain	would	be	proportional	to	the	valuation	(eg.	it	might	be	set	to	0.5%	of	the	valuation).	If	there
are	no	bids,	the	fee	might	decay	at	a	constant	rate.

https://chicagounbound.uchicago.edu/cgi/viewcontent.cgi?article=12668&context=journal_articles


When	a	bidder	sends	their	bid	amount	into	a	smart	contract	to	place	a	bid,	the	owner	has	two
options:	they	could	either	accept	the	bid,	or	they	could	reject,	though	they	may	have	to	start	paying	a
higher	price.	If	a	bidder	bids	a	value	higher	than	the	actual	value	of	the	domain,	the	owner	could	sell
to	them,	costing	the	bidder	a	huge	amount	of	money.

This	property	is	important,	because	it	means	that	"griefing"	domain	holders	is	risky	and
expensive,	and	may	even	end	up	benefiting	the	victim.	If	you	own	a	domain,	and	a	powerful
actor	wants	to	harass	or	censor	you,	they	could	try	to	make	a	very	high	bid	for	that	domain	to	greatly
increase	your	annual	fee.	But	if	they	do	this,	you	could	simply	sell	to	them	and	collect	the	massive
payout.

This	already	provides	much	more	stability	and	is	more	noob-friendly	than	a	Harberger	tax.	Domain
owners	don't	need	to	constantly	worry	whether	or	not	they're	setting	prices	too	low.	Rather,	they	can
simply	sit	back	and	pay	the	annual	fee,	and	if	someone	offers	to	bid	they	can	take	4	weeks	to	make	a
decision	and	either	sell	the	domain	or	continue	holding	it	and	accept	the	higher	fee.	But	even	this
probably	does	not	provide	quite	enough	stability.	To	go	even	further,	we	need	a	compromise	on	the
compromise.

Alternative	solution	2:	capped	demand-based	recurring
pricing
We	can	modify	the	above	scheme	to	offer	even	stronger	guarantees	to	domain-name	holders.
Specifically,	we	can	try	to	offer	the	following	property:

Strong	time-bound	ownership	guarantee:	for	any	fixed	number	of	years,	it's	always
possible	to	compute	a	fixed	amount	of	money	that	you	can	pre-pay	to	unconditionally
guarantee	ownership	for	at	least	that	number	of	years.

In	math	language,	there	must	be	some	function	\(y	=	f(n)\)	such	that	if	you	pay	\(y\)	dollars	(or	ETH),
you	get	a	hard	guarantee	that	you	will	be	able	to	hold	on	to	the	domain	for	at	least	\(n\)	years,	no
matter	what	happens.	\(f\)	may	also	depend	on	other	factors,	such	as	what	happened	to	the	domain
previously,	as	long	as	those	factors	are	known	at	the	time	the	transaction	to	register	or	extend	a
domain	is	made.	Note	that	the	maximum	annual	fee	after	\(n\)	years	would	be	the	derivative	\(f'(n)\).

The	new	price	after	a	bid	would	be	capped	at	the	implied	maximum	annual	fee.	For	example,	if	\(f(n)
=	\frac{1}{2}n^2\),	so	\(f'(n)	=	n\),	and	you	get	a	bid	of	$5	after	7	years,	the	annual	fee	would	rise	to
$5,	but	if	you	get	a	bid	of	$10	after	7	years,	the	annual	fee	would	only	rise	to	$7.	If	no	bids	that	raise
the	fee	to	the	max	are	made	for	some	length	of	time	(eg.	a	full	year),	\(n\)	resets.	If	a	bid	is	made	and
rejected,	\(n\)	resets.

And	of	course,	we	have	a	highly	subjective	criterion	that	\(f(n)\)	must	be	"reasonable".	We	can	create
compromise	proposals	by	trying	different	shapes	for	\(f\):

\(f(n)\)	(\(p_0\)	=
price	of	last	sale Total	cost	to Total	cost	to



Type or	last	rejected
bid,	or	$1	if	most
recent	event	is	a

reset)

In	plain	English guarantee
holding	for	>=	10

years

guarantee
holding	for	>=
100	years

Exponential	fee
growth

\(f(n)	=	\int_0^n
p_0	*	1.1^n\)

The	fee	can	grow
by	a	maximum	of
10%	per	year	(with
compounding).

$836 $7.22m

Linear	fee	growth \(f(n)	=	p_0	*	n	+
\frac{15}{2}n^2\)

The	annual	fee	can
grow	by	a
maximum	of	$15
per	year.

$1250 $80k

Capped	annual	fee \(f(n)	=	640	*	n\)

The	annual	fee
cannot	exceed
$640	per	year.	That
is,	a	domain	in	high
demand	can	start
to	cost	as	much	as
a	three-letter
domain,	but	not
more.

$6400 $64k

Or	in	chart	form:

Note	that	the	amounts	in	the	table	are	only	the	theoretical	maximums	needed	to	guarantee	holding	a
domain	for	that	number	of	years.	In	practice,	almost	no	domains	would	have	bidders	willing	to	bid
very	high	amounts,	and	so	holders	of	almost	all	domains	would	end	up	paying	much	less	than	the
maximum.

One	fascinating	property	of	the	"capped	annual	fee"	approach	is	that	there	are	versions	of
it	that	are	strictly	more	favorable	to	existing	domain-name	holders	than	the	status	quo.	In
particular,	we	could	imagine	a	system	where	a	domain	that	gets	no	bids	does	not	have	to	pay	any
annual	fee,	and	a	bid	could	increase	the	annual	fee	to	a	maximum	of	$5	per	year.

Demand	from	external	bids	clearly	provides	some	signal	about	how	valuable	a	domain	is	(and
therefore,	to	what	extent	an	owner	is	excluding	others	by	maintaining	control	over	it).	Hence,



regardless	of	your	views	on	what	level	of	fees	should	be	required	to	maintain	a	domain,	I
would	argue	that	you	should	find	some	parameter	choice	for	demand-based	fees	appealing.

I	will	still	make	my	case	for	why	some	superlinear	\(f(n)\),	a	max	annual	fee	that	goes	up	over	time,	is
a	good	idea.	First,	paying	more	for	longer-term	security	is	a	common	feature	throughout	the
economy.	Fixed-rate	mortgages	usually	have	higher	interest	rates	than	variable-rate	mortgages.	You
can	get	higher	interest	by	providing	deposits	that	are	locked	up	for	longer	periods	of	time;	this	is
compensation	the	bank	pays	you	for	providing	longer-term	security	to	the	bank.	Similarly,	longer-
term	government	bonds	typically	have	higher	yields.	Second,	the	annual	fee	should	be	able	to
eventually	adjust	to	whatever	the	market	value	of	the	domain	is;	we	just	don't	want	that	to	happen
too	quickly.

Superlinear	\(f(n)\)	values	still	make	hard	guarantees	of	ownership	reasonably	accessible	over	pretty
long	timescales:	with	the	linear-fee-growth	formula	\(f(n)	=	p_0	*	n	+	\frac{15}{2}n^2\),	for	only
$6000	($120	per	year)	you	could	ensure	ownership	of	the	domain	for	25	years,	and	you	would	almost
certainly	pay	much	less.	The	ideal	of	"register	and	forget"	for	censorship-resistant	services	would	still
be	very	much	available.

From	here	to	there
Weakening	property	norms,	and	increasing	fees,	is	psychologically	very	unappealing	to	many	people.
This	is	true	even	when	these	fees	make	clear	economic	sense,	and	even	when	you	can	redirect	fee
revenue	into	a	UBI	and	mathematically	show	that	the	majority	of	people	would	economically	net-
benefit	from	your	proposal.	Cities	have	a	hard	time	adding	congestion	pricing,	even	when	it's
painfully	clear	that	the	only	two	choices	are	paying	congestion	fees	in	dollars	and	paying	congestion
fees	in	wasted	time	and	weakened	mental	health	driving	in	painfully	slow	traffic.	Land	value	taxes,
despite	being	in	many	ways	one	of	the	most	effective	and	least	harmful	taxes	out	there,	have	a	hard
time	getting	adopted.	Unstoppable	Domains's	loud	and	proud	advertisement	of	"no	renewal	fees
ever"	is	in	my	view	very	short-sighted,	but	it's	clearly	at	least	somewhat	effective.	So	how	could	I
possibly	think	that	we	have	any	chance	of	adding	fees	and	conditions	to	domain	name	ownership?

The	crypto	space	is	not	going	to	solve	deep	challenges	in	human	political	psychology	that	humanity
has	failed	at	for	centuries.	But	we	do	not	have	to.	I	see	two	possible	answers	that	do	have	some
realistic	hope	for	success:

1.	 Democratic	legitimacy:	come	up	with	a	compromise	proposal	that	really	is	a	sufficient
compromise	that	it	makes	enough	people	happy,	and	perhaps	even	makes	some	existing
domain	name	holders	(not	just	potential	domain	name	holders)	better	off	than	they	are	today.

For	example,	we	could	implement	demand-based	annual	fees	(eg.	setting	the	annual	fee	to	0.5%
of	the	highest	bid)	with	a	fee	cap	of	$640	per	year	for	domains	up	to	eight	letters	long,	and	$5
per	year	for	longer	domains,	and	let	domain	holders	pay	nothing	if	no	one	makes	a	bid.	Many
average	users	would	save	money	under	such	a	proposal.

2.	Market	legitimacy:	avoid	the	need	to	get	legitimacy	to	overturn	people's	expectations
in	the	existing	system	by	instead	creating	a	new	system	(or	sub-system).

In	traditional	DNS,	this	could	be	done	just	by	creating	a	new	TLD	that	would	be	as	convenient
as	existing	TLDs.	In	ENS,	there	is	a	stated	desire	to	stick	to	.eth	only	to	avoid	conflicting	with
the	existing	domain	name	system.	And	using	existing	subdomains	doesn't	quite	work:
foo.bar.eth	is	much	less	nice	than	foo.eth.	One	possible	middle	route	is	for	the	ENS	DAO	to
hand	off	single-letter	domain	names	solely	to	projects	that	run	some	other	kind	of	credibly-
neutral	marketplace	for	their	subdomains,	as	long	as	they	hand	over	at	least	50%	of	the	revenue
to	the	ENS	DAO.

For	example,	perhaps	x.eth	could	use	one	of	my	proposed	pricing	schemes	for	its	subdomains,
and	t.eth	could	implement	a	mechanism	where	ENS	DAO	has	the	right	to	forcibly	transfer
subdomains	for	anti-fraud	and	trademark	reasons.	foo.x.eth	just	barely	looks	good	enough	to	be
sort-of	a	substitute	for	foo.eth;	it	will	have	to	do.

If	making	changes	to	ENS	domain	pricing	itself	are	off	the	table,	then	the	market-based	approach	of
explicitly	encouraging	marketplaces	with	different	rules	in	subdomains	should	be	strongly
considered.

To	me,	the	crypto	space	is	not	just	about	coins,	and	I	admit	my	attraction	to	ENS	does	not	center
around	some	notion	of	unconditional	and	infinitely	strict	property-like	ownership	over	domains.
Rather,	my	interest	in	the	space	lies	more	in	credible	neutrality,	and	property	rights	that	are	strongly
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protected	particularly	against	politically	motivated	censorship	and	arbitrary	and	targeted
interference	by	powerful	actors.	That	said,	a	high	degree	of	guarantee	of	ownership	is	nevertheless
very	important	for	a	domain	name	system	to	be	able	to	function.

The	hybrid	proposals	I	suggest	above	are	my	attempt	at	preserving	total	credible	neutrality,
continuing	to	provide	a	high	degree	of	ownership	guarantee,	but	at	the	same	time	increasing	the	cost
of	domain	squatting,	raising	more	revenue	for	the	ENS	DAO	to	be	able	to	work	on	important	public
goods,	and	improving	the	chances	that	people	who	do	not	have	the	domain	they	want	already	will	be
able	to	get	one.
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The	different	types	of	ZK-EVMs

Special	thanks	to	the	PSE,	Polygon	Hermez,	Zksync,	Scroll,	Matter	Labs	and	Starkware	teams	for
discussion	and	review.

There	have	been	many	"ZK-EVM"	projects	making	flashy	announcements	recently.	Polygon	open-
sourced	their	ZK-EVM	project,	ZKSync	released	their	plans	for	ZKSync	2.0,	and	the	relative	newcomer
Scroll	announced	their	ZK-EVM	recently.	There	is	also	the	ongoing	effort	from	the	Privacy	and	Scaling
Explorations	team,	Nicolas	Liochon	et	al's	team,	an	alpha	compiler	from	the	EVM	to	Starkware's	ZK-
friendly	language	Cairo,	and	certainly	at	least	a	few	others	I	have	missed.

The	core	goal	of	all	of	these	projects	is	the	same:	to	use	ZK-SNARK	technology	to	make	cryptographic
proofs	of	execution	of	Ethereum-like	transactions,	either	to	make	it	much	easier	to	verify	the	Ethereum
chain	itself	or	to	build	ZK-rollups	that	are	(close	to)	equivalent	to	what	Ethereum	provides	but	are
much	more	scalable.	But	there	are	subtle	differences	between	these	projects,	and	what	tradeoffs	they
are	making	between	practicality	and	speed.	This	post	will	attempt	to	describe	a	taxonomy	of	different
"types"	of	EVM	equivalence,	and	what	are	the	benefits	and	costs	of	trying	to	achieve	each	type.

Overview	(in	chart	form)

Type	1	(fully	Ethereum-equivalent)
Type	1	ZK-EVMs	strive	to	be	fully	and	uncompromisingly	Ethereum-equivalent.	They	do	not	change	any
part	of	the	Ethereum	system	to	make	it	easier	to	generate	proofs.	They	do	not	replace	hashes,	state
trees,	transaction	trees,	precompiles	or	any	other	in-consensus	logic,	no	matter	how	peripheral.
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Advantage:	perfect	compatibility

The	goal	is	to	be	able	to	verify	Ethereum	blocks	as	they	are	today	-	or	at	least,	verify	the	execution-
layer	side	(so,	beacon	chain	consensus	logic	is	not	included,	but	all	the	transaction	execution	and	smart
contract	and	account	logic	is	included).

Type	1	ZK-EVMs	are	what	we	ultimately	need	make	the	Ethereum	layer	1	itself	more	scalable.	In	the
long	term,	modifications	to	Ethereum	tested	out	in	Type	2	or	Type	3	ZK-EVMs	might	be	introduced	into
Ethereum	proper,	but	such	a	re-architecting	comes	with	its	own	complexities.

Type	1	ZK-EVMs	are	also	ideal	for	rollups,	because	they	allow	rollups	to	re-use	a	lot	of	infrastructure.
For	example,	Ethereum	execution	clients	can	be	used	as-is	to	generate	and	process	rollup	blocks	(or	at
least,	they	can	be	once	withdrawals	are	implemented	and	that	functionality	can	be	re-used	to	support
ETH	being	deposited	into	the	rollup),	so	tooling	such	as	block	explorers,	block	production,	etc	is	very
easy	to	re-use.

Disadvantage:	prover	time

Ethereum	was	not	originally	designed	around	ZK-friendliness,	so	there	are	many	parts	of	the	Ethereum
protocol	that	take	a	large	amount	of	computation	to	ZK-prove.	Type	1	aims	to	replicate	Ethereum
exactly,	and	so	it	has	no	way	of	mitigating	these	inefficiencies.	At	present,	proofs	for	Ethereum	blocks
take	many	hours	to	produce.	This	can	be	mitigated	either	by	clever	engineering	to	massively	parallelize
the	prover	or	in	the	longer	term	by	ZK-SNARK	ASICs.

Who's	building	it?

The	ZK-EVM	Community	Edition	(bootstrapped	by	community	contributors	including	Privacy	and
Scaling	Explorations,	the	Scroll	team,	Taiko	and	others)	is	a	Tier	1	ZK-EVM.

Type	2	(fully	EVM-equivalent)
Type	2	ZK-EVMs	strive	to	be	exactly	EVM-equivalent,	but	not	quite	Ethereum-equivalent.	That	is,	they
look	exactly	like	Ethereum	"from	within",	but	they	have	some	differences	on	the	outside,	particularly	in
data	structures	like	the	block	structure	and	state	tree.

The	goal	is	to	be	fully	compatible	with	existing	applications,	but	make	some	minor	modifications	to
Ethereum	to	make	development	easier	and	to	make	proof	generation	faster.

Advantage:	perfect	equivalence	at	the	VM	level

Type	2	ZK-EVMs	make	changes	to	data	structures	that	hold	things	like	the	Ethereum	state.	Fortunately,
these	are	structures	that	the	EVM	itself	cannot	access	directly,	and	so	applications	that	work	on
Ethereum	would	almost	always	still	work	on	a	Type	2	ZK-EVM	rollup.	You	would	not	be	able	to	use
Ethereum	execution	clients	as-is,	but	you	could	use	them	with	some	modifications,	and	you	would	still
be	able	to	use	EVM	debugging	tools	and	most	other	developer	infrastructure.

There	are	a	small	number	of	exceptions.	One	incompatibility	arises	for	applications	that	verify	Merkle
proofs	of	historical	Ethereum	blocks	to	verify	claims	about	historical	transactions,	receipts	or	state	(eg.
bridges	sometimes	do	this).	A	ZK-EVM	that	replaces	Keccak	with	a	different	hash	function	would	break
these	proofs.	However,	I	usually	recommend	against	building	applications	this	way	anyway,	because
future	Ethereum	changes	(eg.	Verkle	trees)	will	break	such	applications	even	on	Ethereum	itself.	A
better	alternative	would	be	for	Ethereum	itself	to	add	future-proof	history	access	precompiles.

Disadvantage:	improved	but	still	slow	prover	time

Type	2	ZK-EVMs	provide	faster	prover	times	than	Type	1	mainly	by	removing	parts	of	the	Ethereum
stack	that	rely	on	needlessly	complicated	and	ZK-unfriendly	cryptography.	Particularly,	they	might
change	Ethereum's	Keccak	and	RLP-based	Merkle	Patricia	tree	and	perhaps	the	block	and	receipt
structures.	Type	2	ZK-EVMs	might	instead	use	a	different	hash	function,	eg.	Poseidon.	Another	natural
modification	is	modifying	the	state	tree	to	store	the	code	hash	and	keccak,	removing	the	need	to	verify
hashes	to	process	the	EXTCODEHASH	and	EXTCODECOPY	opcodes.

These	modifications	significantly	improve	prover	times,	but	they	do	not	solve	every	problem.	The
slowness	from	having	to	prove	the	EVM	as-is,	with	all	of	the	inefficiencies	and	ZK-unfriendliness
inherent	to	the	EVM,	still	remains.	One	simple	example	of	this	is	memory:	because	an	MLOAD	can	read
any	32	bytes,	including	"unaligned"	chunks	(where	the	start	and	end	are	not	multiples	of	32),	an
MLOAD	can't	simply	be	interpreted	as	reading	one	chunk;	rather,	it	might	require	reading	two

https://hackmd.io/@n0ble/the-merge-terminology
https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md
https://github.com/privacy-scaling-explorations/zkevm-specs
https://github.com/privacy-scaling-explorations/
https://taiko.xyz/
https://medium.com/@eiki1212/ethereum-state-trie-architecture-explained-a30237009d4e
https://github.com/aragon/evm-storage-proofs
https://notes.ethereum.org/@vbuterin/verkle_tree_eip
https://ethresear.ch/t/future-proof-shard-and-history-access-precompiles/9781
https://www.poseidon-hash.info/


consecutive	chunks	and	performing	bit	operations	to	combine	the	result.

Who's	building	it?

Scroll's	ZK-EVM	project	is	building	toward	a	Type	2	ZK-EVM,	as	is	Polygon	Hermez.	That	said,	neither
project	is	quite	there	yet;	in	particular,	a	lot	of	the	more	complicated	precompiles	have	not	yet	been
implemented.	Hence,	at	the	moment	both	projects	are	better	considered	Type	3.

Type	2.5	(EVM-equivalent,	except	for	gas	costs)
One	way	to	significantly	improve	worst-case	prover	times	is	to	greatly	increase	the	gas	costs	of	specific
operations	in	the	EVM	that	are	very	difficult	to	ZK-prove.	This	might	involve	precompiles,	the	KECCAK
opcode,	and	possibly	specific	patterns	of	calling	contracts	or	accessing	memory	or	storage	or	reverting.

Changing	gas	costs	may	reduce	developer	tooling	compatibility	and	break	a	few	applications,	but	it's
generally	considered	less	risky	than	"deeper"	EVM	changes.	Developers	should	take	care	to	not	require
more	gas	in	a	transaction	than	fits	into	a	block,	to	never	make	calls	with	hard-coded	amounts	of	gas
(this	has	already	been	standard	advice	for	developers	for	a	long	time).

An	alternative	way	to	manage	resource	constraints	is	to	simply	set	hard	limits	on	the	number	of	times
each	operation	can	be	called.	This	is	easier	to	implement	in	circuits,	but	plays	much	less	nicely	with
EVM	security	assumptions.	I	would	call	this	approach	Type	3	rather	than	Type	2.5.

Type	3	(almost	EVM-equivalent)
Type	3	ZK-EVMs	are	almost	EVM-equivalent,	but	make	a	few	sacrifices	to	exact	equivalence	to	further
improve	prover	times	and	make	the	EVM	easier	to	develop.

Advantage:	easier	to	build,	and	faster	prover	times

Type	3	ZK-EVMs	might	remove	a	few	features	that	are	exceptionally	hard	to	implement	in	a	ZK-EVM
implementation.	Precompiles	are	often	at	the	top	of	the	list	here;.	Additionally,	Type	3	ZK-EVMs
sometimes	also	have	minor	differences	in	how	they	treat	contract	code,	memory	or	stack.

Disadvantage:	more	incompatibility

The	goal	of	a	Type	3	ZK-EVM	is	to	be	compatible	with	most	applications,	and	require	only	minimal	re-
writing	for	the	rest.	That	said,	there	will	be	some	applications	that	would	need	to	be	rewritten	either
because	they	use	pre-compiles	that	the	Type	3	ZK-EVM	removes	or	because	of	subtle	dependencies	on
edge	cases	that	the	VMs	treat	differently.

Who's	building	it?

Scroll	and	Polygon	are	both	Type	3	in	their	current	forms,	though	they're	expected	to	improve
compatibility	over	time.	Polygon	has	a	unique	design	where	they	are	ZK-verifying	their	own	internal
language	called	zkASM,	and	they	interpret	ZK-EVM	code	using	the	zkASM	implementation.	Despite	this
implementation	detail,	I	would	still	call	this	a	genuine	Type	3	ZK-EVM;	it	can	still	verify	EVM	code,	it
just	uses	some	different	internal	logic	to	do	it.

Today,	no	ZK-EVM	team	wants	to	be	a	Type	3;	Type	3	is	simply	a	transitional	stage	until	the
complicated	work	of	adding	precompiles	is	finished	and	the	project	can	move	to	Type	2.5.	In	the	future,
however,	Type	1	or	Type	2	ZK-EVMs	may	become	Type	3	ZK-EVMs	voluntarily,	by	adding	in	new	ZK-
SNARK-friendly	precompiles	that	provide	functionality	for	developers	with	low	prover	times	and	gas
costs.

Type	4	(high-level-language	equivalent)
A	Type	4	system	works	by	taking	smart	contract	source	code	written	in	a	high-level	language	(eg.
Solidity,	Vyper,	or	some	intermediate	that	both	compile	to)	and	compiling	that	to	some	language	that	is
explicitly	designed	to	be	ZK-SNARK-friendly.

Advantage:	very	fast	prover	times

There	is	a	lot	of	overhead	that	you	can	avoid	by	not	ZK-proving	all	the	different	parts	of	each	EVM
execution	step,	and	starting	from	the	higher-level	code	directly.
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I'm	only	describing	this	advantage	with	one	sentence	in	this	post	(compared	to	a	big	bullet	point	list
below	for	compatibility-related	disadvantages),	but	that	should	not	be	interpreted	as	a	value
judgement!	Compiling	from	high-level	languages	directly	really	can	greatly	reduce	costs	and	help
decentralization	by	making	it	easier	to	be	a	prover.

Disadvantage:	more	incompatibility

A	"normal"	application	written	in	Vyper	or	Solidity	can	be	compiled	down	and	it	would	"just	work",	but
there	are	some	important	ways	in	which	very	many	applications	are	not	"normal":

Contracts	may	not	have	the	same	addresses	in	a	Type	4	system	as	they	do	in	the	EVM,
because	CREATE2	contract	addresses	depend	on	the	exact	bytecode.	This	breaks	applications	that
rely	on	not-yet-deployed	"counterfactual	contracts",	ERC-4337	wallets,	EIP-2470	singletons	and
many	other	applications.
Handwritten	EVM	bytecode	is	more	difficult	to	use.	Many	applications	use	handwritten	EVM
bytecode	in	some	parts	for	efficiency.	Type	4	systems	may	not	support	it,	though	there	are	ways	to
implement	limited	EVM	bytecode	support	to	satisfy	these	use	cases	without	going	through	the
effort	of	becoming	a	full-on	Type	3	ZK-EVM.
Lots	of	debugging	infrastructure	cannot	be	carried	over,	because	such	infrastructure	runs
over	the	EVM	bytecode.	That	said,	this	disadvantage	is	mitigated	by	the	greater	access	to
debugging	infrastructure	from	"traditional"	high-level	or	intermediate	languages	(eg.	LLVM).

Developers	should	be	mindful	of	these	issues.

Who's	building	it?

ZKSync	is	a	Type	4	system,	though	it	may	add	compatibility	for	EVM	bytecode	over	time.	Nethermind's
Warp	project	is	building	a	compiler	from	Solidity	to	Starkware's	Cairo,	which	will	turn	StarkNet	into	a
de-facto	Type	4	system.

The	future	of	ZK-EVM	types
The	types	are	not	unambiguously	"better"	or	"worse"	than	other	types.	Rather,	they	are	different	points
on	the	tradeoff	space:	lower-numbered	types	are	more	compatible	with	existing	infrastructure	but
slower,	and	higher-numbered	types	are	less	compatible	with	existing	infrastructure	but	faster.	In
general,	it's	healthy	for	the	space	that	all	of	these	types	are	being	explored.

Additionally,	ZK-EVM	projects	can	easily	start	at	higher-numbered	types	and	jump	to	lower-numbered
types	(or	vice	versa)	over	time.	For	example:

A	ZK-EVM	could	start	as	Type	3,	deciding	not	to	include	some	features	that	are	especially	hard	to
ZK-prove.	Later,	they	can	add	those	features	over	time,	and	move	to	Type	2.
A	ZK-EVM	could	start	as	Type	2,	and	later	become	a	hybrid	Type	2	/	Type	1	ZK-EVM,	by	providing
the	possibility	of	operating	either	in	full	Ethereum	compatibility	mode	or	with	a	modified	state	tree
that	can	be	proven	faster.	Scroll	is	considering	moving	in	this	direction.
What	starts	off	as	a	Type	4	system	could	become	Type	3	over	time	by	adding	the	ability	to	process
EVM	code	later	on	(though	developers	would	still	be	encouraged	to	compile	direct	from	high-level
languages	to	reduce	fees	and	prover	times)
A	Type	2	or	Type	3	ZK-EVM	can	become	a	Type	1	ZK-EVM	if	Ethereum	itself	adopts	its
modifications	in	an	effort	to	become	more	ZK-friendly.
A	Type	1	or	Type	2	ZK-EVM	can	become	a	Type	3	ZK-EVM	by	adding	a	precompile	for	verifying
code	in	a	very	ZK-SNARK-friendly	language.	This	would	give	developers	a	choice	between
Ethereum	compatibility	and	speed.	This	would	be	Type	3,	because	it	breaks	perfect	EVM
equivalence,	but	for	practical	intents	and	purposes	it	would	have	a	lot	of	the	benefits	of	Type	1	and
2.	The	main	downside	might	be	that	some	developer	tooling	would	not	understand	the	ZK-EVM's
custom	precompiles,	though	this	could	be	fixed:	developer	tools	could	add	universal	precompile
support	by	supporting	a	config	format	that	includes	an	EVM	code	equivalent	implementation	of	the
precompile.

Personally,	my	hope	is	that	everything	becomes	Type	1	over	time,	through	a	combination	of
improvements	in	ZK-EVMs	and	improvements	to	Ethereum	itself	to	make	it	more	ZK-SNARK-friendly.
In	such	a	future,	we	would	have	multiple	ZK-EVM	implementations	which	could	be	used	both	for	ZK
rollups	and	to	verify	the	Ethereum	chain	itself.	Theoretically,	there	is	no	need	for	Ethereum	to
standardize	on	a	single	ZK-EVM	implementation	for	L1	use;	different	clients	could	use	different	proofs,
so	we	continue	to	benefit	from	code	redundancy.

However,	it	is	going	to	take	quite	some	time	until	we	get	to	such	a	future.	In	the	meantime,	we	are
going	to	see	a	lot	of	innovation	in	the	different	paths	to	scaling	Ethereum	and	Ethereum-based	ZK-
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What	do	I	think	about	network	states?

On	July	4,	Balaji	Srinivasan	released	the	first	version	of	his	long-awaited	new	book	describing	his
vision	for	"network	states":	communities	organized	around	a	particular	vision	of	how	to	run	their
own	society	that	start	off	as	online	clubs,	but	then	build	up	more	and	more	of	a	presence	over	time
and	eventually	become	large	enough	to	seek	political	autonomy	or	even	diplomatic	recognition.

Network	states	can	be	viewed	as	an	attempt	at	an	ideological	successor	to	libertarianism:	Balaji
repeatedly	praises	The	Sovereign	Individual	(see	my	mini-review	here)	as	important	reading	and
inspiration,	but	also	departs	from	its	thinking	in	key	ways,	centering	in	his	new	work	many	non-
individualistic	and	non-monetary	aspects	of	social	relations	like	morals	and	community.	Network
states	can	also	be	viewed	as	an	attempt	to	sketch	out	a	possible	broader	political	narrative	for	the
crypto	space.	Rather	than	staying	in	their	own	corner	of	the	internet	disconnected	from	the	wider
world,	blockchains	could	serve	as	a	centerpiece	for	a	new	way	of	organizing	large	chunks	of	human
society.

These	are	high	promises.	Can	network	states	live	up	to	them?	Do	network	states	actually	provide
enough	benefits	to	be	worth	getting	excited	about?	Regardless	of	the	merits	of	network	states,	does
it	actually	make	sense	to	tie	the	idea	together	with	blockchains	and	cryptocurrency?	And	on	the
other	hand,	is	there	anything	crucially	important	that	this	vision	of	the	world	misses?	This	post
represents	my	attempt	to	try	to	understand	these	questions.

Table	of	contents
What	is	a	network	state?
So	what	kinds	of	network	states	could	we	build?
What	is	Balaji's	megapolitical	case	for	network	states?
Do	you	have	to	like	Balaji's	megapolitics	to	like	network	states?
What	does	cryptocurrency	have	to	do	with	network	states?
What	aspects	of	Balaji's	vision	do	I	like?
What	aspects	of	Balaji's	vision	do	I	take	issue	with?
Non-Balajian	network	states
Is	there	a	middle	way?

What	is	a	network	state?
Balaji	helpfully	gives	multiple	short	definitions	of	what	a	network	state	is.	First,	his	definition	in	one
sentence:

A	network	state	is	a	highly	aligned	online	community	with	a	capacity	for	collective	action
that	crowdfunds	territory	around	the	world	and	eventually	gains	diplomatic	recognition
from	pre-existing	states.

This	so	far	seems	uncontroversial.	Create	a	new	internet	community	online,	once	it	grows	big	enough
materialize	it	offline,	and	eventually	try	to	negotiate	for	some	kind	of	status.	Someone	of	almost	any
political	ideology	could	find	some	form	of	network	state	under	this	definition	that	they	could	get
behind.	But	now,	we	get	to	his	definition	in	a	longer	sentence:

A	network	state	is	a	social	network	with	a	moral	innovation,	a	sense	of	national
consciousness,	a	recognized	founder,	a	capacity	for	collective	action,	an	in-person	level	of
civility,	an	integrated	cryptocurrency,	a	consensual	government	limited	by	a	social	smart
contract,	an	archipelago	of	crowdfunded	physical	territories,	a	virtual	capital,	and	an	on-
chain	census	that	proves	a	large	enough	population,	income,	and	real-estate	footprint	to
attain	a	measure	of	diplomatic	recognition.

Here,	the	concept	starts	to	get	opinionated:	we're	not	just	talking	about	the	general	concept	of	online
communities	that	have	collective	agency	and	eventually	try	to	materialize	on	land,	we're	talking
about	a	specific	Balajian	vision	of	what	network	states	should	look	like.	It's	completely	possible	to
support	network	states	in	general,	but	have	disagreements	with	the	Balajian	view	of	what	properties
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network	states	should	have.	If	you're	not	already	a	"crypto	convert",	it's	hard	to	see	why	an
"integrated	cryptocurrency"	is	such	a	fundamental	part	of	the	network	state	concept,	for	example	-
though	Balaji	does	later	on	in	the	book	defend	his	choices.

Finally,	Balaji	expands	on	this	conception	of	a	Balajian	network	state	in	longer-form,	first	in	"a
thousand	words"	(apparently,	Balajian	network	states	use	base	8,	as	the	actual	word	count	is	exactly
\(512	=	8^3\))	and	then	an	essay,	and	at	the	very	end	of	the	book	a	whole	chapter.

And,	of	course,	an	image.

One	key	point	that	Balaji	stresses	across	many	chapters	and	pages	is	the	unavoidable	moral
ingredient	required	for	any	successful	new	community.	As	Balaji	writes:

The	quick	answer	comes	from	Paul	Johnson	at	the	11:00	mark	of	this	talk,	where	he	notes
that	early	America's	religious	colonies	succeeded	at	a	higher	rate	than	its	for-profit
colonies,	because	the	former	had	a	purpose.	The	slightly	longer	answer	is	that	in	a	startup
society,	you're	not	asking	people	to	buy	a	product	(which	is	an	economic,	individualistic
pitch)	but	to	join	a	community	(which	is	a	cultural,	collective	pitch).

The	commitment	paradox	of	religious	communes	is	key	here:	counterintuitively,	it's	the	religious
communes	that	demand	the	most	of	their	members	that	are	the	most	long-lasting.

This	is	where	Balajism	explicitly	diverges	from	the	more	traditional	neoliberal-capitalist	ideal	of	the
defanged,	apolitical	and	passion-free	consumerist	"last	man".	Unlike	the	strawman	libertarian,	Balaji
does	not	believe	that	everything	can	"merely	be	a	consumer	product".	Rather,	he	stresses	greatly	the
importance	of	social	norms	for	cohesion,	and	a	literally	religious	attachment	to	the	values	that	make
a	particular	network	state	distinct	from	the	world	outside.	As	Balaji	says	in	this	podcast	at	18:20,
most	current	libertarian	attempts	at	micronations	are	like	"Zionism	without	Judaism",	and	this	is	a
key	part	of	why	they	fail.

This	recognition	is	not	a	new	one.	Indeed,	it's	at	the	core	of	Antonio	Garcia	Martinez's	criticism	of
Balaji's	earlier	sovereign-individual	ideas	(see	this	podcast	at	~27:00),	praising	the	tenacity	of	Cuban
exiles	in	Miami	who	"perhaps	irrationally,	said	this	is	our	new	homeland,	this	is	our	last	stand".	And
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in	Fukuyama's	The	End	of	History:

This	city,	like	any	city,	has	foreign	enemies	and	needs	to	be	defended	from	outside	attack.
It	therefore	needs	a	class	of	guardians	who	are	courageous	and	public-spirited,	who	are
willing	to	sacrifice	their	material	desires	and	wants	for	the	sake	of	the	common	good.
Socrates	does	not	believe	that	courage	and	public-spiritedness	can	arise	out	of	a
calculation	of	enlightened	self-interest.	Rather,	they	must	be	rooted	in	thymos,	in	the	just
pride	of	the	guardian	class	in	themselves	and	in	their	own	city,	and	their	potentially
irrational	anger	against	those	who	threaten	it.

Balaji's	argument	in	The	Network	State,	as	I	am	interpreting	it,	is	as	follows.	While	we	do
need	political	collectives	bound	not	just	by	economic	interest	but	also	by	moral	force,	we
don't	need	to	stick	with	the	specific	political	collectives	we	have	today,	which	are	highly
flawed	and	increasingly	unrepresentative	of	people's	values.	Rather,	we	can,	and	should,
create	new	and	better	collectives	-	and	his	seven-step	program	tells	us	how.

So	what	kinds	of	network	states	could	we	build?
Balaji	outlines	a	few	ideas	for	network	states,	which	I	will	condense	into	two	key	directions:	lifestyle
immersion	and	pro-tech	regulatory	innovation.

Balaji's	go-to	example	for	lifestyle	immersion	is	a	network	state	organized	around	health:

Next,	let's	do	an	example	which	requires	a	network	archipelago	(with	a	physical	footprint)
but	not	a	full	network	state	(with	diplomatic	recognition).	This	is	Keto	Kosher,	the	sugar-
free	society.

Start	with	a	history	of	the	horrible	USDA	Food	Pyramid,	the	grain-heavy	monstrosity	that
gave	cover	to	the	corporate	sugarification	of	the	globe	and	the	obesity	epidemic.	...
Organize	a	community	online	that	crowdfunds	properties	around	the	world,	like	apartment
buildings	and	gyms,	and	perhaps	eventually	even	culdesacs	and	small	towns.	You	might
take	an	extreme	sugar	teeotaler	approach,	literally	banning	processed	foods	and	sugar	at
the	border,	thereby	implementing	a	kind	of	"Keto	Kosher".

You	can	imagine	variants	of	this	startup	society	that	are	like	"Carnivory	Communities"	or
"Paleo	People".	These	would	be	competing	startup	societies	in	the	same	broad	area,
iterations	on	a	theme.	If	successful,	such	a	society	might	not	stop	at	sugar.	It	could	get	into
setting	cultural	defaults	for	fitness	and	exercise.	Or	perhaps	it	could	bulk	purchase
continuous	glucose	meters	for	all	members,	or	orders	of	metformin.

This,	strictly	speaking,	does	not	require	any	diplomatic	recognition	or	even	political	autonomy	-
though	perhaps,	in	the	longer-term	future,	such	enclaves	could	negotiate	for	lower	health	insurance
fees	and	medicare	taxes	for	their	members.	What	does	require	autonomy?	Well,	how	about	a	free
zone	for	medical	innovation?

Now	let's	do	a	more	difficult	example,	which	will	require	a	full	network	state	with
diplomatic	recognition.	This	is	the	medical	sovereignty	zone,	the	FDA-free	society.

You	begin	your	startup	society	with	Henninger's	history	of	FDA-caused	drug	lag	and
Tabarrok's	history	of	FDA	interference	with	so-called	"off	label"	prescription.	You	point	out
how	many	millions	were	killed	by	its	policies,	hand	out	t-shirts	like	ACT-UP	did,	show
Dallas	Buyers	Club	to	all	prospective	residents,	and	make	clear	to	all	new	members	why
your	cause	of	medical	sovereignty	is	righteous	...

For	the	case	of	doing	it	outside	the	US,	your	startup	society	would	ride	behind,	say,	the
support	of	the	Malta's	FDA	for	a	new	biomedical	regime.	For	the	case	of	doing	it	within	the
US,	you'd	need	a	governor	who'd	declare	a	sanctuary	state	for	biomedicine.	That	is,	just
like	a	sanctuary	city	declares	that	it	won't	enforce	federal	immigration	law,	a	sanctuary
state	for	biomedicine	would	not	enforce	FDA	writ.

One	can	think	up	of	many	more	examples	for	both	categories.	One	could	have	a	zone	where	it's	okay
to	walk	around	naked,	both	securing	your	legal	right	to	do	so	and	helping	you	feel	comfortable	by
creating	an	environment	where	many	other	people	are	naked	too.	Alternatively,	you	could	have	a
zone	where	everyone	can	only	wear	basic	plain-colored	clothing,	to	discourage	what's	perceived	as	a
zero-sum	status	competition	of	expending	huge	effort	to	look	better	than	everyone	else.	One	could
have	an	intentional	community	zone	for	cryptocurrency	users,	requiring	every	store	to	accept	it	and
demanding	an	NFT	to	get	in	the	zone	at	all.	Or	one	could	build	an	enclave	that	legalizes	radical
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experiments	in	transit	and	drone	delivery,	accepting	higher	risks	to	personal	safety	in	exchange	for
the	privilege	of	participating	in	a	technological	frontier	that	will	hopefully	set	examples	for	the	world
as	a	whole.

What	is	common	about	all	of	these	examples	is	the	value	of	having	a	physical	region,	at	least	of	a	few
hectares,	where	the	network	state's	unique	rules	are	enforced.	Sure,	you	could	individually	insist	on
only	eating	at	healthy	restaurants,	and	research	each	restaurant	carefully	before	you	go	there.	But
it's	just	so	much	easier	to	have	a	defined	plot	of	land	where	you	have	an	assurance	that	anywhere
you	go	within	that	plot	of	land	will	meet	your	standards.	Of	course,	you	could	lobby	your	local
government	to	tighten	health	and	safety	regulations.	But	if	you	do	that,	you	risk	friction	with	people
who	have	radically	different	preferences	on	tradeoffs,	and	you	risk	shutting	poor	people	out	of	the
economy.	A	network	state	offers	a	moderate	approach.

What	is	Balaji's	megapolitical	case	for	network	states?
One	of	the	curious	features	of	the	book	that	a	reader	will	notice	almost	immediately	is	that	it
sometimes	feels	like	two	books	in	one:	sometimes,	it's	a	book	about	the	concept	of	network	states,
and	at	other	times	it's	an	exposition	of	Balaji's	grand	megapolitical	theory.

Balaji's	grand	megapolitical	theory	is	pretty	out-there	and	fun	in	a	bunch	of	ways.	Near	the	beginning
of	the	book,	he	entices	readers	with	tidbits	like...	ok	fine,	I'll	just	quote:

Germany	sent	Vladimir	Lenin	into	Russia,	potentially	as	part	of	a	strategy	to
destabilize	their	then-rival	in	war.	Antony	Sutton's	books	document	how	some	Wall
Street	bankers	apparently	funded	the	Russian	Revolution	(and	how	other	Wall	Street
bankers	funded	the	Nazis	years	later).	Leon	Trotsky	spent	time	in	New	York	prior	to
the	revolution,	and	propagandistic	reporting	from	Americans	like	John	Reed	aided
Lenin	and	Trotsky	in	their	revolution.	Indeed,	Reed	was	so	useful	to	the	Soviets	—	and
so	misleading	as	to	the	nature	of	the	revolution	—	that	he	was	buried	at	the	base	of
the	Kremlin	Wall.	Surprise:	the	Russian	Revolution	wasn't	done	wholly	by	Russians,
but	had	significant	foreign	involvement	from	Germans	and	Americans.
The	Ochs-Sulzberger	family,	which	owns	The	New	York	Times	Company,	owned	slaves
but	didn't	report	that	fact	in	their	1619	coverage.
New	York	Times	correspondent	Walter	Duranty	won	a	Pulitzer	Prize	for	helping	the
Soviet	Union	starve	Ukraine	into	submission,	90	years	before	the	Times	decided	to
instead	"stand	with	Ukraine".

You	can	find	a	bunch	more	juicy	examples	in	the	chapter	titled,	appropriately,	"If	the	News	is	Fake,
Imagine	History".	These	examples	seem	haphazard,	and	indeed,	to	some	extent	they	are	so
intentionally:	the	goal	is	first	and	foremost	to	shock	the	reader	out	of	their	existing	world	model	so
they	can	start	downloading	Balaji's	own.

But	pretty	soon,	Balaji's	examples	do	start	to	point	to	some	particular	themes:	a	deep	dislike	of	the
"woke"	US	left,	exemplified	by	the	New	York	Times,	a	combination	of	strong	discomfort	with	the
Chinese	Communist	Party's	authoritarianism	with	an	understanding	of	why	the	CCP	often	justifiably
fears	the	United	States,	and	an	appreciation	of	the	love	of	freedom	of	the	US	right	(exemplified	by
Bitcoin	maximalists)	combined	with	a	dislike	of	their	hostility	toward	cooperation	and	order.

Next,	we	get	Balaji's	overview	of	the	political	realignments	in	recent	history,	and	finally	we	get	to	his
core	model	of	politics	in	the	present	day:	NYT,	CCP,	BTC.
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Team	NYT	basically	runs	the	US,	and	its	total	lack	of	competence	means	that	the	US	is	collapsing.
Team	BTC	(meaning,	both	actual	Bitcoin	maximalists	and	US	rightists	in	general)	has	some	positive
values,	but	their	outright	hostility	to	collective	action	and	order	means	that	they	are	incapable	of
building	anything.	Team	CCP	can	build,	but	they	are	building	a	dystopian	surveillance	state	that
much	of	the	world	would	not	want	to	live	in.	And	all	three	teams	are	waaay	too	nationalist:	they	view
things	from	the	perspective	of	their	own	country,	and	ignore	or	exploit	everyone	else.	Even	when	the
teams	are	internationalist	in	theory,	their	specific	ways	of	interpreting	their	values	make	them
unpalatable	outside	of	a	small	part	of	the	world.

Network	states,	in	Balaji's	view,	are	a	"de-centralized	center"	that	could	create	a	better	alternative.
They	combine	the	love	of	freedom	of	team	BTC	with	the	moral	energy	of	team	NYT	and	the
organization	of	team	CCP,	and	give	us	the	best	benefits	of	all	three	(plus	a	level	of	international
appeal	greater	than	any	of	the	three)	and	avoid	the	worst	parts.

This	is	Balajian	megapolitics	in	a	nutshell.	It	is	not	trying	to	justify	network	states	using	some
abstract	theory	(eg.	some	Dunbar's	number	or	concentrated-incentive	argument	that	the	optimal	size
of	a	political	body	is	actually	in	the	low	tens	of	thousands).	Rather,	it	is	an	argument	that	situates
network	states	as	a	response	to	the	particular	political	situation	of	the	world	at	its	current	place	and
time.

Balaji's	helical	theory	of	history:	yes,	there	are	cycles,	but	there	is	also	ongoing	progress.	Right	now,	we're	at	the
part	of	the	cycle	where	we	need	to	help	the	sclerotic	old	order	die,	but	also	seed	a	new	and	better	one.

Do	you	have	to	agree	with	Balaji's	megapolitics	to	like
network	states?
Many	aspects	of	Balajian	megapolitics	will	not	be	convincing	to	many	readers.	If	you	believe	that
"wokeness"	is	an	important	movement	that	protects	the	vulnerable,	you	may	not	appreciate	the
almost	off-handed	dismissal	that	it	is	basically	just	a	mask	for	a	professional	elite's	will-to-power.	If
you	are	worried	about	the	plight	of	smaller	countries	such	as	Ukraine	who	are	threatened	by
aggressive	neighbors	and	desperately	need	outside	support,	you	will	not	be	convinced	by	Balaji's	plea
that	"it	may	instead	be	best	for	countries	to	rearm,	and	take	on	their	own	defense".

I	do	think	that	you	can	support	network	states	while	disagreeing	with	some	of	Balaji's	reasoning	for
them	(and	vice	versa).	But	first,	I	should	explain	why	I	think	Balaji	feels	that	his	view	of	the	problem
and	his	view	of	the	solution	are	connected.	Balaji	has	been	passionate	about	roughly	the	same
problem	for	a	long	time;	you	can	see	a	similar	narrative	outline	of	defeating	US	institutional	sclerosis
through	a	technological	and	exit-driven	approach	in	his	speech	on	"the	ultimate	exit"	from	2013.
Network	states	are	the	latest	iteration	of	his	proposed	solution.

There	are	a	few	reasons	why	talking	about	the	problem	is	important:

To	show	that	network	states	are	the	only	way	to	protect	freedom	and	capitalism,	one
must	show	why	the	US	cannot.	If	the	US,	or	the	"democratic	liberal	order",	is	just	fine,	then
there	is	no	need	for	alternatives;	we	should	just	double	down	on	global	coordination	and	rule	of
law.	But	if	the	US	is	in	an	irreversible	decline,	and	its	rivals	are	ascending,	then	things	look
quite	different.	Network	states	can	"maintain	liberal	values	in	an	illiberal	world";	hegemony
thinking	that	assumes	"the	good	guys	are	in	charge"	cannot.
Many	of	Balaji's	intended	readers	are	not	in	the	US,	and	a	world	of	network	states
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would	inherently	be	globally	distributed	-	and	that	includes	lots	of	people	who	are
suspicious	of	America.	Balaji	himself	is	Indian,	and	has	a	large	Indian	fan	base.	Many	people
in	India,	and	elsewhere,	view	the	US	not	as	a	"guardian	of	the	liberal	world	order",	but	as
something	much	more	hypocritical	at	best	and	sinister	at	worst.	Balaji	wants	to	make	it	clear
that	you	do	not	have	to	be	pro-American	to	be	a	liberal	(or	at	least	a	Balaji-liberal).
Many	parts	of	US	left-leaning	media	are	increasingly	hostile	to	both	cryptocurrency
and	the	tech	sector.	Balaji	expects	that	the	"authoritarian	left"	parts	of	"team	NYT"	will	be
hostile	to	network	states,	and	he	explains	this	by	pointing	out	that	the	media	are	not	angels	and
their	attacks	are	often	self-interested.

But	this	is	not	the	only	way	of	looking	at	the	broader	picture.	What	if	you	do	believe	in	the
importance	of	role	of	social	justice	values,	the	New	York	Times,	or	America?	What	if	you	value
governance	innovation,	but	have	more	moderate	views	on	politics?	Then,	there	are	two	ways	you
could	look	at	the	issue:

Network	states	as	a	synergistic	strategy,	or	at	least	as	a	backup.	Anything	that	happens	in
US	politics	in	terms	of	improving	equality,	for	example,	only	benefits	the	~4%	of	the	world's
population	that	lives	in	the	United	States.	The	First	Amendment	does	not	apply	outside	US
borders.	The	governance	of	many	wealthy	countries	is	sclerotic,	and	we	do	need	some	way	to	try
more	governance	innovation.	Network	states	could	fill	in	the	gaps.	Countries	like	the	United
States	could	host	network	states	that	attract	people	from	all	over	the	world.	Successful	network
states	could	even	serve	as	a	policy	model	for	countries	to	adopt.	Alternatively,	what	if	the
Republicans	win	and	secure	a	decades-long	majority	in	2024,	or	the	United	States	breaks	down?
You	want	there	to	be	an	alternative.
Exit	to	network	states	as	a	distraction,	or	even	a	threat.	If	everyone's	first	instinct	when
faced	with	a	large	problem	within	their	country	is	to	exit	to	an	enclave	elsewhere,	there	will	be
no	one	left	to	protect	and	maintain	the	countries	themselves.	Global	infrastructure	that
ultimately	network	states	depend	on	will	suffer.

Both	perspectives	are	compatible	with	a	lot	of	disagreement	with	Balajian	megapolitics.	Hence,	to
argue	for	or	against	Balajian	network	states,	we	will	ultimately	have	to	talk	about	network	states.	My
own	view	is	friendly	to	network	states,	though	with	a	lot	of	caveats	and	different	ideas	about	how
network	states	could	work.

What	does	cryptocurrency	have	to	do	with	network	states?
There	are	two	kinds	of	alignment	here:	there	is	the	spiritual	alignment,	the	idea	that	"Bitcoin
becomes	the	flag	of	technology",	and	there	is	the	practical	alignment,	the	specific	ways	in	which
network	states	could	use	blockchains	and	cryptographic	tokens.	In	general,	I	agree	with	both	of
these	arguments	-	though	I	think	Balaji's	book	could	do	much	more	to	spell	them	out	more	explicitly.

The	spiritual	alignment

Cryptocurrency	in	2022	is	a	key	standard-bearer	for	internationalist	liberal	values	that	are	difficult	to
find	in	any	other	social	force	that	still	stands	strong	today.	Blockchains	and	cryptocurrencies	are
inherently	global.	Most	Ethereum	developers	are	outside	the	US,	living	in	far-flung	places	like
Europe,	Taiwan	and	Australia.	NFTs	have	given	unique	opportunities	to	artists	in	Africa	and
elsewhere	in	the	Global	South.	Argentinians	punch	above	their	weight	in	projects	like	Proof	of
Humanity,	Kleros	and	Nomic	Labs.

Blockchain	communities	continue	to	stand	for	openness,	freedom,	censorship	resistance	and	credible
neutrality,	at	a	time	where	many	geopolitical	actors	are	increasingly	only	serving	their	own	interests.
This	enhances	their	international	appeal	further:	you	don't	have	to	love	US	hegemony	to	love
blockchains	and	the	values	that	they	stand	for.	And	this	all	makes	blockchains	an	ideal	spiritual
companion	for	the	network	state	vision	that	Balaji	wants	to	see.

The	practical	alignment

But	spiritual	alignment	means	little	without	practical	use	value	for	blockchains	to	go	along	with	it.
Balaji	gives	plenty	of	blockchain	use	cases.	One	of	Balaji's	favorite	concepts	is	the	idea	of	the
blockchain	as	a	"ledger	of	record":	people	can	timestamp	events	on-chain,	creating	a	global	provable
log	of	humanity's	"microhistory".	He	continues	with	other	examples:

Zero-knowledge	technology	like	ZCash,	Ironfish,	and	Tornado	Cash	allow	on-chain
attestation	of	exactly	what	people	want	to	make	public	and	nothing	more.
Naming	systems	like	the	Ethereum	Name	Service	(ENS)	and	Solana	Name	Service
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(SNS)	attach	identity	to	on-chain	transactions.
Incorporation	systems	allow	the	on-chain	representation	of	corporate	abstractions
above	the	level	of	a	mere	transaction,	like	financial	statements	or	even	full
programmable	company-equivalents	like	DAOs.
Cryptocredentials,	Non-Fungible	Tokens	(NFTs),	Non-Transferable	Fungibles	(NTFs),
and	Soulbounds	allow	the	representation	of	non-financial	data	on	chain,	like	diplomas
or	endorsements.

But	how	does	this	all	relate	to	network	states?	I	could	go	into	specific	examples	in	the	vein	of	crypto
cities:	issuing	tokens,	issuing	CityDAO-style	citizen	NFTs,	combining	blockchains	with	zero-
knowledge	cryptography	to	do	secure	privacy-preserving	voting,	and	a	lot	more.	Blockchains	are	the
Lego	of	crypto-finance	and	crypto-governance:	they	are	a	very	effective	tool	for	implementing
transparent	in-protocol	rules	to	govern	common	resources,	assets	and	incentives.

But	we	also	need	to	go	a	level	deeper.	Blockchains	and	network	states	have	the	shared
property	that	they	are	both	trying	to	"create	a	new	root".	A	corporation	is	not	a	root:	if	there	is
a	dispute	inside	a	corporation,	it	ultimately	gets	resolved	by	a	national	court	system.	Blockchains	and
network	states,	on	the	other	hand,	are	trying	to	be	new	roots.	This	does	not	mean	some	absolute	"na
na	no	one	can	catch	me"	ideal	of	sovereignty	that	is	perhaps	only	truly	accessible	to	the	~5	countries
that	have	highly	self-sufficient	national	economies	and/or	nuclear	weapons.	Individual	blockchain
participants	are	of	course	vulnerable	to	national	regulation,	and	enclaves	of	network	states	even
more	so.	But	blockchains	are	the	only	infrastructure	system	that	at	least	attempts	to	do	ultimate
dispute	resolution	at	the	non-state	level	(either	through	on-chain	smart	contract	logic	or	through	the
freedom	to	fork).	This	makes	them	an	ideal	base	infrastructure	for	network	states.

What	aspects	of	Balaji's	vision	do	I	like?
Given	that	a	purist	"private	property	rights	only"	libertarianism	inevitably	runs	into	large	problems
like	its	inability	to	fund	public	goods,	any	successful	pro-freedom	program	in	the	21st	century	has	to
be	a	hybrid	containing	at	least	one	Big	Compromise	Idea	that	solves	at	least	80%	of	the	problems,	so
that	independent	individual	initiative	can	take	care	of	the	rest.	This	could	be	some	stringent
measures	against	economic	power	and	wealth	concentration	(maybe	charge	annual	Harberger	taxes
on	everything),	it	could	be	an	85%	Georgist	land	tax,	it	could	be	a	UBI,	it	could	be	mandating	that
sufficiently	large	companies	become	democratic	internally,	or	one	of	any	other	proposals.	Not	all	of
these	work,	but	you	need	something	that	drastic	to	have	any	shot	at	all.

Generally,	I	am	used	to	the	Big	Compromise	Idea	being	a	leftist	one:	some	form	of	equality	and
democracy.	Balaji,	on	the	other	hand,	has	Big	Compromise	Ideas	that	feel	more	rightist:	local
communities	with	shared	values,	loyalty,	religion,	physical	environments	structured	to	encourage
personal	discipline	("keto	kosher")	and	hard	work.	These	values	are	implemented	in	a	very	libertarian
and	tech-forward	way,	organizing	not	around	land,	history,	ethnicity	and	country,	but	around	the
cloud	and	personal	choice,	but	they	are	rightist	values	nonetheless.	This	style	of	thinking	is	foreign	to
me,	but	I	find	it	fascinating,	and	important.	Stereotypical	"wealthy	white	liberals"	ignore	this	at	their
peril:	these	more	"traditional"	values	are	actually	quite	popular	even	among	some	ethnic	minorities
in	the	United	States,	and	even	more	so	in	places	like	Africa	and	India,	which	is	exactly	where	Balaji	is
trying	to	build	up	his	base.

But	what	about	this	particular	baizuo	that's	currently	writing	this	review?	Do
network	states	actually	interest	me?

The	"Keto	Kosher"	health-focused	lifestyle	immersion	network	state	is	certainly	one	that	I	would	want
to	live	in.	Sure,	I	could	just	spend	time	in	cities	with	lots	of	healthy	stuff	that	I	can	seek	out
intentionally,	but	a	concentrated	physical	environment	makes	it	so	much	easier.	Even	the
motivational	aspect	of	being	around	other	people	who	share	a	similar	goal	sounds	very	appealing.

But	the	truly	interesting	stuff	is	the	governance	innovation:	using	network	states	to	organize	in	ways
that	would	actually	not	be	possible	under	existing	regulations.	There	are	three	ways	that	you	can
interpret	the	underlying	goal	here:

1.	 Creating	new	regulatory	environments	that	let	their	residents	have	different	priorities
from	the	priorities	preferred	by	the	mainstream:	for	example,	the	"anyone	can	walk	around
naked"	zone,	or	a	zone	that	implements	different	tradeoffs	between	safety	and	convenience,	or	a
zone	that	legalizes	more	psychoactive	substances.

2.	 Creating	new	regulatory	institutions	that	might	be	more	efficient	at	serving	the	same
priorities	as	the	status	quo.	For	example,	instead	of	improving	environmental	friendliness	by
regulating	specific	behaviors,	you	could	just	have	a	Pigovian	tax.	Instead	of	requiring	licenses
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and	regulatory	pre-approval	for	many	actions,	you	could	require	mandatory	liability	insurance.
You	could	use	quadratic	voting	for	governance	and	quadratic	funding	to	fund	local	public	goods.

3.	 Pushing	against	regulatory	conservatism	in	general,	by	increasing	the	chance	that	there's
some	jurisdiction	that	will	let	you	do	any	particular	thing.	Institutionalized	bioethics,	for
example,	is	a	notoriously	conservative	enterprise,	where	20	people	dead	in	a	medical
experiment	gone	wrong	is	a	tragedy,	but	200000	people	dead	from	life-saving	medicines	and
vaccines	not	being	approved	quickly	enough	is	a	statistic.	Allowing	people	to	opt	into	network
states	that	accept	higher	levels	of	risk	could	be	a	successful	strategy	for	pushing	against	this.

In	general,	I	see	value	in	all	three.	A	large-scale	institutionalization	of	[1]	could	make	the	word
simultaneously	more	free	while	making	people	comfortable	with	higher	levels	of	restriction	of	certain
things,	because	they	know	that	if	they	want	to	do	something	disallowed	there	are	other	zones	they
could	go	to	do	it.	More	generally,	I	think	there	is	an	important	idea	hidden	in	[1]:	while	the	"social
technology"	community	has	come	up	with	many	good	ideas	around	better	governance,	and
many	good	ideas	around	better	public	discussion,	there	is	a	missing	emphasis	on	better
social	technology	for	sorting.	We	don't	just	want	to	take	existing	maps	of	social	connections	as
given	and	find	better	ways	to	come	to	consensus	within	them.	We	also	want	to	reform	the	webs	of
social	connections	themselves,	and	put	people	closer	to	other	people	that	are	more	compatible	with
them	to	better	allow	different	ways	of	life	to	maintain	their	own	distinctiveness.

[2]	is	exciting	because	it	fixes	a	major	problem	in	politics:	unlike	startups,	where	the	early	stage	of
the	process	looks	somewhat	like	a	mini	version	of	the	later	stage,	in	politics	the	early	stage	is	a
public	discourse	game	that	often	selects	for	very	different	things	than	what	actually	work	in	practice.
If	governance	ideas	are	regularly	implemented	in	network	states,	then	we	would	move	from	an
extrovert-privileging	"talker	liberalism"	to	a	more	balanced	"doer	liberalism"	where	ideas
rise	and	fall	based	on	how	well	they	actually	do	on	a	small	scale.	We	could	even	combine	[1]
and	[2]:	have	a	zone	for	people	who	want	to	automatically	participate	in	a	new	governance
experiment	every	year	as	a	lifestyle.

[3]	is	of	course	a	more	complicated	moral	question:	whether	you	view	paralysis	and	creep	toward	de-
facto	authoritarian	global	government	as	a	bigger	problem	or	someone	inventing	an	evil	technology
that	dooms	us	all	as	a	bigger	problem.	I'm	generally	in	the	first	camp;	I	am	concerned	about	the
prospect	of	both	the	West	and	China	settling	into	a	kind	of	low-growth	conservatism,	I	love	how
imperfect	coordination	between	nation	states	limits	the	enforceability	of	things	like	global	copyright
law,	and	I'm	concerned	about	the	possibility	that,	with	future	surveillance	technology,	the	world	as	a
whole	will	enter	a	highly	self-enforcing	but	terrible	political	equilibrium	that	it	cannot	get	out	of.	But
there	are	specific	areas	(cough	cough,	unfriendly	AI	risk)	where	I	am	in	the	risk-averse	camp	...	but
here	we're	already	getting	into	the	second	part	of	my	reaction.

What	aspects	of	Balaji's	vision	do	I	take	issue	with?
There	are	four	aspects	that	I	am	worried	about	the	most:

1.	 The	"founder"	thing	-	why	do	network	states	need	a	recognized	founder	to	be	so	central?
2.	 What	if	network	states	end	up	only	serving	the	wealthy?
3.	 "Exit"	alone	is	not	sufficient	to	stabilize	global	politics.	So	if	exit	is	everyone's	first	choice,	what

happens?
4.	 What	about	global	negative	externalities	more	generally?

The	"founder"	thing

Throughout	the	book,	Balaji	is	insistent	on	the	importance	of	"founders"	in	a	network	state	(or	rather,
a	startup	society:	you	found	a	startup	society,	and	become	a	network	state	if	you	are	successful
enough	to	get	diplomatic	recognition).	Balaji	explicitly	describes	startup	society	founders	as	being
"moral	entrepreneurs":

These	presentations	are	similar	to	startup	pitch	decks.	But	as	the	founder	of	a	startup
society,	you	aren't	a	technology	entrepreneur	telling	investors	why	this	new	innovation	is
better,	faster,	and	cheaper.	You	are	a	moral	entrepreneur	telling	potential	future	citizens
about	a	better	way	of	life,	about	a	single	thing	that	the	broader	world	has	gotten	wrong
that	your	community	is	setting	right.

Founders	crystallize	moral	intuitions	and	learnings	from	history	into	a	concrete	philosophy,	and
people	whose	moral	intuitions	are	compatible	with	that	philosophy	coalesce	around	the	project.	This
is	all	very	reasonable	at	an	early	stage	-	though	it	is	definitely	not	the	only	approach	for	how	a
startup	society	could	emerge.	But	what	happens	at	later	stages?	Mark	Zuckerberg	being	the
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centralized	founder	of	facebook	the	startup	was	perhaps	necessary.	But	Mark	Zuckerberg	being	in
charge	of	a	multibillion-dollar	(in	fact,	multibillion-user)	company	is	something	quite	different.	Or,	for
that	matter,	what	about	Balaji's	nemesis:	the	fifth-generation	hereditary	white	Ochs-Sulzberger
dynasty	running	the	New	York	Times?

Small	things	being	centralized	is	great,	extremely	large	things	being	centralized	is	terrifying.	And
given	the	reality	of	network	effects,	the	freedom	to	exit	again	is	not	sufficient.	In	my	view,	the
problem	of	how	to	settle	into	something	other	than	founder	control	is	important,	and	Balaji	spends
too	little	effort	on	it.	"Recognized	founder"	is	baked	into	the	definition	of	what	a	Balajian	network
state	is,	but	a	roadmap	toward	wider	participation	in	governance	is	not.	It	should	be.

What	about	everyone	who	is	not	wealthy?

Over	the	last	few	years,	we've	seen	many	instances	of	governments	around	the	world	becoming
explicitly	more	open	to	"tech	talent".	There	are	42	countries	offering	digital	nomad	visas,	there	is	a
French	tech	visa,	a	similar	program	in	Singapore,	golden	visas	for	Taiwan,	a	program	for	Dubai,	and
many	others.	This	is	all	great	for	skilled	professionals	and	rich	people.	Multimillionaires	fleeing
China's	tech	crackdowns	and	covid	lockdowns	(or,	for	that	matter,	moral	disagreements	with	China's
other	policies)	can	often	escape	the	world's	systemic	discrimination	against	Chinese	and	other	low-
income-country	citizens	by	spending	a	few	hundred	thousand	dollars	on	buying	another	passport.	But
what	about	regular	people?	What	about	the	Rohingya	minority	facing	extreme	conditions	in
Myanmar,	most	of	whom	do	not	have	a	way	to	enter	the	US	or	Europe,	much	less	buy	another
passport?

Here,	we	see	a	potential	tragedy	of	the	network	state	concept.	On	the	one	hand,	I	can	really	see	how
exit	can	be	the	most	viable	strategy	for	global	human	rights	protection	in	the	twenty	first	century.
What	do	you	do	if	another	country	is	oppressing	an	ethnic	minority?	You	could	do	nothing.	You	could
sanction	them	(often	ineffective	and	ruinous	to	the	very	people	you're	trying	to	help).	You	could	try	to
invade	(same	criticism	but	even	worse).	Exit	is	a	more	humane	option.	People	suffering	human	rights
atrocities	could	just	pack	up	and	leave	for	friendlier	pastures,	and	coordinating	to	do	it	in	a	group
would	mean	that	they	could	leave	without	sacrificing	the	communities	they	depend	on	for	friendship
and	economic	livelihood.	And	if	you're	wrong	and	the	government	you're	criticizing	is	actually	not
that	oppressive,	then	people	won't	leave	and	all	is	fine,	no	starvation	or	bombs	required.	This	is	all
beautiful	and	good.	Except...	the	whole	thing	breaks	down	because	when	the	people	try	to	exit,
nobody	is	there	to	take	them.

What	is	the	answer?	Honestly,	I	don't	see	one.	One	point	in	favor	of	network	states	is	that	they	could
be	based	in	poor	countries,	and	attract	wealthy	people	from	abroad	who	would	then	help	the	local
economy.	But	this	does	nothing	for	people	in	poor	countries	who	want	to	get	out.	Good	old-fashioned
political	action	within	existing	states	to	liberalize	immigration	laws	seems	like	the	only	option.

Nowhere	to	run

In	the	wake	of	Russia's	invasion	of	Ukraine	on	Feb	24,	Noah	Smith	wrote	an	important	post	on	the
moral	clarity	that	the	invasion	should	bring	to	our	thought.	A	particularly	striking	section	is	titled
"nowhere	to	run".	Quoting:

But	while	exit	works	on	a	local	level	—	if	San	Francisco	is	too	dysfunctional,	you	can
probably	move	to	Austin	or	another	tech	town	—	it	simply	won't	work	at	the	level	of
nations.	In	fact,	it	never	really	did	—	rich	crypto	guys	who	moved	to	countries	like
Singapore	or	territories	like	Puerto	Rico	still	depended	crucially	on	the	infrastructure	and
institutions	of	highly	functional	states.	But	Russia	is	making	it	even	clearer	that	this
strategy	is	doomed,	because	eventually	there	is	nowhere	to	run.	Unlike	in	previous	eras,
the	arm	of	the	great	powers	is	long	enough	to	reach	anywhere	in	the	world.

If	the	U.S.	collapses,	you	can't	just	move	to	Singapore,	because	in	a	few	years	you'll	be
bowing	to	your	new	Chinese	masters.	If	the	U.S.	collapses,	you	can't	just	move	to	Estonia,
because	in	a	few	years	(months?)	you'll	be	bowing	to	your	new	Russian	masters.	And	those
masters	will	have	extremely	little	incentive	to	allow	you	to	remain	a	free	individual	with
your	personal	fortune	intact	...	Thus	it	is	very	very	important	to	every	libertarian	that	the
U.S.	not	collapse.

One	possible	counter-argument	is:	sure,	if	Ukraine	was	full	of	people	whose	first	instinct	was	exit,
Ukraine	would	have	collapsed.	But	if	Russia	was	also	more	exit-oriented,	everyone	in	Russia	would
have	pulled	out	of	the	country	within	a	week	of	the	invasion.	Putin	would	be	left	standing	alone	in	the
fields	of	the	Luhansk	oblast	facing	Zelensky	a	hundred	meters	away,	and	when	Putin	shouts	his
demand	for	surrender,	Zelensky	would	reply:	"you	and	what	army"?	(Zelensky	would	of	course	win	a
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fair	one-on-one	fight)

But	things	could	go	a	different	way.	The	risk	is	that	exitocracy	becomes	recognized	as	the	primary
way	you	do	the	"freedom"	thing,	and	societies	that	value	freedom	will	become	exitocratic,	but
centralized	states	will	censor	and	suppress	these	impulses,	adopt	a	militaristic	attitude	of	national
unconditional	loyalty,	and	run	roughshod	over	everyone	else.

So	what	about	those	negative	externalities?

If	we	have	a	hundred	much-less-regulated	innovation	labs	everywhere	around	the	world,	this	could
lead	to	a	world	where	harmful	things	are	more	difficult	to	prevent.	This	raises	a	question:	does
believing	in	Balajism	require	believing	in	a	world	where	negative	externalities	are	not	too
big	a	deal?	Such	a	viewpoint	would	be	the	opposite	of	the	Vulnerable	World	Hypothesis	(VWH),
which	suggests	that	are	technology	progresses,	it	gets	easier	and	easier	for	one	or	a	few	crazy
people	to	kill	millions,	and	global	authoritarian	surveillance	might	be	required	to	prevent	extreme
suffering	or	even	extinction.

One	way	out	might	be	to	focus	on	self-defense	technology.	Sure,	in	a	network	state	world,	we	could
not	feasibly	ban	gain-of-function	research,	but	we	could	use	network	states	to	help	the	world	along	a
path	to	adopting	really	good	HEPA	air	filtering,	far-UVC	light,	early	detection	infrastructure	and	a
very	rapid	vaccine	development	and	deployment	pipeline	that	could	defeat	not	only	covid,	but	far
worse	viruses	too.	This	80,000	hours	episode	outlines	the	bull	case	for	bioweapons	being	a	solvable
problem.	But	this	is	not	a	universal	solution	for	all	technological	risks:	at	the	very	least,	there	is	no
self-defense	against	a	super-intelligent	unfriendly	AI	that	kills	us	all.

Self-defense	technology	is	good,	and	is	probably	an	undervalued	funding	focus	area.	But	it's	not
realistic	to	rely	on	that	alone.	Transnational	cooperation	to,	for	example,	ban	slaughterbots,	would	be
required.	And	so	we	do	want	a	world	where,	even	if	network	states	have	more	sovereignty	than
intentional	communities	today,	their	sovereignty	is	not	absolute.

Non-Balajian	network	states
Reading	The	Network	State	reminded	me	of	a	different	book	that	I	read	ten	years	ago:	David	de
Ugarte's	Phyles:	Economic	Democracy	in	the	Twenty	First	Century.	Phyles	talks	about	similar	ideas
of	transnational	communities	organized	around	values,	but	it	has	a	much	more	left-leaning	emphasis:
it	assumes	that	these	communities	will	be	democratic,	inspired	by	a	combination	of	2000s-era	online
communities	and	nineteenth	and	twentieth-century	ideas	of	cooperatives	and	workplace	democracy.

We	can	see	the	differences	most	clearly	by	looking	at	de	Ugarte's	theory	of	formation.	Since	I've
already	spent	a	lot	of	time	quoting	Balaji,	I'll	give	de	Ugarte	a	fair	hearing	with	a	longer	quote:

The	very	blogosphere	is	an	ocean	of	identities	and	conversation	in	perpetual	cross-breeding
and	change	from	among	which	the	great	social	digestion	periodically	distils	stable	groups
with	their	own	contexts	and	specific	knowledge.

These	conversational	communities	which	crystallise,	after	a	certain	point	in	their
development,	play	the	main	roles	in	what	we	call	digital	Zionism:	they	start	to	precipitate
into	reality,	to	generate	mutual	knowledge	among	their	members,	which	makes	them	more
identitarially	important	to	them	than	the	traditional	imaginaries	of	the	imagined
communities	to	which	they	are	supposed	to	belong	(nation,	class,	congregation,	etc.)	as	if	it
were	a	real	community	(group	of	friends,	family,	guild,	etc.)

Some	of	these	conversational	networks,	identitarian	and	dense,	start	to	generate	their	own
economic	metabolism,	and	with	it	a	distinct	demos	–	maybe	several	demoi	–	which	takes	the
nurturing	of	the	autonomy	of	the	community	itself	as	its	own	goal.	These	are	what	we	call
Neo-Venetianist	networks.	Born	in	the	blogosphere,	they	are	heirs	to	the	hacker	work	ethic,
and	move	in	the	conceptual	world,	which	tends	to	the	economic	democracy	which	we	spoke
about	in	the	first	part	of	this	book.

Unlike	traditional	cooperativism,	as	they	do	not	spring	from	real	proximity-based
communities,	their	local	ties	do	not	generate	identity.	In	the	Indianos'	foundation,	for
instance,	there	are	residents	in	two	countries	and	three	autonomous	regions,	who	started
out	with	two	companies	founded	hundreds	of	kilometres	away	from	each	other.

We	see	some	very	Balajian	ideas:	shared	collective	identities,	but	formed	around	values	rather	than
geography,	that	start	off	as	discussion	communities	in	the	cloud	but	then	materialize	into	taking	over
large	portions	of	economic	life.	De	Ugarte	even	uses	the	exact	same	metaphor	("digital	Zionism")	that

https://forum.effectivealtruism.org/topics/vulnerable-world-hypothesis
https://www.nature.com/articles/d41586-021-02669-2
https://www.nature.com/articles/s41598-022-08462-z
https://www.epiwatch.org/
https://80000hours.org/podcast/episodes/andy-weber-rendering-bioweapons-obsolete/
https://futureoflife.org/2021/12/13/special-newsletter-slaughterbots-sequel/
http://wiki.p2pfoundation.net/Phyles


Balaji	does!

But	we	also	see	a	key	difference:	there	is	no	single	founder.	Rather	than	a	startup	society	being
formed	by	an	act	of	a	single	individual	combining	together	intuitions	and	strands	of	thought	into	a
coherent	formally	documented	philosophy,	a	phyle	starts	off	as	a	conversational	network	in	the
blogosphere,	and	then	directly	turns	into	a	group	that	does	more	and	more	over	time	-	all	while
keeping	its	democratic	and	horizontal	nature.	The	whole	process	is	much	more	organic,	and	not	at	all
guided	by	a	single	person's	intention.

Of	course,	the	immediate	challenge	that	I	can	see	is	the	incentive	issues	inherent	to	such	structures.
One	way	to	perhaps	unfairly	summarize	both	Phyles	and	The	Network	State	is	that	The	Network
State	seeks	to	use	2010s-era	blockchains	as	a	model	for	how	to	reorganize	human	society,	and	Phyles
seeks	to	use	2000s-era	open	source	software	communities	and	blogs	as	a	model	for	how	to
reorganize	human	society.	Open	source	has	the	failure	mode	of	not	enough	incentives,
cryptocurrency	has	the	failure	mode	of	excessive	and	overly	concentrated	incentives.	But	what	this
does	suggest	is	that	some	kind	of	middle	way	should	be	possible.

Is	there	a	middle	way?
My	judgement	so	far	is	that	network	states	are	great,	but	they	are	far	from	being	a	viable	Big
Compromise	Idea	that	can	actually	plug	all	the	holes	needed	to	build	the	kind	of	world	I	and	most	of
my	readers	would	want	to	see	in	the	21st	century.	Ultimately,	I	do	think	that	we	need	to	bring	in
more	democracy	and	large-scale-coordination	oriented	Big	Compromise	Ideas	of	some	kind	to	make
network	states	truly	successful.

Here	are	some	significant	adjustments	to	Balajism	that	I	would	endorse:

Founder	to	start	is	okay	(though	not	the	only	way),	but	we	really	need	a
baked-in	roadmap	to	exit-to-community

Many	founders	want	to	eventually	retire	or	start	something	new	(see:	basically	half	of	every	crypto
project),	and	we	need	to	prevent	network	states	from	collapsing	or	sliding	into	mediocrity	when	that
happens.	Part	of	this	process	is	some	kind	of	constitutional	exit-to-community	guarantee:	as	the
network	state	enters	higher	tiers	of	maturity	and	scale,	more	input	from	community	members	is
taken	into	account	automatically.

Prospera	attempted	something	like	this.	As	Scott	Alexander	summarizes:

Once	Próspera	has	100,000	residents	(so	realistically	a	long	time	from	now,	if	the
experiment	is	very	successful),	they	can	hold	a	referendum	where	51%	majority	can	change
anything	about	the	charter,	including	kicking	HPI	out	entirely	and	becoming	a	direct
democracy,	or	rejoining	the	rest	of	Honduras,	or	anything

But	I	would	favor	something	even	more	participatory	than	the	residents	having	an	all-or-nothing
nuclear	option	to	kick	the	government	out.

Another	part	of	this	process,	and	one	that	I've	recognized	in	the	process	of	Ethereum's	growth,	is
explicitly	encouraging	broader	participation	in	the	moral	and	philosophical	development	of	the
community.	Ethereum	has	its	Vitalik,	but	it	also	has	its	Polynya:	an	internet	anon	who	has	recently
entered	the	scene	unsolicited	and	started	providing	high-quality	thinking	on	rollups	and	scaling
technology.	How	will	your	startup	society	recruit	its	first	ten	Polynyas?

Network	states	should	be	run	by	something	that's	not	coin-driven
governance

Coin-driven	governance	is	plutocratic	and	vulnerable	to	attacks;	I	have	written	about	this	many
times,	but	it's	worth	repeating.	Ideas	like	Optimism's	soulbound	and	one-per-person	citizen	NFTs	are
key	here.	Balaji	already	acknowledges	the	need	for	non-fungibility	(he	supports	coin	lockups),	but	we
should	go	further	and	more	explicit	in	supporting	governance	that's	not	just	shareholder-driven.	This
will	also	have	the	beneficial	side	effect	that	more	democratic	governance	is	more	likely	to	be	aligned
with	the	outside	world.

Network	states	commit	to	making	themselves	friendly	through	outside
representation	in	governance

One	of	the	fascinating	and	under-discussed	ideas	from	the	rationalist	and	friendly-AI	community	is

https://astralcodexten.substack.com/p/prospectus-on-prospera
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https://community.optimism.io/docs/governance/
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functional	decision	theory.	This	is	a	complicated	concept,	but	the	powerful	core	idea	is	that	AIs	could
coordinate	better	than	humans,	solving	prisoner's	dilemmas	where	humans	often	fail,	by	making
verifiable	public	commitments	about	their	source	code.	An	AI	could	rewrite	itself	to	have	a	module
that	prevents	it	from	cheating	other	AIs	that	have	a	similar	module.	Such	AIs	would	all	cooperate
with	each	other	in	prisoner's	dilemmas.

As	I	pointed	out	years	ago,	DAOs	could	potentially	do	the	same	thing.	They	could	have	governance
mechanisms	that	are	explicitly	more	charitable	toward	other	DAOs	that	have	a	similar	mechanism.
Network	states	would	be	run	by	DAOs,	and	this	would	apply	to	network	states	too.	They	could	even
commit	to	governance	mechanisms	that	promise	to	take	wider	public	interests	into	account	(eg.	20%
of	the	votes	could	go	to	a	randomly	selected	set	of	residents	of	the	host	city	or	country),	without	the
burden	of	having	to	follow	specific	complicated	regulations	of	how	they	should	take	those	interests
into	account.	A	world	where	network	states	do	such	a	thing,	and	where	countries	adopt	policies	that
are	explicitly	more	friendly	to	network	states	that	do	it,	could	be	a	better	one.

Conclusion

I	want	to	see	startup	societies	along	these	kinds	of	visions	exist.	I	want	to	see	immersive	lifestyle
experiments	around	healthy	living.	I	want	to	see	crazy	governance	experiments	where	public	goods
are	funded	by	quadratic	funding,	and	all	zoning	laws	are	replaced	by	a	system	where	every	building's
property	tax	floats	between	zero	and	five	percent	per	year	based	on	what	percentage	of	nearby
residents	express	approval	or	disapproval	in	a	real-time	blockchain	and	ZKP-based	voting	system.
And	I	want	to	see	more	technological	experiments	that	accept	higher	levels	of	risk,	if	the	people
taking	those	risks	consent	to	it.	And	I	think	blockchain-based	tokens,	identity	and	reputation	systems
and	DAOs	could	be	a	great	fit.

At	the	same	time,	I	worry	that	the	network	state	vision	in	its	current	form	risks	only	satisfying	these
needs	for	those	wealthy	enough	to	move	and	desirable	enough	to	attract,	and	many	people	lower
down	the	socioeconomic	ladder	will	be	left	in	the	dust.	What	can	be	said	in	network	states'	favor	is
their	internationalism:	we	even	have	the	Africa-focused	Afropolitan.	Inequalities	between	countries
are	responsible	for	two	thirds	of	global	inequality	and	inequalities	within	countries	are	only	one
third.	But	that	still	leaves	a	lot	of	people	in	all	countries	that	this	vision	doesn't	do	much	for.	So	we
need	something	else	too	-	for	the	global	poor,	for	Ukrainians	that	want	to	keep	their	country	and	not
just	squeeze	into	Poland	for	a	decade	until	Poland	gets	invaded	too,	and	everyone	else	that's	not	in	a
position	to	move	to	a	network	state	tomorrow	or	get	accepted	by	one.

Network	states,	with	some	modifications	that	push	for	more	democratic	governance	and	positive
relationships	with	the	communities	that	surround	them,	plus	some	other	way	to	help	everyone	else?
That	is	a	vision	that	I	can	get	behind.

https://www.lesswrong.com/tag/functional-decision-theory
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https://www.worldbank.org/en/news/feature/2019/10/23/yes-global-inequality-has-fallen-no-we-shouldnt-be-complacent


2022	Jun	20 See	all	posts

My	40-liter	backpack	travel	guide

Special	thanks	to	Liam	Horne	for	feedback	and	review.	I	received	no	money	from	and	have	never
even	met	any	of	the	companies	making	the	stuff	I'm	shilling	here	(with	the	sole	exception	of
Unisocks);	this	is	all	just	an	honest	listing	of	what	works	for	me	today.

I	have	lived	as	a	nomad	for	the	last	nine	years,	taking	360	flights	travelling	over	1.5	million
kilometers	(assuming	flight	paths	are	straight,	ignoring	layovers)	during	that	time.	During	this	time,
I've	considerably	optimized	the	luggage	I	carry	along	with	me:	from	a	60-liter	shoulder	bag	with	a
separate	laptop	bag,	to	a	60-liter	shoulder	bag	that	can	contain	the	laptop	bag,	and	now	to	a	40-liter
packpage	that	can	contain	the	laptop	bag	along	with	all	the	supplies	I	need	to	live	my	life.

The	purpose	of	this	post	will	be	to	go	through	the	contents,	as	well	as	some	of	the	tips	that	I've
learned	for	how	you	too	can	optimize	your	travel	life	and	never	have	to	wait	at	a	luggage	counter
again.	There	is	no	obligation	to	follow	this	guide	in	its	entirety;	if	you	have	important	needs	that
differ	from	mine,	you	can	still	get	a	lot	of	the	benefits	by	going	a	hybrid	route,	and	I	will	talk	about
these	options	too.

This	guide	is	focused	on	my	own	experiences;	plenty	of	other	people	have	made	their	own	guides	and
you	should	look	at	them	too.	/r/onebag	is	an	excellent	subreddit	for	this.

The	backpack,	with	the	various	sub-bags	laid	out	separately.	Yes,	this	all	fits	in	the	backpack,	and
without	that	much	effort	to	pack	and	unpack.

file:///home/runner/index.html
https://www.reddit.com/r/onebag/


As	a	point	of	high-level	organization,	notice	the	bag-inside-a-bag	structure.	I	have	a	T-shirt	bag,	an
underwear	bag,	a	sock	bag,	a	toiletries	bag,	a	dirty-laundry	bag,	a	medicine	bag,	a	laptop	bag,	and
various	small	bags	inside	the	inner	compartment	of	my	backpack,	which	all	fit	into	a	40-liter	Hynes
Eagle	backpack.	This	structure	makes	it	easy	to	keep	things	organized.

It's	like	frugality,	but	for	cm3	instead	of	dollars
The	general	principle	that	you	are	trying	to	follow	is	that	you're	trying	to	stay	within	a	"budget"	while
still	making	sure	you	have	everything	that	you	need	-	much	like	normal	financial	planning	of	the	type
that	almost	everyone,	with	the	important	exception	of	crypto	participants	during	bull	runs,	is	used	to
dealing	with.	A	key	difference	here	is	that	instead	of	optimizing	for	dollars,	you're	optimizing	for
cubic	centimeters.	Of	course,	none	of	the	things	that	I	recommend	here	are	going	to	be	particularly
hard	on	your	dollars	either,	but	minimizing	cm3	is	the	primary	objective.

What	do	I	mean	by	this?	Well,	I	mean	getting	items	like	this:

Electric	shaver.	About	5cm	long	and	2.5cm	wide	at	the	top.	No	charger	or	handle	is	required:	it's	USBC	pluggable,
your	phone	is	the	charger	and	handle.	Buy	on	Amazon	here	(told	you	it's	not	hard	on	your	dollars!)

And	this:

https://www.amazon.com/Hynes-Eagle-Travel-Backpack-Approved/dp/B07JWDF8V9/ref=sr_1_2
https://www.amazon.com/Electric-Portable-Adsorption-Interfence-Interface-Gray/dp/B08CK1QB8G?th=1


Charger	for	mobile	phone	and	laptop	(can	charge	both	at	the	same	time)!	About	5x5x2.5	cm.	Buy	here.

And	there's	more.	Electric	toothbrushes	are	normally	known	for	being	wide	and	bulky.	But	they	don't
have	to	be!	Here	is	an	electric	toothbrush	that	is	rechargeable,	USBC-friendly	(so	no	extra	charging
equipment	required),	only	slightly	wider	than	a	regular	toothbrush,	and	costs	about	$30,	plus	a
couple	dollars	every	few	months	for	replacement	brush	heads.	For	connecting	to	various	different
continents'	plugs,	you	can	either	use	any	regular	reasonably	small	universal	adapter,	or	get	the
Zendure	Passport	III	which	combines	a	universal	adapter	with	a	charger,	so	you	can	plug	in	USBC
cables	to	charge	your	laptop	and	multiple	other	devices	directly	(!!).

As	you	might	have	noticed,	a	key	ingredient	in	making	this	work	is	to	be	a	USBC	maximalist.
You	should	strive	to	ensure	that	every	single	thing	you	buy	is	USBC-friendly.	Your	laptop,
your	phone,	your	toothbrush,	everything.	This	ensures	that	you	don't	need	to	carry	any	extra
equipment	beyond	one	charger	and	1-2	charging	cables.	In	the	last	~3	years,	it	has	become	much
easier	to	live	the	USBC	maximalist	life;	enjoy	it!

Be	a	Uniqlo	maximalist
For	clothing,	you	have	to	navigate	a	tough	tradeoff	between	price,	cm3	and	the	clothing	looking
reasonably	good.	Fortunately,	many	of	the	more	modern	brands	do	a	great	job	of	fulfilling	all	three	at
the	same	time!	My	current	strategy	is	to	be	a	Uniqlo	maximalist:	altogether,	about	70%	of	the
clothing	items	in	my	bag	are	from	Uniqlo.

This	includes:

8	T-shirts,	of	which	6	are	this	type	from	Uniqlo
8	pairs	of	underwear,	mostly	various	Uniqlo	products
8	socks,	of	which	none	are	Uniqlo	(I'm	less	confident	about	what	to	do	with	socks	than	with
other	clothing	items,	more	on	this	later)
Heat-tech	tights,	from	Uniqlo
Heat-tech	sweater,	from	Uniqlo
Packable	jacket,	from	Uniqlo
Shorts	that	also	double	as	a	swimsuit,	from....	ok	fine,	it's	also	Uniqlo.

There	are	other	stores	that	can	give	you	often	equally	good	products,	but	Uniqlo	is	easily	accessible
in	many	(though	not	all)	of	the	regions	I	visit	and	does	a	good	job,	so	I	usually	just	start	and	stop
there.

Socks

https://us.anker.com/collections/series7/products/a2666?variant=41530603602070&ref=seriesBuy
https://www.amazon.com/Philips-Sonicare-Rechargeable-Toothbrush-Shadow/dp/B09B17TS7N
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https://www.uniqlo.com/eu/en/product/men-airism-crew-neck-short-sleeved-t-shirt-448823.html
https://www.uniqlo.com/uk/en/product/men-heattech-ultra-warm-thermal-tights-441624.html


Socks	are	a	complicated	balancing	act	between	multiple	desired	traits:

Low	cm3
Easy	to	put	on
Warm	(when	needed)
Comfortable

The	ideal	scenario	is	if	you	find	low-cut	or	ankle	socks	comfortable	to	wear,	and	you	never	go	to	cold
climates.	These	are	very	low	on	cm3,	so	you	can	just	buy	those	and	be	happy.	But	this	doesn't	work
for	me:	I	sometimes	visit	cold	areas,	I	don't	find	ankle	socks	comfortable	and	prefer	something	a	bit
longer,	and	I	need	to	be	comfortable	for	my	long	runs.	Furthermore,	my	large	foot	size	means	that
Uniqlo's	one-size-fits-all	approach	does	not	work	well	for	me:	though	I	can	put	the	socks	on,	it	often
takes	a	long	time	to	do	so	(especially	after	a	shower),	and	the	socks	rip	often.

So	I've	been	exploring	various	brands	to	try	to	find	a	solution	(recently	trying	CEP	and	DarnTough).	I
generally	try	to	find	socks	that	cover	the	ankle	but	don't	go	much	higher	than	that,	and	I	have	one
pair	of	long	ones	for	when	I	go	to	the	snowier	places.	My	sock	bag	is	currently	larger	than	my
underwear	bag,	and	only	a	bit	smaller	than	my	T-shirt	bag:	both	a	sign	of	the	challenge	of	finding
good	socks,	and	a	testament	to	Uniqlo's	amazing	Airism	T-shirts.	Once	you	do	find	a	pair	of	socks
that	you	like,	ideally	you	should	just	buy	many	copies	of	the	same	type.	This	removes	the	effort	of
searching	for	a	matching	pair	in	your	bag,	and	it	ensures	that	if	one	of	your	socks	rips	you	don't	have
to	choose	between	losing	the	whole	pair	and	wearing	mismatched	socks.

For	shoes,	you	probably	want	to	limit	yourself	to	at	most	two:	some	heavier	shoes	that	you	can	just
wear,	and	some	very	cm3-light	alternative,	such	as	flip-flops.

Layers

There	is	a	key	mathematical	reason	why	dressing	in	layers	is	a	good	idea:	it	lets	you	cover	many
possible	temperature	ranges	with	fewer	clothing	items.

Temperature	(°C) Clothing
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13° +
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You	want	to	keep	the	T-shirt	on	in	all	cases,	to	protect	the	other	layers	from	getting	dirty.	But	aside
from	that,	the	general	rule	is:	if	you	choose	N	clothing	items,	with	levels	of	warmness	spread	out
across	powers	of	two,	then	you	can	be	comfortable	in	\(2^N\)	different	temperature	ranges	by
binary-encoding	the	expected	temperature	in	the	clothing	you	wear.	For	not-so-cold	climates,	two
layers	(sweater	and	jacket)	are	fine.	For	a	more	universal	range	of	climates	you'll	want	three	layers:
light	sweater,	heavy	sweater	and	heavy	jacket,	which	can	cover	\(2^3	=	8\)	different	temperature
ranges	all	the	way	from	summer	to	Siberian	winter	(of	course,	heavy	winter	jackets	are	not	easily
packable,	so	you	may	have	to	just	wear	it	when	you	get	on	the	plane).

This	layering	principle	applies	not	just	to	upper-wear,	but	also	pants.	I	have	a	pair	of	thin	pants	plus
Uniqlo	tights,	and	I	can	wear	the	thin	pants	alone	in	warmer	climates	and	put	the	Uniqlo	tights	under
them	in	colder	climates.	The	tights	also	double	as	pyjamas.

My	miscellaneous	stuff
The	internet	constantly	yells	at	me	for	not	having	a	good	microphone.	I	solved	this	problem	by
getting	a	portable	microphone!



My	workstation,	using	the	Apogee	HypeMIC	travel	microphone	(unfortunately	micro-USB,	not	USBC).	A	toilet	paper
roll	works	great	as	a	stand,	but	I've	also	found	that	having	a	stand	is	not	really	necessary	and	you	can	just	let	the

microphone	lie	down	beside	your	laptop.

Next,	my	laptop	stand.	Laptop	stands	are	great	for	improving	your	posture.	I	have	two
recommendations	for	laptop	stands,	one	medium-effective	but	very	light	on	cm3,	and	one	very
effective	but	heavier	on	cm3.

The	lighter	one:	Majextand
The	more	powerful	one:	Nexstand

Nexstand	is	the	one	in	the	picture	above.	Majextand	is	the	one	glued	to	the	bottom	of	my	laptop	now:

https://apogeedigital.com/products/hypemic
https://www.majextand.com/ajextand
http://www.nexstand.com/


I	have	used	both,	and	recommend	both.	In	addition	to	this	I	also	have	another	piece	of	laptop	gear:	a
20000	mAh	laptop-friendly	power	bank.	This	adds	even	more	to	my	laptop's	already	decent	battery
life,	and	makes	it	generally	easy	to	live	on	the	road.

Now,	my	medicine	bag:

This	contains	a	combination	of	various	life-extension	medicines	(metformin,	ashwagandha,	and	some
vitamins),	and	covid	defense	gear:	a	CO2	meter	(CO2	concentration	minus	420	roughly	gives	you	how
much	human-breathed-out	air	you're	breathing	in,	so	it's	a	good	proxy	for	virus	risk),	masks,	antigen
tests	and	fluvoxamine.	The	tests	were	a	free	care	package	from	the	Singapore	government,	and	they
happened	to	be	excellent	on	cm3	so	I	carry	them	around.	Covid	defense	and	life	extension	are	both
fields	where	the	science	is	rapidly	evolving,	so	don't	blindly	follow	this	static	list;	follow	the	science
yourself	or	listen	to	the	latest	advice	of	an	expert	that	you	do	trust.	Air	filters	and	far-UVC	(especially
222	nm)	lamps	are	also	promising	covid	defense	options,	and	portable	versions	exist	for	both.

At	this	particular	time	I	don't	happen	to	have	a	first	aid	kit	with	me,	but	in	general	it's	also
recommended;	plenty	of	good	travel	options	exist,	eg.	this.

Finally,	mobile	data.	Generally,	you	want	to	make	sure	you	have	a	phone	that	supports	eSIM.	These
days,	more	and	more	phones	do.	Wherever	you	go,	you	can	buy	an	eSIM	for	that	place	online.	I
personally	use	Airalo,	but	there	are	many	options.	If	you	are	lazy,	you	can	also	just	use	Google	Fi,
though	in	my	experience	Google	Fi's	quality	and	reliability	of	service	tends	to	be	fairly	mediocre.

Have	some	fun!
Not	everything	that	you	have	needs	to	be	designed	around	cm3	minimization.	For	me	personally,	I
have	four	items	that	are	not	particularly	cm3	optimized	but	that	I	still	really	enjoy	having	around.

https://www.google.com/search?q=laptop+friendly+power+bank+20000+mah
https://www.amazon.com/Small-Travel-First-Aid-Kit/dp/B07FL9SQZW
https://www.airalo.com/
https://fi.google.com/about/


My	laptop	bag,	bought	in	an	outdoor	market
in	Zambia.

Unisocks.

Sweatpants	for	indoor	use,	that	are	either
fox-themed	or	Shiba	Inu-themed	depending
on	whom	you	ask.

Gloves	(phone-friendly):	I	bought	the	left
one	for	$4	in	Mong	Kok	and	the	right	one
for	$5	in	Chinatown,	Toronto	back	in	2016.
By	coincidence,	I	lost	different	ones	from
each	pair,	so	the	remaining	two	match.	I
keep	them	around	as	a	reminder	of	the	time
when	money	was	much	more	scarce	for	me.

https://unisocks.exchange/


The	more	you	save	space	on	the	boring	stuff,	the	more	you	can	leave	some	space	for	a	few	special
items	that	can	bring	the	most	joy	to	your	life.

How	to	stay	sane	as	a	nomad
Many	people	find	the	nomad	lifestyle	to	be	disorienting,	and	report	feeling	comfort	from	having	a
"permanent	base".	I	find	myself	not	really	having	these	feelings:	I	do	feel	disorientation	when	I
change	locations	more	than	once	every	~7	days,	but	as	long	as	I'm	in	the	same	place	for	longer	than
that,	I	acclimate	and	it	"feels	like	home".	I	can't	tell	how	much	of	this	is	my	unique	difficult-to-
replicate	personality	traits,	and	how	much	can	be	done	by	anyone.	In	general,	some	tips	that	I
recommend	are:

Plan	ahead:	make	sure	you	know	where	you'll	be	at	least	a	few	days	in	advance,	and	know
where	you're	going	to	go	when	you	land.	This	reduces	feelings	of	uncertainty.
Have	some	other	regular	routine:	for	me,	it's	as	simple	as	having	a	piece	of	dark	chocolate
and	a	cup	of	tea	every	morning	(I	prefer	Bigelow	green	tea	decaf,	specifically	the	40-packs,	both
because	it's	the	most	delicious	decaf	green	tea	I've	tried	and	because	it's	packaged	in	a	four-
teabag-per-bigger-bag	format	that	makes	it	very	convenient	and	at	the	same	time	cm3-friendly).
Having	some	part	of	your	lifestyle	the	same	every	day	helps	me	feel	grounded.	The	more	digital
your	life	is,	the	more	you	get	this	"for	free"	because	you're	staring	into	the	same	computer	no
matter	what	physical	location	you're	in,	though	this	does	come	at	the	cost	of	nomadding
potentially	providing	fewer	benefits.
Your	nomadding	should	be	embedded	in	some	community:	if	you're	just	being	a	lowest-
common-denominator	tourist,	you're	doing	it	wrong.	Find	people	in	the	places	you	visit	who
have	some	key	common	interest	(for	me,	of	course,	it's	blockchains).	Make	friends	in	different
cities.	This	helps	you	learn	about	the	places	you	visit	and	gives	you	an	understanding	of	the
local	culture	in	a	way	that	"ooh	look	at	the	800	year	old	statue	of	the	emperor"	never	will.
Finally,	find	other	nomad	friends,	and	make	sure	to	intersect	with	them	regularly.	If	home	can't
be	a	single	place,	home	can	be	the	people	you	jump	places	with.
Have	some	semi-regular	bases:	you	don't	have	to	keep	visiting	a	completely	new	location
every	time.	Visiting	a	place	that	you	have	seen	before	reduces	mental	effort	and	adds	to	the
feeling	of	regularity,	and	having	places	that	you	visit	frequently	gives	you	opportunities	to	put
stuff	down,	and	is	important	if	you	want	your	friendships	and	local	cultural	connections	to
actually	develop.

How	to	compromise
Not	everyone	can	survive	with	just	the	items	I	have.	You	might	have	some	need	for	heavier	clothing
that	cannot	fit	inside	one	backpack.	You	might	be	a	big	nerd	in	some	physical-stuff-dependent	field:	I
know	life	extension	nerds,	covid	defense	nerds,	and	many	more.	You	might	really	love	your	three
monitors	and	keyboard.	You	might	have	children.

The	40-liter	backpack	is	in	my	opinion	a	truly	ideal	size	if	you	can	manage	it:	40	liters	lets	you	carry	a
week's	worth	of	stuff,	and	generally	all	of	life's	basic	necessities,	and	it's	at	the	same	time	very	carry-
friendly:	I	have	never	had	it	rejected	from	carry-on	in	all	the	flights	on	many	kinds	of	airplane	that	I
have	taken	it,	and	when	needed	I	can	just	barely	stuff	it	under	the	seat	in	front	of	me	in	a	way	that
looks	legit	to	staff.	Once	you	start	going	lower	than	40	liters,	the	disadvantages	start	stacking	up	and
exceeding	the	marginal	upsides.	But	if	40	liters	is	not	enough	for	you,	there	are	two	natural	fallback
options:

A	larger-than-40	liter	backpack.	You	can	find	50	liter	backpacks,	60	liter	backpacks	or	even
larger	(I	highly	recommend	backpacks	over	shoulder	bags	for	carrying	friendliness).	But	the
higher	you	go,	the	more	tiring	it	is	to	carry,	the	more	risk	there	is	on	your	spine,	and	the	more
you	incur	the	risk	that	you'll	have	a	difficult	situation	bringing	it	as	a	carry-on	on	the	plane	and
might	even	have	to	check	it.
Backpack	plus	mini-suitcase.	There	are	plenty	of	carry-on	suitcases	that	you	can	buy.	You
can	often	make	it	onto	a	plane	with	a	backpack	and	a	mini-suitcase.	This	depends	on	you:	you
may	find	this	to	be	an	easier-to-carry	option	than	a	really	big	backpack.	That	said,	there	is
sometimes	a	risk	that	you'll	have	a	hard	time	carrying	it	on	(eg.	if	the	plane	is	very	full)	and
occasionally	you'll	have	to	check	something.

Either	option	can	get	you	up	to	a	respectable	80	liters,	and	still	preserve	a	lot	of	the	benefits	of	the
40-liter	backpack	lifestyle.	Backpack	plus	mini-suitcase	generally	seems	to	be	more	popular	than	the
big	backpack	route.	It's	up	to	you	to	decide	which	tradeoffs	to	take,	and	where	your	personal	values
lie!

https://www.amazon.com/Bigelow-Tea-40-Bags-Decaffeinated/dp/B009S7K5JW
https://www.amazon.com/s?k=%2250+liter%22+backpack
https://www.amazon.com/s?k=%2260+liter%22+backpack
https://www.amazon.com/s?k=%22100+liter%22+backpack
https://www.google.com/search?q=carry+on+suitcase
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Some	ways	to	use	ZK-SNARKs	for	privacy

Special	thanks	to	Barry	Whitehat	and	Gubsheep	for	feedback	and	review.

ZK-SNARKs	are	a	powerful	cryptographic	tool,	and	an	increasingly	important	part	of	the	applications	that	people
are	building	both	in	the	blockchain	space	and	beyond.	But	they	are	complicated,	both	in	terms	of	how	they	work,
and	in	terms	of	how	you	can	use	them.

My	previous	post	explaining	ZK-SNARKs	focused	on	the	first	question,	attempting	to	explain	the	math	behind
ZK-SNARKs	in	a	way	that's	reasonably	understandable	but	still	theoretically	complete.	This	post	will	focus	on	the
second	question:	how	do	ZK-SNARKs	fit	into	existing	applications,	what	are	some	examples	of	what	they	can	do,
what	can't	they	do,	and	what	are	some	general	guidelines	for	figuring	out	whether	or	not	ZK-SNARKing	some
particular	application	is	possible?

In	particular,	this	post	focuses	on	applications	of	ZK-SNARKs	for	preserving	privacy.

What	does	a	ZK-SNARK	do?
Suppose	that	you	have	a	public	input	\(x\),	a	private	input	\(w\),	and	a	(public)	function	\(f(x,	w)	\rightarrow	\
{True,	False\}\)	that	performs	some	kind	of	verification	on	the	inputs.	With	a	ZK-SNARK,	you	can	prove	that	you
know	an	\(w\)	such	that	\(f(x,	w)	=	True\)	for	some	given	\(f\)	and	\(x\),	without	revealing	what	\(w\)	is.
Additionally,	the	verifier	can	verify	the	proof	much	faster	it	would	take	for	them	to	compute	\(f(x,	w)\)
themselves,	even	if	they	know	\(w\).

This	gives	the	ZK-SNARK	its	two	properties:	privacy	and	scalability.	As	mentioned	above,	in	this	post	our
examples	will	focus	on	privacy.

Proof	of	membership
Suppose	that	you	have	an	Ethereum	wallet,	and	you	want	to	prove	that	this	wallet	has	a	proof-of-humanity
registration,	without	revealing	which	registered	human	you	are.	We	can	mathematically	describe	the	function	as
follows:

The	private	input	(\(w\)):	your	address	\(A\),	and	the	private	key	\(k\)	to	your	address
The	public	input	(\(x\)):	the	set	of	all	addresses	with	verified	proof-of-humanity	profiles	\(\{H_1	...	H_n\}\)
The	verification	function	\(f(x,	w)\):

Interpret	\(w\)	as	the	pair	\((A,	k)\),	and	\(x\)	as	the	list	of	valid	profiles	\(\{H_1	...	H_n\}\)
Verify	that	\(A\)	is	one	of	the	addresses	in	\(\{H_1	...	H_n\}\)
Verify	that	\(privtoaddr(k)	=	A\)
Return	\(True\)	if	both	verifications	pass,	\(False\)	if	either	verification	fails

The	prover	generates	their	address	\(A\)	and	the	associated	key	\(k\),	and	provides	\(w	=	(A,	k)\)	as	the	private
input	to	\(f\).	They	take	the	public	input,	the	current	set	of	verified	proof-of-humanity	profiles	\(\{H_1	...	H_n\}\),
from	the	chain.	They	run	the	ZK-SNARK	proving	algorithm,	which	(assuming	the	inputs	are	correct)	generates
the	proof.	The	prover	sends	the	proof	to	the	verifier	and	they	provide	the	block	height	at	which	they	obtained	the
list	of	verified	profiles.

The	verifier	also	reads	the	chain,	gets	the	list	\(\{H_1	...	H_n\}\)	at	the	height	that	the	prover	specified,	and
checks	the	proof.	If	the	check	passes,	the	verifier	is	convinced	that	the	prover	has	some	verified	proof-of-

file:///home/runner/index.html
https://vitalik.ca/general/2021/01/26/snarks.html


humanity	profile.

Before	we	move	on	to	more	complicated	examples,	I	highly	recommend	you	go	over	the	above	example
until	you	understand	every	bit	of	what	is	going	on.

Making	the	proof-of-membership	more	efficient
One	weakness	in	the	above	proof	system	is	that	the	verifier	needs	to	know	the	whole	set	of	profiles	\(\{H_1	...
H_n\}\),	and	they	need	to	spend	\(O(n)\)	time	"inputting"	this	set	into	the	ZK-SNARK	mechanism.

We	can	solve	this	by	instead	passing	in	as	a	public	input	an	on-chain	Merkle	root	containing	all	profiles	(this
could	just	be	the	state	root).	We	add	another	private	input,	a	Merkle	proof	\(M\)	proving	that	the	prover's
account	\(A\)	is	in	the	relevant	part	of	the	tree.

Advanced	readers:	A	very	new	and	more	efficient	alternative	to	Merkle	proofs	for	ZK-proving	membership	is
Caulk.	In	the	future,	some	of	these	use	cases	may	migrate	to	Caulk-like	schemes.

ZK-SNARKs	for	coins
Projects	like	Zcash	and	Tornado.cash	allow	you	to	have	privacy-preserving	currency.	Now,	you	might	think	that
you	can	take	the	"ZK	proof-of-humanity"	above,	but	instead	of	proving	access	of	a	proof-of-humanity	profile,	use
it	to	prove	access	to	a	coin.	But	we	have	a	problem:	we	have	to	simultaneously	solve	privacy	and	the	double
spending	problem.	That	is,	it	should	not	be	possible	to	spend	the	coin	twice.

Here's	how	we	solve	this.	Anyone	who	has	a	coin	has	a	private	secret	\(s\).	They	locally	compute	the	"leaf"	\(L	=
hash(s,	1)\),	which	gets	published	on-chain	and	becomes	part	of	the	state,	and	\(N	=	hash(s,	2)\),	which	we	call
the	nullifier.	The	state	gets	stored	in	a	Merkle	tree.

https://eprint.iacr.org/2022/621
https://z.cash/
https://tornado.cash/


To	spend	a	coin,	the	sender	must	make	a	ZK-SNARK	where:

The	public	input	contains	a	nullifier	\(N\),	the	current	or	recent	Merkle	root	\(R\),	and	a	new	leaf	\(L'\)	(the
intent	is	that	recipient	has	a	secret	\(s'\),	and	passes	to	the	sender	\(L'	=	hash(s',	1)\))
The	private	input	contains	a	secret	\(s\),	a	leaf	\(L\)	and	a	Merkle	branch	\(M\)
The	verification	function	checks	that:

\(M\)	is	a	valid	Merkle	branch	proving	that	\(L\)	is	a	leaf	in	a	tree	with	root	\(R\),	where	\(R\)	is	the
current	Merkle	root	of	the	state
\(hash(s,	1)	=	L\)
\(hash(s,	2)	=	N\)

The	transaction	contains	the	nullifier	\(N\)	and	the	new	leaf	\(L'\).	We	don't	actually	prove	anything	about	\(L'\),
but	we	"mix	it	in"	to	the	proof	to	prevent	\(L'\)	from	being	modified	by	third	parties	when	the	transaction	is	in-
flight.

To	verify	the	transaction,	the	chain	checks	the	ZK-SNARK,	and	additionally	checks	that	\(N\)	has	not	been	used
in	a	previous	spending	transaction.	If	the	transaction	succeeds,	\(N\)	is	added	to	the	spent	nullifier	set,	so	that	it
cannot	be	spent	again.	\(L'\)	is	added	to	the	Merkle	tree.

What	is	going	on	here?	We	are	using	a	zk-SNARK	to	relate	two	values,	\(L\)	(which	goes	on-chain	when	a	coin	is
created)	and	\(N\)	(which	goes	on-chain	when	a	coin	is	spent),	without	revealing	which	\(L\)	is	connected	to
which	\(N\).	The	connection	between	\(L\)	and	\(N\)	can	only	be	discovered	if	you	know	the	secret	\(s\)	that
generates	both.	Each	coin	that	gets	created	can	only	be	spent	once	(because	for	each	\(L\)	there	is	only	one	valid
corresponding	\(N\)),	but	which	coin	is	being	spent	at	a	particular	time	is	kept	hidden.

This	is	also	an	important	primitive	to	understand.	Many	of	the	mechanisms	we	describe	below	will	be
based	on	a	very	similar	"privately	spend	only	once"	gadget,	though	for	different	purposes.

Coins	with	arbitrary	balances
The	above	can	easily	be	extended	to	coins	of	arbitrary	balances.	We	keep	the	concept	of	"coins",	except	each
coin	has	a	(private)	balance	attached.	One	simple	way	to	do	this	is	have	the	chain	store	for	each	coin	not	just	the
leaf	\(L\)	but	also	an	encrypted	balance.

Each	transaction	would	consume	two	coins	and	create	two	new	coins,	and	it	would	add	two	(leaf,	encrypted
balance)	pairs	to	the	state.	The	ZK-SNARK	would	also	check	that	the	sum	of	the	balances	coming	in	equals	the
sum	of	the	balances	going	out,	and	that	the	two	output	balances	are	both	non-negative.

ZK	anti-denial-of-service
An	interesting	anti-denial-of-service	gadget.	Suppose	that	you	have	some	on-chain	identity	that	is	non-trivial	to
create:	it	could	be	a	proof-of-humanity	profile,	it	could	be	a	validator	with	32	ETH,	or	it	could	just	be	an	account
that	has	a	nonzero	ETH	balance.	We	could	create	a	more	DoS	resistant	peer-to-peer	network	by	only	accepting	a
message	if	it	comes	with	a	proof	that	the	message's	sender	has	such	a	profile.	Every	profile	would	be	allowed	to
send	up	to	1000	messages	per	hour,	and	a	sender's	profile	would	be	removed	from	the	list	if	the	sender	cheats.
But	how	do	we	make	this	privacy-preserving?

https://en.wikipedia.org/wiki/Denial-of-service_attack


First,	the	setup.	Let	\(k\)	be	the	private	key	of	a	user;	\(A	=	privtoaddr(k)\)	is	the	corresponding	address.	The	list
of	valid	addresses	is	public	(eg.	it's	a	registry	on-chain).	So	far	this	is	similar	to	the	proof-of-humanity	example:
you	have	to	prove	that	you	have	the	private	key	to	one	address	without	revealing	which	one.	But	here,	we	don't
just	want	a	proof	that	you're	in	the	list.	We	want	a	protocol	that	lets	you	prove	you're	in	the	list	but	prevents	you
from	making	too	many	proofs.	And	so	we	need	to	do	some	more	work.

We'll	divide	up	time	into	epochs;	each	epoch	lasts	3.6	seconds	(so,	1000	epochs	per	hour).	Our	goal	will	be	to
allow	each	user	to	send	only	one	message	per	epoch;	if	the	user	sends	two	messages	in	the	same	epoch,	they	will
get	caught.	To	allow	users	to	send	occasional	bursts	of	messages,	they	are	allowed	to	use	epochs	in	the	recent
past,	so	if	some	user	has	500	unused	epochs	they	can	use	those	epochs	to	send	500	messages	all	at	once.

The	protocol

We'll	start	with	a	simple	version:	we	use	nullifiers.	A	user	generates	a	nullifier	with	\(N	=	hash(k,	e)\),	where	\
(k\)	is	their	key	and	\(e\)	is	the	epoch	number,	and	publishes	it	along	with	the	message	\(m\).	The	ZK-SNARK
once	again	mixes	in	\(hash(m)\)	without	verifying	anything	about	\(m\),	so	that	the	proof	is	bound	to	a	single
message.	If	a	user	makes	two	proofs	bound	to	two	different	messages	with	the	same	nullifier,	they	can	get
caught.

Now,	we'll	move	on	to	the	more	complex	version.	Instead	of	just	making	it	easy	to	prove	if	someone	used	the
same	epoch	twice,	this	next	protocol	will	actually	reveal	their	private	key	in	that	case.	Our	core	technique	will
rely	on	the	"two	points	make	a	line"	trick:	if	you	reveal	one	point	on	a	line,	you've	revealed	little,	but	if	you	reveal
two	points	on	a	line,	you've	revealed	the	whole	line.

For	each	epoch	\(e\),	we	take	the	line	\(L_e(x)	=	hash(k,	e)	*	x	+	k\).	The	slope	of	the	line	is	\(hash(k,	e)\),	and	the
y-intercept	is	\(k\);	neither	is	known	to	the	public.	To	make	a	certificate	for	a	message	\(m\),	the	sender	provides
\(y	=	L_e(hash(m))	=\)	\(hash(k,	e)	*	hash(m)	+	k\),	along	with	a	ZK-SNARK	proving	that	\(y\)	was	computed
correctly.

To	recap,	the	ZK-SNARK	here	is	as	follows:

Public	input:
\(\{A_1	...	A_n\}\),	the	list	of	valid	accounts
\(m\),	the	message	that	the	certificate	is	verifying
\(e\),	the	epoch	number	used	for	the	certificate
\(y\),	the	line	function	evaluation

Private	input:
\(k\),	your	private	key

Verification	function:
Check	that	\(privtoaddr(k)\)	is	in	\(\{A_1	...	A_n\}\)
Check	that	\(y	=	hash(k,	e)	*	hash(m)	+	k\)

But	what	if	someone	uses	a	single	epoch	twice?	That	means	they	published	two	values	\(m_1\)	and	\(m_2\)	and
the	corresponding	certificate	values	\(y_1	=	hash(k,	e)	*	hash(m_1)	+	k\)	and	\(y_2	=	hash(k,	e)	*	hash(m_2)	+
k\).	We	can	use	the	two	points	to	recover	the	line,	and	hence	the	y-intercept	(which	is	the	private	key):



\(k	=	y_1	-	hash(m_1)	*	\frac{y_2	-	y_1}{hash(m_2)	-	hash(m_1)}\)

So	if	someone	reuses	an	epoch,	they	leak	out	their	private	key	for	everyone	to	see.	Depending	on	the
circumstance,	this	could	imply	stolen	funds,	a	slashed	validator,	or	simply	the	private	key	getting	broadcasted
and	included	into	a	smart	contract,	at	which	point	the	corresponding	address	would	get	removed	from	the	set.

What	have	we	accomplished	here?	A	viable	off-chain,	anonymous	anti-denial-of-service	system	useful	for	systems
like	blockchain	peer-to-peer	networks,	chat	applications,	etc,	without	requiring	any	proof	of	work.	The	RLN	(rate
limiting	nullifier)	project	is	currently	building	essentially	this	idea,	though	with	minor	modifications	(namely,
they	do	both	the	nullifier	and	the	two-points-on-a-line	technique,	using	the	nullifier	to	make	it	easier	to	catch
double-use	of	an	epoch).

ZK	negative	reputation
Suppose	that	we	want	to	build	0chan,	an	internet	forum	which	provides	full	anonymity	like	4chan	(so	you	don't
even	have	persistent	names),	but	has	a	reputation	system	to	encourage	more	quality	content.	This	could	be	a
system	where	some	moderation	DAO	can	flag	posts	as	violating	the	rules	of	the	system	and	institutes	a	three-
strikes-and-you're-out	mechanism,	it	could	be	users	being	able	to	upvote	and	downvote	posts;	there	are	lots	of
configurations.

The	reputation	system	could	support	positive	or	negative	reputation;	however,	supporting	negative	reputation
requires	extra	infrastructure	to	require	the	user	to	take	into	account	all	reputation	messages	in	their	proof,	even
the	negative	ones.	It's	this	harder	use	case,	which	is	similar	to	what	is	being	implemented	with	Unirep	Social,
that	we'll	focus	on.

Chaining	posts:	the	basics

Anyone	can	make	a	post	by	publishing	a	message	on-chain	that	contains	the	post,	and	a	ZK-SNARK	proving	that
either	(i)	you	own	some	scarce	external	identity,	eg.	proof-of-humanity,	that	entitles	you	to	create	an	account,	or
(ii)	that	you	made	some	specific	previous	post.	Specifically,	the	ZK-SNARK	is	as	follows:

Public	inputs:
The	nullifier	\(N\)
A	recent	blockchain	state	root	\(R\)
The	post	contents	("mixed	in"	to	the	proof	to	bind	it	to	the	post,	but	we	don't	do	any	computation	on	it)

Private	inputs:
Your	private	key	\(k\)
Either	an	external	identity	(with	address	\(A\)),	or	the	nullifier	\(N_{prev}\)	used	by	the	previous	post
A	Merkle	proof	\(M\)	proving	inclusion	of	\(A\)	or	\(N_{prev}\)	on-chain
The	number	\(i\)	of	posts	that	you	have	previously	made	with	this	account

Verification	function:
Check	that	\(M\)	is	a	valid	Merkle	branch	proving	that	(either	\(A\)	or	\(N_{prev}\),	whichever	is
provided)	is	a	leaf	in	a	tree	with	root	\(R\)
Check	that	\(N	=	enc(i,	k)\),	where	\(enc\)	is	an	encryption	function	(eg.	AES)
If	\(i	=	0\),	check	that	\(A	=	privtoaddr(k)\),	otherwise	check	that	\(N_{prev}	=	enc(i-1,	k)\)

In	addition	to	verifying	the	proof,	the	chain	also	checks	that	(i)	\(R\)	actually	is	a	recent	state	root,	and	(ii)	the
nullifier	\(N\)	has	not	yet	been	used.	So	far,	this	is	like	the	privacy-preserving	coin	introduced	earlier,	but	we	add
a	procedure	for	"minting"	a	new	account,	and	we	remove	the	ability	to	"send"	your	account	to	a	different	key	-
instead,	all	nullifiers	are	generated	using	your	original	key.

We	use	\(enc\)	instead	of	\(hash\)	here	to	make	the	nullifiers	reversible:	if	you	have	\(k\),	you	can	decrypt	any
specific	nullifier	you	see	on-chain	and	if	the	result	is	a	valid	index	and	not	random	junk	(eg.	we	could	just	check	\
(dec(N)	<	2^{64}\)),	then	you	know	that	nullifier	was	generated	using	\(k\).

Adding	reputation

Reputation	in	this	scheme	is	on-chain	and	in	the	clear:	some	smart	contract	has	a	method	addReputation,	which
takes	as	input	(i)	the	nullifier	published	along	with	the	post,	and	(ii)	the	number	of	reputation	units	to	add	and
subtract.

We	extend	the	on-chain	data	stored	per	post:	instead	of	just	storing	the	nullifier	\(N\),	we	store	\(\{N,	\bar{h},
\bar{u}\}\),	where:

\(\bar{h}	=	hash(h,	r)\)	where	\(h\)	is	the	block	height	of	the	state	root	that	was	referenced	in	the	proof
\(\bar{u}	=	hash(u,	r)\)	where	\(u\)	is	the	account's	reputation	score	(0	for	a	fresh	account)

\(r\)	here	is	simply	a	random	value,	added	to	prevent	\(h\)	and	\(u\)	from	being	uncovered	by	brute-force	search
(in	cryptography	jargon,	adding	\(r\)	makes	the	hash	a	hiding	commitment).

Suppose	that	a	post	uses	a	root	\(R\)	and	stores	\(\{N,	\bar{h},	\bar{u}\}\).	In	the	proof,	it	links	to	a	previous
post,	with	stored	data	\(\{N_{prev},	\bar{h}_{prev},	\bar{u}_{prev}\}\).	The	post's	proof	is	also	required	to
walk	over	all	the	reputation	entries	that	have	been	published	between	\(h_{prev}\)	and	\(h\).	For	each	nullifier	\
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(N\),	the	verification	function	would	decrypt	\(N\)	using	the	user's	key	\(k\),	and	if	the	decryption	outputs	a	valid
index	it	would	apply	the	reputation	update.	If	the	sum	of	all	reputation	updates	is	\(\delta\),	the	proof	would
finally	check	\(u	=	u_{prev}	+	\delta\).

If	we	want	a	"three	strikes	and	you're	out"	rule,	the	ZK-SNARK	would	also	check	\(u	>	-3\).	If	we	want	a	rule
where	a	post	can	get	a	special	"high-reputation	poster"	flag	if	the	poster	has	\(\ge	100\)	rep,	we	can
accommodate	that	by	adding	"is	\(u	\ge	100\)?"	as	a	public	input.	Many	kinds	of	such	rules	can	be
accommodated.

To	increase	the	scalability	of	the	scheme,	we	could	split	it	up	into	two	kinds	of	messages:	posts	and	reputation
update	acknowledgements	(RCAs).	A	post	would	be	off-chain,	though	it	would	be	required	to	point	to	an	RCA
made	in	the	past	week.	RCAs	would	be	on-chain,	and	an	RCA	would	walk	through	all	the	reputation	updates
since	that	poster's	previous	RCA.	This	way,	the	on-chain	load	is	reduced	to	one	transaction	per	poster	per	week
plus	one	transaction	per	reputation	message	(a	very	low	level	if	reputation	updates	are	rare,	eg.	they're	only
used	for	moderation	actions	or	perhaps	"post	of	the	day"	style	prizes).

Holding	centralized	parties	accountable
Sometimes,	you	need	to	build	a	scheme	that	has	a	central	"operator"	of	some	kind.	This	could	be	for	many
reasons:	sometimes	it's	for	scalability,	and	sometimes	it's	for	privacy	-	specifically,	the	privacy	of	data	held	by
the	operator.

The	MACI	coercion-resistant	voting	system,	for	example,	requires	voters	to	submit	their	votes	on-chain
encrypted	to	a	secret	key	held	by	a	central	operator.	The	operator	would	decrypt	all	the	votes	on-chain,	count
them	up,	and	reveal	the	final	result,	along	with	a	ZK-SNARK	proving	that	they	did	everything	correctly.	This
extra	complexity	is	necessary	to	ensure	a	strong	privacy	property	(called	coercion-resistance):	that	users
cannot	prove	to	others	how	they	voted	even	if	they	wanted	to.

Thanks	to	blockchains	and	ZK-SNARKs,	the	amount	of	trust	in	the	operator	can	be	kept	very	low.	A	malicious
operator	could	still	break	coercion	resistance,	but	because	votes	are	published	on	the	blockchain,	the	operator
cannot	cheat	by	censoring	votes,	and	because	the	operator	must	provide	a	ZK-SNARK,	they	cannot	cheat	by	mis-
calculating	the	result.

Combining	ZK-SNARKs	with	MPC
A	more	advanced	use	of	ZK-SNARKs	involves	making	proofs	over	computations	where	the	inputs	are	split
between	two	or	more	parties,	and	we	don't	want	each	party	to	learn	the	other	parties'	inputs.	You	can	satisfy	the
privacy	requirement	with	garbled	circuits	in	the	2-party	case,	and	more	complicated	multi-party	computation
protocols	in	the	N-party	case.	ZK-SNARKs	can	be	combined	with	these	protocols	to	do	verifiable	multi-party
computation.

This	could	enable	more	advanced	reputation	systems	where	multiple	participants	can	perform	joint
computations	over	their	private	inputs,	it	could	enable	privacy-preserving	but	authenticated	data	markets,	and
many	other	applications.	That	said,	note	that	the	math	for	doing	this	efficiently	is	still	relatively	in	its	infancy.

What	can't	we	make	private?

https://github.com/privacy-scaling-explorations/maci
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ZK-SNARKs	are	generally	very	effective	for	creating	systems	where	users	have	private	state.	But	ZK-SNARKs
cannot	hold	private	state	that	nobody	knows.	To	make	a	proof	about	a	piece	of	information,	the	prover	has
to	know	that	piece	of	information	in	cleartext.

A	simple	example	of	what	can't	(easily)	be	made	private	is	Uniswap.	In	Uniswap,	there	is	a	single	logically-
central	"thing",	the	market	maker	account,	which	belongs	to	no	one,	and	every	single	trade	on	Uniswap	is
trading	against	the	market	maker	account.	You	can't	hide	the	state	of	the	market	maker	account,	because	then
someone	would	have	to	hold	the	state	in	cleartext	to	make	proofs,	and	their	active	involvement	would	be
necessary	in	every	single	transaction.

You	could	make	a	centrally-operated,	but	safe	and	private,	Uniswap	with	ZK-SNARKed	garbled	circuits,	but	it's
not	clear	that	the	benefits	of	doing	this	are	worth	the	costs.	There	may	not	even	be	any	real	benefit:	the	contract
would	need	to	be	able	to	tell	users	what	the	prices	of	the	assets	are,	and	the	block-by-block	changes	in	the	prices
tell	a	lot	about	what	the	trading	activity	is.

Blockchains	can	make	state	information	global,	ZK-SNARKs	can	make	state	information	private,	but	we	don't
really	have	any	good	way	to	make	state	information	global	and	private	at	the	same	time.

Edit:	you	can	use	multi-party	computation	to	implement	shared	private	state.	But	this	requires	an	honest-
majority	threshold	assumption,	and	one	that's	likely	unstable	in	practice	because	(unlike	eg.	with	51%	attacks)	a
malicious	majority	could	collude	to	break	the	privacy	without	ever	being	detected.

Putting	the	primitives	together
In	the	sections	above,	we've	seen	some	examples	that	are	powerful	and	useful	tools	by	themselves,	but	they	are
also	intended	to	serve	as	building	blocks	in	other	applications.	Nullifiers,	for	example,	are	important	for
currency,	but	it	turns	out	that	they	pop	up	again	and	again	in	all	kinds	of	use	cases.

The	"forced	chaining"	technique	used	in	the	negative	reputation	section	is	very	broadly	applicable.	It's	effective
for	many	applications	where	users	have	complex	"profiles"	that	change	in	complex	ways	over	time,	and	you	want
to	force	the	users	to	follow	the	rules	of	the	system	while	preserving	privacy	so	no	one	sees	which	user	is
performing	which	action.	Users	could	even	be	required	to	have	entire	private	Merkle	trees	representing	their
internal	"state".	The	"commitment	pool"	gadget	proposed	in	this	post	could	be	built	with	ZK-SNARKs.	And	if
some	application	can't	be	entirely	on-chain	and	must	have	a	centralized	operator,	the	exact	same	techniques	can
be	used	to	keep	the	operator	honest	too.

ZK-SNARKs	are	a	really	powerful	tool	for	combining	together	the	benefits	of	accountability	and	privacy.	They	do
have	their	limits,	though	in	some	cases	clever	application	design	can	work	around	those	limits.	I	expect	to	see
many	more	applications	using	ZK-SNARKs,	and	eventually	applications	combining	ZK-SNARKs	with	other	forms
of	cryptography,	to	be	built	in	the	years	to	come.
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Where	to	use	a	blockchain	in	non-financial	applications?

Special	thanks	to	Shrey	Jain	and	Puja	Ohlhaver	for	substantial	feedback	and	review

Recently,	there	has	been	a	growing	amount	of	interest	in	using	blockchains	for	not-just-financial	applications.	This	is	a	trend	that	I	have	been
strongly	in	favor	of,	for	various	reasons.	In	the	last	month,	Puja	Ohlhaver,	Glen	Weyl	and	I	collaborated	on	a	paper	describing	a	more	detailed
vision	for	what	could	be	done	with	a	richer	ecosystem	of	soulbound	tokens	making	claims	describing	various	kinds	of	relationships.	This	has	led
to	some	discussion,	particularly	focused	on	whether	or	not	it	makes	any	sense	to	use	a	blockchain	in	a	decentralized	identity	ecosystem:

Kate	Sills	argues	for	off-chain	signed	claims
Puja	Ohlhaver	responds	to	Kate	Sills
Evin	McMullen	and	myself	have	a	podcast	debating	on-chain	vs	off-chain	attestations
Kevin	Yu	writes	a	technical	overview	bringing	up	the	on-chain	versus	off-chain	question
Molly	White	argues	a	pessimistic	case	against	self-sovereign	identity
Shrey	Jain	makes	a	meta-thread	containing	the	above	and	many	other	Twitter	discussions

It's	worth	zooming	out	and	asking	a	broader	question:	where	does	it	make	sense,	in	general,	to	use	a	blockchain	in	non-financial	applications?
Should	we	move	toward	a	world	where	even	decentralized	chat	apps	work	by	every	message	being	an	on-chain	transaction	containing	the
encrypted	message?	Or,	alternatively,	are	blockchains	only	good	for	finance	(say,	because	network	effects	mean	that	money	has	a	unique	need
for	a	"global	view"),	with	all	other	applications	better	done	using	centralized	or	more	local	systems?

My	own	view	tends	to	be,	like	with	blockchain	voting,	far	from	the	"blockchain	everywhere"	viewpoint,	but	also	far	from	a	"blockchain
minimalist".	I	see	the	value	of	blockchains	in	many	situations,	sometimes	for	really	important	goals	like	trust	and	censorship	resistance	but
sometimes	purely	for	convenience.	This	post	will	attempt	to	describe	some	types	of	situations	where	blockchains	might	be	useful,	especially	in
the	context	of	identity,	and	where	they	are	not.	This	post	is	not	a	complete	list	and	intentionally	leaves	many	things	out.	The	goal	is
rather	to	elucidate	some	common	categories.

User	account	key	changes	and	recovery
One	of	the	biggest	challenges	in	a	cryptographic	account	system	is	the	issue	of	key	changes.	This	can	happen	in	a	few	cases:

1.	 You're	worried	that	your	current	key	might	get	lost	or	stolen,	and	you	want	to	switch	to	a	different	key
2.	 You	want	to	switch	to	a	different	cryptographic	algorithm	(eg.	because	you're	worried	quantum	computers	will	come	soon	and	you

want	to	upgrade	to	post-quantum)
3.	 Your	key	got	lost,	and	you	want	to	regain	access	to	your	account
4.	 Your	key	got	stolen,	and	you	want	to	regain	exclusive	access	to	your	account	(and	you	don't	want	the	thief	to	be	able	to	do	the	same)

[1]	and	[2]	are	relatively	simple	in	that	they	can	be	done	in	a	fully	self-sovereign	way:	you	control	key	X,	you	want	to	switch	to	key	Y,	so	you
publish	a	message	signed	with	X	saying	"Authenticate	me	with	Y	from	now	on",	and	everyone	accepts	that.

But	notice	that	even	for	these	simpler	key	change	scenarios,	you	can't	just	use	cryptography.	Consider	the	following	sequence	of
events:

You	are	worried	that	key	A	might	get	stolen,	so	you	sign	a	message	with	A	saying	"I	use	B	now"
A	year	later,	a	hacker	actually	does	steal	key	A.	They	sign	a	message	saying	with	A	saying	"I	use	C	now",	where	C	is	their	own	key

From	the	point	of	view	of	someone	coming	in	later	who	just	receives	these	two	messages,	they	see	that	A	is	no	longer	used,	but	they	don't	know
whether	"replace	A	with	B"	or	"replace	A	with	C"	has	higher	priority.

This	is	equivalent	to	the	famous	double-spend	problem	in	designing	decentralized	currencies,	except	instead	of	the	goal	being	to	prevent	a
previous	owner	of	a	coin	from	being	able	to	send	it	again,	here	the	goal	is	to	prevent	the	previous	key	controlling	an	account	from	being	able	to
change	the	key.	Just	like	creating	a	decentralized	currency,	doing	account	management	in	a	decentralized	way	requires	something
like	a	blockchain.	A	blockchain	can	timestamp	the	key	change	messages,	providing	common	knowledge	over	whether	B	or	C	came	first.

[3]	and	[4]	are	harder.	In	general,	my	own	preferred	solution	is	multisig	and	social	recovery	wallets,	where	a	group	of	friends,	family	members
and	other	contacts	can	transfer	control	of	your	account	to	a	new	key	if	it	gets	lost	or	stolen.	For	critical	operations	(eg.	transferring	large
quantities	of	funds,	or	signing	an	important	contract),	participation	of	this	group	can	also	be	required.

But	this	too	requires	a	blockchain.	Social	recovery	using	secret	sharing	is	possible,	but	it	is	more	difficult	in	practice:	if	you	no	longer	trust
some	of	your	contacts,	or	if	they	want	to	change	their	own	keys,	you	have	no	way	to	revoke	access	without	changing	your	key	yourself.	And	so
we're	back	to	requiring	some	form	of	on-chain	record.
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One	subtle	but	important	idea	in	the	DeSoc	paper	is	that	to	preserve	non-transferability,	social	recovery	(or	"community	recovery")	of	profiles
might	actually	need	to	be	mandatory.	That	is,	even	if	you	sell	your	account,	you	can	always	use	community	recovery	to	get	the	account	back.
This	would	solve	problems	like	not-actually-reputable	drivers	buying	verified	accounts	on	ride	sharing	platforms.	That	said,	this	is	a	speculative
idea	and	does	not	have	to	be	fully	implemented	to	get	the	other	benefits	of	blockchain-based	identity	and	reputation	systems.

Note	that	so	far	this	is	a	limited	use-case	of	blockchains:	it's	totally	okay	to	have	accounts	on-chain	but	do	everything	else	off-
chain.	There's	a	place	for	these	kinds	of	hybrid	visions;	Sign-in	With	Ethereum	is	good	simple	example	of	how	this	could	be	done	in	practice.

Modifying	and	revoking	attestations
Alice	goes	to	Example	College	and	gets	a	degree	in	example	studies.	She	gets	a	digital	record	certifying	this,	signed	with	Example	College's
keys.	Unfortunately,	six	months	later,	Example	College	discovers	that	Alice	had	committed	a	large	amount	of	plagiarism,	and	revokes	her
degree.	But	Alice	continues	to	use	her	old	digital	record	to	go	around	claiming	to	various	people	and	institutions	that	she	has	a	degree.
Potentially,	the	attestation	could	even	carry	permissions	-	for	example,	the	right	to	log	in	to	the	college's	online	forum	-	and	Alice	might	try	to
inappropriately	access	that	too.	How	do	we	prevent	this?

The	"blockchain	maximalist"	approach	would	be	to	make	the	degree	an	on-chain	NFT,	so	Example	College	can	then	issue	an	on-chain
transaction	to	revoke	the	NFT.	But	perhaps	this	is	needlessly	expensive:	issuance	is	common,	revocation	is	rare,	and	we	don't	want	to	require
Example	College	to	issue	transactions	and	pay	fees	for	every	issuance	if	they	don't	have	to.	So	instead	we	can	go	with	a	hybrid	solution:	make
initial	degree	an	off-chain	signed	message,	and	do	revocations	on-chain.	This	is	the	approach	that	OpenCerts	uses.

The	fully	off-chain	solution,	and	the	one	advocated	by	many	off-chain	verifiable	credentials	proponents,	is	that	Example	College	runs	a	server
where	they	publish	a	full	list	of	their	revocations	(to	improve	privacy,	each	attestation	can	come	with	an	attached	nonce	and	the	revocation	list
can	just	be	a	list	of	nonces).

For	a	college,	running	a	server	is	not	a	large	burden.	But	for	any	smaller	organization	or	individual,	managing	"yet	another	server	script"	and
making	sure	it	stays	online	is	a	significant	burden	for	IT	people.	If	we	tell	people	to	"just	use	a	server"	out	of	blockchain-phobia,	then
the	likely	outcome	is	that	everyone	outsources	the	task	to	a	centralized	provider.	Better	to	keep	the	system	decentralized	and	just	use
a	blockchain	-	especially	now	that	rollups,	sharding	and	other	techniques	are	finally	starting	to	come	online	to	make	the	cost	of	a	blockchain
cheaper	and	cheaper.

Negative	reputation
Another	important	area	where	off-chain	signatures	do	not	suffice	is	negative	reputation	-	that	is,	attestations	where	the	person	or
organization	that	you're	making	attestations	about	might	not	want	you	to	see	them.	I'm	using	"negative	reputation"	here	as	a	technical	term:
the	most	obvious	motivating	use	case	is	attestations	saying	bad	things	about	someone,	like	a	bad	review	or	a	report	that	someone	acted
abusively	in	some	context,	but	there	are	also	use	cases	where	"negative"	attestations	don't	imply	bad	behavior	-	for	example,	taking	out	a	loan
and	wanting	to	prove	that	you	have	not	taken	out	too	many	other	loans	at	the	same	time.

With	off-chain	claims,	you	can	do	positive	reputation,	because	it's	in	the	interest	of	the	recipient	of	a	claim	to	show	it	to	appear	more	reputable
(or	make	a	ZK-proof	about	it),	but	you	can't	do	negative	reputation,	because	someone	can	always	choose	to	only	show	the	claims	that	make
them	look	good	and	leave	out	all	the	others.

Here,	making	attestations	on-chain	actually	does	fix	things.	To	protect	privacy,	we	can	add	encryption	and	zero	knowledge	proofs:	an
attestation	can	just	be	an	on-chain	record	with	data	encrypted	to	the	recipient's	public	key,	and	users	could	prove	lack	of	negative	reputation
by	running	a	zero	knowledge	proof	that	walks	over	the	entire	history	of	records	on	chain.	The	proofs	being	on-chain	and	the	verification
process	being	blockchain-aware	makes	it	easy	to	verify	that	the	proof	actually	did	walk	over	the	whole	history	and	did	not	skip	any	records.	To
make	this	computationally	feasible,	a	user	could	use	incrementally	verifiable	computation	(eg.	Halo)	to	maintain	and	prove	a	tree	of	records
that	were	encrypted	to	them,	and	then	reveal	parts	of	the	tree	when	needed.

Negative	reputation	and	revoking	attestations	are	in	some	sense	equivalent	problems:	you	can	revoke	an	attestation	by	adding	another
negative-reputation	attestation	saying	"this	other	attestation	doesn't	count	anymore",	and	you	can	implement	negative	reputation	with
revocation	by	piggybacking	on	positive	reputation:	Alice's	degree	at	Example	College	could	be	revoked	and	replaced	with	a	degree	saying
"Alice	got	a	degree	in	example	studies,	but	she	took	out	a	loan".

Is	negative	reputation	a	good	idea?

One	critique	of	negative	reputation	that	we	sometimes	hear	is:	but	isn't	negative	reputation	a	dystopian	scheme	of	"scarlet	letters",	and
shouldn't	we	try	our	best	to	do	things	with	positive	reputation	instead?

Here,	while	I	support	the	goal	of	avoiding	unlimited	negative	reputation,	I	disagree	with	the	idea	of	avoiding	it	entirely.	Negative	reputation	is
important	for	many	use	cases.	Uncollateralized	lending,	which	is	highly	valuable	for	improving	capital	efficiency	within	the	blockchain	space
and	outside,	clearly	benefits	from	it.	Unirep	Social	shows	a	proof-of-concept	social	media	platform	that	combines	a	high	level	of	anonymity	with
a	privacy-preserving	negative	reputation	system	to	limit	abuse.

Sometimes,	negative	reputation	can	be	empowering	and	positive	reputation	can	be	exclusionary.	An	online	forum	where	every	unique	human
gets	the	right	to	post	until	they	get	too	many	"strikes"	for	misbehavior	is	more	egalitarian	than	a	forum	that	requires	some	kind	of	"proof	of
good	character"	to	be	admitted	and	allowed	to	speak	in	the	first	place.	Marginalized	people	whose	lives	are	mostly	"outside	the	system",	even	if
they	actually	are	of	good	character,	would	have	a	hard	time	getting	such	proofs.

Readers	of	the	strong	civil-libertarian	persuasion	may	also	want	to	consider	the	case	of	an	anonymous	reputation	system	for	clients	of	sex
workers:	you	want	to	protect	privacy,	but	you	also	might	want	a	system	where	if	a	client	mistreats	a	sex	worker,	they	get	a	"black	mark"	that
encourages	other	workers	to	be	more	careful	or	stay	away.	In	this	way,	negative	reputation	that's	hard	to	hide	can	actually	empower	the
vulnerable	and	protect	safety.	The	point	here	is	not	to	defend	some	specific	scheme	for	negative	reputation;	rather,	it's	to	show	that	there's
very	real	value	that	negative	reputation	unlocks,	and	a	successful	system	needs	to	support	it	somehow.

Negative	reputation	does	not	have	to	be	unlimited	negative	reputation:	I	would	argue	that	it	should	always	be	possible	to	create	a	new	profile
at	some	cost	(perhaps	sacrificing	a	lot	or	all	of	your	existing	positive	reputation).	There	is	a	balance	between	too	little	accountability	and	too
much	accountability.	But	having	some	technology	that	makes	negative	reputation	possible	in	the	first	place	is	a	prerequisite	for	unlocking	this
design	space.

Committing	to	scarcity
Another	example	of	where	blockchains	are	valuable	is	issuing	attestations	that	have	a	provably	limited	quantity.	If	I	want	to	make	an
endorsement	for	someone	(eg.	one	might	imagine	a	company	looking	for	jobs	or	a	government	visa	program	looking	at	such	endorsements),	the
third	party	looking	at	the	endorsement	would	want	to	know	whether	I'm	careful	with	endorsements	or	if	I	give	them	off	to	pretty	much	whoever
is	friends	with	me	and	asks	nicely.

The	ideal	solution	to	this	problem	would	be	to	make	endorsements	public,	so	that	endorsements	become	incentive-aligned:	if	I	endorse
someone	who	turns	out	to	do	something	wrong,	everyone	can	discount	my	endorsements	in	the	future.	But	often,	we	also	want	to	preserve
privacy.	So	instead	what	I	could	do	is	publish	hashes	of	each	endorsement	on-chain,	so	that	anyone	can	see	how	many	I	have	given	out.

An	even	more	effective	usecase	is	many-at-a-time	issuance:	if	an	artists	wants	to	issue	N	copies	of	a	"limited-edition"	NFT,	they	could	publish
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on-chain	a	single	hash	containing	the	Merkle	root	of	the	NFTs	that	they	are	issuing.	The	single	issuance	prevents	them	from	issuing	more	after
the	fact,	and	you	can	publish	the	number	(eg.	100)	signifying	the	quantity	limit	along	with	the	Merkle	root,	signifying	that	only	the	leftmost	100
Merkle	branches	are	valid.

By	publishing	a	single	Merkle	root	and	max	count	on-chain,	you	can	commit	issue	a	limited	quantity	of	attestations.	In	this	example,	there	are
only	five	possible	valid	Merkle	branches	that	could	satisfy	the	proof	check.	Astute	readers	may	notice	a	conceptual	similarity	to	Plasma	chains.

Common	knowledge
One	of	the	powerful	properties	of	blockchains	is	that	they	create	common	knowledge:	if	I	publish	something	on-chain,	then	Alice	can	see	it,
Alice	can	see	that	Bob	can	see	it,	Charlie	can	see	that	Alice	can	see	that	Bob	can	see	it,	and	so	on.

Common	knowledge	is	often	important	for	coordination.	For	example,	a	group	of	people	might	want	to	speak	out	about	an	issue,	but	only	feel
comfortable	doing	so	if	there's	enough	of	them	speaking	out	at	the	same	time	that	they	have	safety	in	numbers.	One	possible	way	to	do	this	is
for	one	person	to	start	a	"commitment	pool"	around	a	particular	statement,	and	invite	others	to	publish	hashes	(which	are	private	at	first)
denoting	their	agreement.	Only	if	enough	people	participate	within	some	period	of	time,	all	participants	would	be	required	to	have	their	next
on-chain	message	publicly	reveal	their	position.

A	design	like	this	could	be	accomplished	with	a	combination	of	zero	knowledge	proofs	and	blockchains	(it	could	be	done	without	blockchains,
but	that	requires	either	witness	encryption,	which	is	not	yet	available,	or	trusted	hardware,	which	has	deeply	problematic	security
assumptions).	There	is	a	large	design	space	around	these	kinds	of	ideas	that	is	very	underexplored	today,	but	could	easily	start	to	grow	once
the	ecosystem	around	blockchains	and	cryptographic	tools	grows	further.

Interoperability	with	other	blockchain	applications
This	is	an	easy	one:	some	things	should	be	on-chain	to	better	interoperate	with	other	on-chain	applications.	Proof	of	humanity	being	an	on-
chain	NFT	makes	it	easier	for	projects	to	automatically	airdrop	or	give	governance	rights	to	accounts	that	have	proof	of	humanity	profiles.
Oracle	data	being	on-chain	makes	it	easier	for	defi	projects	to	read.	In	all	of	these	cases,	the	blockchain	does	not	remove	the	need	for	trust,
though	it	can	house	structures	like	DAOs	that	manage	the	trust.	But	the	main	value	that	being	on-chain	provides	is	simply	being	in	the	same
place	as	the	stuff	that	you're	interacting	with,	which	needs	a	blockchain	for	other	reasons.

Sure,	you	could	run	an	oracle	off-chain	and	require	the	data	to	be	imported	only	when	it	needs	to	be	read,	but	in	many	cases	that	would
actually	be	more	expensive,	and	needlessly	impose	complexity	and	costs	on	developers.

Open-source	metrics
One	key	goal	of	the	Decentralized	Society	paper	is	the	idea	that	it	should	be	possible	to	make	calculations	over	the	graph	of	attestations.	A
really	important	one	is	measuring	decentralization	and	diversity.	For	example,	many	people	seem	to	agree	that	an	ideal	voting	mechanism
would	somehow	keep	diversity	in	mind,	giving	greater	weight	to	projects	that	are	supported	not	just	by	the	largest	number	of	coins	or	even
humans,	but	by	the	largest	number	of	truly	distinct	perspectives.

Quadratic	funding	as	implemented	in	Gitcoin	Grants	also	includes	some	explicitly	diversity-favoring	logic	to	mitigate	attacks.

Another	natural	place	where	measurements	and	scores	are	going	to	be	valuable	is	reputation	systems.	This	already	exists	in	a	centralized
form	with	ratings,	but	it	can	be	done	in	a	much	more	decentralized	way	where	the	algorithm	is	transparent	while	at	the	same	time	preserving
more	user	privacy.
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Aside	from	tightly-coupled	use	cases	like	this,	where	attempts	to	measure	to	what	extent	some	set	of	people	is	connected	and	feed	that	directly
into	a	mechanism,	there's	also	broader	use	case	of	helping	a	community	understand	itself.	In	the	case	of	measuring	decentralization,	this	might
be	a	matter	of	identifying	areas	where	concentration	is	getting	too	high,	which	might	require	a	response.	In	all	of	these	cases,	running
computerized	algorithms	over	large	bodies	of	attestations	and	commitments	and	doing	actually	important	things	with	the	outputs	is	going	to	be
unavoidable.

We	should	not	try	to	abolish	quantified	metrics,	we	should	try	to	make	better	ones

Kate	Sills	expressed	her	skepticism	of	the	goal	of	making	calculations	over	reputation,	an	argument	that	applies	both	for	public	analytics	and
for	individuals	ZK-proving	over	their	reputation	(as	in	Unirep	Social):

The	process	of	evaluating	a	claim	is	very	subjective	and	context-dependent.	People	will	naturally	disagree	about	the	trustworthiness
of	other	people,	and	trust	depends	on	the	context	...	[because	of	this]	we	should	be	extremely	skeptical	of	any	proposal	to	"calculate
over"	claims	to	get	objective	results.

I	this	case,	I	agree	with	the	importance	of	subjectivity	and	context,	but	I	would	disagree	with	the	more	expansive	claim	that	avoiding
calculations	around	reputation	entirely	is	the	right	goal	to	be	aiming	towards.	Pure	individualized	analysis	does	not	scale	far	beyond	Dunbar's
number,	and	any	complex	society	that	is	attempting	to	support	large-scale	cooperation	has	to	rely	on	aggregations	and	simplifications	to	some
extent.

That	said,	I	would	argue	that	an	open-participation	ecosystem	of	attestations	(as	opposed	to	the	centralized	one	we	have	today)	can	get	us	the
best	of	both	worlds	by	opening	up	space	for	better	metrics.	Here	are	some	principles	that	such	designs	could	follow:

Inter-subjectivity:	eg.	a	reputation	should	not	be	a	single	global	score;	instead,	it	should	be	a	more	subjective	calculation	involving	the
person	or	entity	being	evaluated	but	also	the	viewer	checking	the	score,	and	potentially	even	other	aspects	of	the	local	context.
Credible	neutrality:	the	scheme	should	clearly	not	leave	room	for	powerful	elites	to	constantly	manipulate	it	in	their	own	favor.	Some
possible	ways	to	achieve	this	are	maximum	transparency	and	infrequent	change	of	the	algorithm.
Openness:	the	ability	to	make	meaningful	inputs,	and	to	audit	other	people's	outputs	by	running	the	check	yourself,	should	be	open	to
anyone,	and	not	just	restricted	to	a	small	number	of	powerful	groups.

If	we	don't	create	good	large-scale	aggregates	of	social	data,	then	we	risk	ceding	market	share	to	opaque	and	centralized	social	credit	scores
instead.

Not	all	data	should	be	on-chain,	but	making	some	data	public	in	a	common-knowledge	way	can	help	increase	a	community's	legibility	to	itself
without	creating	data-access	disparities	that	could	be	abused	to	centralize	control.

As	a	data	store
This	is	the	really	controversial	use	case,	even	among	those	who	accept	most	of	the	others.	There	is	a	common	viewpoint	in	the	blockchain
space	that	blockchains	should	only	be	used	in	those	cases	where	they	are	truly	needed	and	unavoidable,	and	everywhere	else	we	should	use
other	tools.

This	attitude	makes	sense	in	a	world	where	transaction	fees	are	very	expensive,	and	blockchains	are	uniquely	incredibly	inefficient.	But	it
makes	less	sense	in	a	world	where	blockchains	have	rollups	and	sharding	and	transaction	fees	have	dropped	down	to	a	few	cents,	and	the
difference	in	redundancy	between	a	blockchain	and	non-blockchain	decentralized	storage	might	only	be	100x.

Even	in	such	a	world,	it	would	not	make	sense	to	store	all	data	on-chain.	But	small	text	records?	Absolutely.	Why?	Because	blockchains	are
just	a	really	convenient	place	to	store	stuff.	I	maintain	a	copy	of	this	blog	on	IPFS.	But	uploading	to	IPFS	often	takes	an	hour,	it	requires
centralized	gateways	for	users	to	access	it	with	anything	close	to	website	levels	of	latency,	and	occasionally	files	drop	off	and	no	longer	become
visible.	Dumping	the	entire	blog	on-chain,	on	the	other	hand,	would	solve	that	problem	completely.	Of	course,	the	blog	is	too	big	to	actually	be
dumped	on-chain,	even	post-sharding,	but	the	same	principle	applies	to	smaller	records.

Some	examples	of	small	cases	where	putting	data	on-chain	just	to	store	it	may	be	the	right	decision	include:

Augmented	secret	sharing:	splitting	your	password	into	N	pieces	where	any	M	=	N-R	of	the	pieces	can	recover	the	password,	but	in	a	way
where	you	can	choose	the	contents	of	all	N	of	the	pieces.	For	example,	the	pieces	could	all	be	hashes	of	passwords,	secrets	generated
through	some	other	tool,	or	answers	to	security	questions.	This	is	done	by	publishing	an	extra	R	pieces	(which	are	random-looking)	on-
chain,	and	doing	N-of-(N+R)	secret	sharing	on	the	whole	set.
ENS	optimization.	ENS	could	be	made	more	efficient	by	combining	all	records	into	a	single	hash,	only	publishing	the	hash	on-chain,	and
requiring	anyone	accessing	the	data	to	get	the	full	data	off	of	IPFS.	But	this	would	significantly	increase	complexity,	and	add	yet	another
software	dependency.	And	so	ENS	keeps	data	on-chain	even	if	it	is	longer	than	32	bytes.
Social	metadata	-	data	connected	to	your	account	(eg.	for	sign-in-with-Ethereum	purposes)	that	you	want	to	be	public	and	that	is	very
short	in	length.	This	is	generally	not	true	for	larger	data	like	profile	pictures	(though	if	the	picture	happens	to	be	a	small	SVG	file	it	could
be!),	but	it	is	true	for	text	records.
Attestations	and	access	permissions.	Especially	if	the	data	being	stored	is	less	than	a	few	hundred	bytes	long,	it	might	be	more
convenient	to	store	the	data	on-chain	than	put	the	hash	on-chain	and	the	data	off-chain.

In	a	lot	of	these	cases,	the	tradeoff	isn't	just	cost	but	also	privacy	in	those	edge	cases	where	keys	or	cryptography	break.	Sometimes,	privacy	is
only	somewhat	important,	and	the	occasional	loss	of	privacy	from	leaked	keys	or	the	faraway	specter	of	quantum	computing	revealing
everything	in	30	years	is	less	important	than	having	a	very	high	degree	of	certainty	that	the	data	will	remain	accessible.	After	all,	off-chain	data
stored	in	your	"data	wallet"	can	get	hacked	too.

But	sometimes,	data	is	particularly	sensitive,	and	that	can	be	another	argument	against	putting	it	on-chain,	and	keeping	it	stored	locally	as	a
second	layer	of	defense.	But	note	that	in	those	cases,	that	privacy	need	is	an	argument	not	just	against	blockchains,	but	against	all
decentralized	storage.

Conclusions
Out	of	the	above	list,	the	two	I	am	personally	by	far	the	most	confident	about	are	interoperability	with	other	blockchain	applications	and
account	management.	The	first	is	on-chain	already,	and	the	second	is	relatively	cheap	(need	to	use	the	chain	once	per	user,	and	not	once	per
action),	the	case	for	it	is	clear,	and	there	really	isn't	a	good	non-blockchain-based	solution.

Negative	reputation	and	revocations	are	also	important,	though	they	are	still	relatively	early-stage	use	cases.	A	lot	can	be	done	with
reputation	by	relying	on	off-chain	positive	reputation	only,	but	I	expect	that	the	case	for	revocation	and	negative	reputation	will	become	more
clear	over	time.	I	expect	there	to	be	attempts	to	do	it	with	centralized	servers,	but	over	time	it	should	become	clear	that	blockchains	are	the
only	way	to	avoid	a	hard	choice	between	inconvenience	and	centralization.

Blockchains	as	data	stores	for	short	text	records	may	be	marginal	or	may	be	significant,	but	I	do	expect	at	least	some	of	that	kind	of	usage
to	keep	happening.	Blockchains	really	are	just	incredibly	convenient	for	cheap	and	reliable	data	retrieval,	where	data	continues	to	be
retrievable	whether	the	application	has	two	users	or	two	million.	Open-source	metrics	are	still	a	very	early-stage	idea,	and	it	remains	to	see
just	how	much	can	be	done	and	made	open	without	it	becoming	exploitable	(as	eg.	online	reviews,	social	media	karma	and	the	like	get
exploited	all	the	time).	And	common	knowledge	games	require	convincing	people	to	accept	entirely	new	workflows	for	socially	important
things,	so	of	course	that	is	an	early-stage	idea	too.

https://nakamoto.com/credible-neutrality/
https://ethresear.ch/t/m-of-n-secret-sharing-with-pre-known-shares/10074
https://login.xyz/
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics


I	have	a	large	degree	of	uncertainty	in	exactly	what	level	of	non-financial	blockchain	usage	in	each	of	these	categories	makes	sense,	but	it
seems	clear	that	blockchains	as	an	enabling	tool	in	these	areas	should	not	be	dismissed.
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Two	thought	experiments	to	evaluate	automated	stablecoins

Special	thanks	to	Dan	Robinson,	Hayden	Adams	and	Dankrad	Feist	for	feedback	and	review.

The	recent	LUNA	crash,	which	led	to	tens	of	billions	of	dollars	of	losses,	has	led	to	a	storm	of	criticism	of	"algorithmic	stablecoins"	as	a	category,	with	many
considering	them	to	be	a	"fundamentally	flawed	product".	The	greater	level	of	scrutiny	on	defi	financial	mechanisms,	especially	those	that	try	very	hard	to	optimize
for	"capital	efficiency",	is	highly	welcome.	The	greater	acknowledgement	that	present	performance	is	no	guarantee	of	future	returns	(or	even	future	lack-of-total-
collapse)	is	even	more	welcome.	Where	the	sentiment	goes	very	wrong,	however,	is	in	painting	all	automated	pure-crypto	stablecoins	with	the	same	brush,	and
dismissing	the	entire	category.

While	there	are	plenty	of	automated	stablecoin	designs	that	are	fundamentally	flawed	and	doomed	to	collapse	eventually,	and	plenty	more	that	can	survive
theoretically	but	are	highly	risky,	there	are	also	many	stablecoins	that	are	highly	robust	in	theory,	and	have	survived	extreme	tests	of	crypto	market	conditions	in
practice.	Hence,	what	we	need	is	not	stablecoin	boosterism	or	stablecoin	doomerism,	but	rather	a	return	to	principles-based	thinking.	So	what	are	some	good
principles	for	evaluating	whether	or	not	a	particular	automated	stablecoin	is	a	truly	stable	one?	For	me,	the	test	that	I	start	from	is	asking	how	the	stablecoin
responds	to	two	thought	experiments.

Click	here	to	skip	straight	to	the	thought	experiments.

Reminder:	what	is	an	automated	stablecoin?
For	the	purposes	of	this	post,	an	automated	stablecoin	is	a	system	that	has	the	following	properties:

1.	 It	issues	a	stablecoin,	which	attempts	to	target	a	particular	price	index.	Usually,	the	target	is	1	USD,	but	there	are	other	options	too.	There	is	some
targeting	mechanism	that	continuously	works	to	push	the	price	toward	the	index	if	it	veers	away	in	either	direction.	This	makes	ETH	and	BTC	not
stablecoins	(duh).

2.	 The	targeting	mechanism	is	completely	decentralized,	and	free	of	protocol-level	dependencies	on	specific	trusted	actors.	Particularly,	it	must	not	rely	on
asset	custodians.	This	makes	USDT	and	USDC	not	automated	stablecoins.

In	practice,	(2)	means	that	the	targeting	mechanism	must	be	some	kind	of	smart	contract	which	manages	some	reserve	of	crypto-assets,	and	uses	those	crypto-
assets	to	prop	up	the	price	if	it	drops.

How	does	Terra	work?
Terra-style	stablecoins	(roughly	the	same	family	as	seignorage	shares,	though	many	implementation	details	differ)	work	by	having	a	pair	of	two	coins,	which	we'll
call	a	stablecoin	and	a	volatile-coin	or	volcoin	(in	Terra,	UST	is	the	stablecoin	and	LUNA	is	the	volcoin).	The	stablecoin	retains	stability	using	a	simple	mechanism:

If	the	price	of	the	stablecoin	exceeds	the	target,	the	system	auctions	off	new	stablecoins	(and	uses	the	revenue	to	burn	volcoins)	until	the	price	returns	to	the
target
If	the	price	of	the	stablecoin	drops	below	the	target,	the	system	buys	back	and	burns	stablecoins	(issuing	new	volcoins	to	fund	the	burn)	until	the	price	returns
to	the	target

Now	what	is	the	price	of	the	volcoin?	The	volcoin's	value	could	be	purely	speculative,	backed	by	an	assumption	of	greater	stablecoin	demand	in	the	future	(which
would	require	burning	volcoins	to	issue).	Alternatively,	the	value	could	come	from	fees:	either	trading	fees	on	stablecoin	<->	volcoin	exchange,	or	holding	fees
charged	per	year	to	stablecoin	holders,	or	both.	But	in	all	cases,	the	price	of	the	volcoin	comes	from	the	expectation	of	future	activity	in	the	system.

How	does	RAI	work?
In	this	post	I'm	focusing	on	RAI	rather	than	DAI	because	RAI	better	exemplifies	the	pure	"ideal	type"	of	a	collateralized	automated	stablecoin,	backed	by	ETH	only.
DAI	is	a	hybrid	system	backed	by	both	centralized	and	decentralized	collateral,	which	is	a	reasonable	choice	for	their	product	but	it	does	make	analysis	trickier.

In	RAI,	there	are	two	main	categories	of	participants	(there's	also	holders	of	FLX,	the	speculative	token,	but	they	play	a	less	important	role):

A	RAI	holder	holds	RAI,	the	stablecoin	of	the	RAI	system.
A	RAI	lender	deposits	some	ETH	into	a	smart	contract	object	called	a	"safe".	They	can	then	withdraw	RAI	up	to	the	value	of	\(\frac{2}{3}\)	of	that	ETH	(eg.
if	1	ETH	=	100	RAI,	then	if	you	deposit	10	ETH	you	can	withdraw	up	to	\(10	*	100	*	\frac{2}{3}	\approx	667\)	RAI).	A	lender	can	recover	the	ETH	in	the	same
if	they	pay	back	their	RAI	debt.

There	are	two	main	reasons	to	become	a	RAI	lender:

1.	 To	go	long	on	ETH:	if	you	deposit	10	ETH	and	withdraw	500	RAI	in	the	above	example,	you	end	up	with	a	position	worth	500	RAI	but	with	10	ETH	of
exposure,	so	it	goes	up/down	by	2%	for	every	1%	change	in	the	ETH	price.

2.	 Arbitrage	if	you	find	a	fiat-denominated	investment	that	goes	up	faster	than	RAI,	you	can	borrow	RAI,	put	the	funds	into	that	investment,	and	earn	a	profit	on
the	difference.

If	the	ETH	price	drops,	and	a	safe	no	longer	has	enough	collateral	(meaning,	the	RAI	debt	is	now	more	than	\(\frac{2}{3}\)	times	the	value	of	the	ETH	deposited),
a	liquidation	event	takes	place.	The	safe	gets	auctioned	off	for	anyone	else	to	buy	by	putting	up	more	collateral.

The	other	main	mechanism	to	understand	is	redemption	rate	adjustment.	In	RAI,	the	target	isn't	a	fixed	quantity	of	USD;	instead,	it	moves	up	or	down,	and	the
rate	at	which	it	moves	up	or	down	adjusts	in	response	to	market	conditions:

If	the	price	of	RAI	is	above	the	target,	the	redemption	rate	decreases,	reducing	the	incentive	to	hold	RAI	and	increasing	the	incentive	to	hold	negative
RAI	by	being	a	lender.	This	pushes	the	price	back	down.
If	the	price	of	RAI	is	below	the	target,	the	redemption	rate	increases,	increasing	the	incentive	to	hold	RAI	and	reducing	the	incentive	to	hold	negative
RAI	by	being	a	lender.	This	pushes	the	price	back	up.
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Thought	experiment	1:	can	the	stablecoin,	even	in	theory,	safely	"wind	down"	to	zero	users?
In	the	non-crypto	real	world,	nothing	lasts	forever.	Companies	shut	down	all	the	time,	either	because	they	never	manage	to	find	enough	users	in	the	first	place,	or
because	once-strong	demand	for	their	product	is	no	longer	there,	or	because	they	get	displaced	by	a	superior	competitor.	Sometimes,	there	are	partial	collapses,
declines	from	mainstream	status	to	niche	status	(eg.	MySpace).	Such	things	have	to	happen	to	make	room	for	new	products.	But	in	the	non-crypto	world,	when	a
product	shuts	down	or	declines,	customers	generally	don't	get	hurt	all	that	much.	There	are	certainly	some	cases	of	people	falling	through	the	cracks,	but	on	the
whole	shutdowns	are	orderly	and	the	problem	is	manageable.

But	what	about	automated	stablecoins?	What	happens	if	we	look	at	a	stablecoin	from	the	bold	and	radical	perspective	that	the	system's	ability	to	avoid	collapsing
and	losing	huge	amounts	of	user	funds	should	not	depend	on	a	constant	influx	of	new	users?	Let's	see	and	find	out!

Can	Terra	wind	down?

In	Terra,	the	price	of	the	volcoin	(LUNA)	comes	from	the	expectation	of	fees	from	future	activity	in	the	system.	So	what	happens	if	expected	future	activity
drops	to	near-zero?	The	market	cap	of	the	volcoin	drops	until	it	becomes	quite	small	relative	to	the	stablecoin.	At	that	point,	the	system	becomes	extremely
fragile:	only	a	small	downward	shock	to	demand	for	the	stablecoin	could	lead	to	the	targeting	mechanism	printing	lots	of	volcoins,	which	causes	the	volcoin	to
hyperinflate,	at	which	point	the	stablecoin	too	loses	its	value.

The	system's	collapse	can	even	become	a	self-fulfilling	prophecy:	if	it	seems	like	a	collapse	is	likely,	this	reduces	the	expectation	of	future	fees	that	is	the
basis	of	the	value	of	the	volcoin,	pushing	the	volcoin's	market	cap	down,	making	the	system	even	more	fragile	and	potentially	triggering	that	very	collapse	-	exactly
as	we	saw	happen	with	Terra	in	May.

LUNA	price,	May	8-12 UST	price,	May	8-12

First,	the	volcoin	price	drops.	Then,	the	stablecoin	starts	to	shake.	The	system	attempts	to	shore	up	stablecoin	demand	by	issuing	more	volcoins.	With	confidence
in	the	system	low,	there	are	few	buyers,	so	the	volcoin	price	rapidly	falls.	Finally,	once	the	volcoin	price	is	near-zero,	the	stablecoin	too	collapses.

In	principle,	if	demand	decreases	extremely	slowly,	the	volcoin's	expected	future	fees	and	hence	its	market	cap	could	still	be	large	relative	to	the	stablecoin,	and	so
the	system	would	continue	to	be	stable	at	every	step	of	its	decline.	But	this	kind	of	successful	slowly-decreasing	managed	decline	is	very	unlikely.	What's
more	likely	is	a	rapid	drop	in	interest	followed	by	a	bang.

Safe	wind-down:	at	every	step,	there's	enough	expected	future	revenue	to	justify	enough	volcoin	market	cap	to	keep	the	stablecoin	safe	at	its	current	level.



Unsafe	wind-down:	at	some	point,	there's	not	enough	expected	future	revenue	to	justify	enough	volcoin	market	cap	to	keep	the	stablecoin	safe.	Collapse	is	likely.

Can	RAI	wind	down?

RAI's	security	depends	on	an	asset	external	to	the	RAI	system	(ETH),	so	RAI	has	a	much	easier	time	safely	winding	down.	If	the	decline	in	demand	is
unbalanced	(so,	either	demand	for	holding	drops	faster	or	demand	for	lending	drops	faster),	the	redemption	rate	will	adjust	to	equalize	the	two.	The	lenders	are
holding	a	leveraged	position	in	ETH,	not	FLX,	so	there's	no	risk	of	a	positive-feedback	loop	where	reduced	confidence	in	RAI	causes	demand	for	lending	to	also
decrease.

If,	in	the	extreme	case,	all	demand	for	holding	RAI	disappears	simultaneously	except	for	one	holder,	the	redemption	rate	would	skyrocket	until	eventually	every
lender's	safe	gets	liquidated.	The	single	remaining	holder	would	be	able	to	buy	the	safe	in	the	liquidation	auction,	use	their	RAI	to	immediately	clear	its	debt,	and
withdraw	the	ETH.	This	gives	them	the	opportunity	to	get	a	fair	price	for	their	RAI,	paid	for	out	of	the	ETH	in	the	safe.

Another	extreme	case	worth	examining	is	where	RAI	becomes	the	primary	appliation	on	Ethereum.	In	this	case,	a	reduction	in	expected	future	demand	for	RAI
would	crater	the	price	of	ETH.	In	the	extreme	case,	a	cascade	of	liquidations	is	possible,	leading	to	a	messy	collapse	of	the	system.	But	RAI	is	far	more	robust
against	this	possibility	than	a	Terra-style	system.

Thought	experiment	2:	what	happens	if	you	try	to	peg	the	stablecoin	to	an	index	that	goes	up	20%
per	year?
Currently,	stablecoins	tend	to	be	pegged	to	the	US	dollar.	RAI	stands	out	as	a	slight	exception,	because	its	peg	adjusts	up	or	down	due	to	the	redemption	rate	and
the	peg	started	at	3.14	USD	instead	of	1	USD	(the	exact	starting	value	was	a	concession	to	being	normie-friendly,	as	a	true	math	nerd	would	have	chosen	tau	=
6.28	USD	instead).	But	they	do	not	have	to	be.	You	can	have	a	stablecoin	pegged	to	a	basket	of	assets,	a	consumer	price	index,	or	some	arbitrarily	complex	formula
("a	quantity	of	value	sufficient	to	buy	{global	average	CO2	concentration	minus	375}	hectares	of	land	in	the	forests	of	Yakutia").	As	long	as	you	can	find	an	oracle
to	prove	the	index,	and	people	to	participate	on	all	sides	of	the	market,	you	can	make	such	a	stablecoin	work.

As	a	thought	experiment	to	evaluate	sustainability,	let's	imagine	a	stablecoin	with	a	particular	index:	a	quantity	of	US	dollars	that	grows	by	20%	per	year.	In	math
language,	the	index	is	\(1.2^{(t	-	t_0)}\)	USD,	where	\(t\)	is	the	current	time	in	years	and	\(t_0\)	is	the	time	when	the	system	launched.	An	even	more	fun
alternative	is	\(1.04^{\frac{1}{2}*(t	-	t_0)^2}\)	USD,	so	it	starts	off	acting	like	a	regular	USD-denominated	stablecoin,	but	the	USD-denominated	return	rate
keeps	increasing	by	4%	every	year.

Obviously,	there	is	no	genuine	investment	that	can	get	anywhere	close	to	20%	returns	per	year,	and	there	is	definitely	no	genuine	investment	that	can	keep
increasing	its	return	rate	by	4%	per	year	forever.	But	what	happens	if	you	try?

I	will	claim	that	there's	basically	two	ways	for	a	stablecoin	that	tries	to	track	such	an	index	to	turn	out:

1.	 It	charges	some	kind	of	negative	interest	rate	on	holders	that	equilibrates	to	basically	cancel	out	the	USD-denominated	growth	rate	built	in	to	the	index.
2.	 It	turns	into	a	Ponzi,	giving	stablecoin	holders	amazing	returns	for	some	time	until	one	day	it	suddenly	collapses	with	a	bang.

It	should	be	pretty	easy	to	understand	why	RAI	does	(1)	and	LUNA	does	(2),	and	so	RAI	is	better	than	LUNA.	But	this	also	shows	a	deeper	and	more	important	fact
about	stablecoins:	for	a	collateralized	automated	stablecoin	to	be	sustainable,	it	has	to	somehow	contain	the	possibility	of	implementing	a	negative
interest	rate.	A	version	of	RAI	programmatically	prevented	from	implementing	negative	interest	rates	(which	is	what	the	earlier	single-collateral	DAI	basically
was)	would	also	turn	into	a	Ponzi	if	tethered	to	a	rapidly-appreciating	price	index.

Even	outside	of	crazy	hypotheticals	where	you	build	a	stablecoin	to	track	a	Ponzi	index,	the	stablecoin	must	somehow	be	able	to	respond	to	situations	where	even
at	a	zero	interest	rate,	demand	for	holding	exceeds	demand	for	borrowing.	If	you	don't,	the	price	rises	above	the	peg,	and	the	stablecoin	becomes	vulnerable	to
price	movements	in	both	directions	that	are	quite	unpredictable.

Negative	interest	rates	can	be	done	in	two	ways:

1.	 RAI-style,	having	a	floating	target	that	can	drop	over	time	if	the	redemption	rate	is	negative

https://tauday.com/
https://github.com/makerdao/sai/blob/master/DEVELOPING.md


2.	 Actually	having	balances	decrease	over	time

Option	(1)	has	the	user-experience	flaw	that	the	stablecoin	no	longer	cleanly	tracks	"1	USD".	Option	(2)	has	the	developer-experience	flaw	that	developers	aren't
used	to	dealing	with	assets	where	receiving	N	coins	does	not	unconditionally	mean	that	you	can	later	send	N	coins.	But	choosing	one	of	the	two	seems	unavoidable
-	unless	you	go	the	MakerDAO	route	of	being	a	hybrid	stablecoin	that	uses	both	pure	cryptoassets	and	centralized	assets	like	USDC	as	collateral.

What	can	we	learn?
In	general,	the	crypto	space	needs	to	move	away	from	the	attitude	that	it's	okay	to	achieve	safety	by	relying	on	endless	growth.	It's	certainly	not	acceptable	to
maintain	that	attitude	by	saying	that	"the	fiat	world	works	in	the	same	way",	because	the	fiat	world	is	not	attempting	to	offer	anyone	returns	that	go	up	much
faster	than	the	regular	economy,	outside	of	isolated	cases	that	certainly	should	be	criticized	with	the	same	ferocity.

Instead,	while	we	certainly	should	hope	for	growth,	we	should	evaluate	how	safe	systems	are	by	looking	at	their	steady	state,	and	even	the	pessimistic	state	of	how
they	would	fare	under	extreme	conditions	and	ultimately	whether	or	not	they	can	safely	wind	down.	If	a	system	passes	this	test,	that	does	not	mean	it's	safe;	it
could	still	be	fragile	for	other	reasons	(eg.	insufficient	collateral	ratios),	or	have	bugs	or	governance	vulnerabilities.	But	steady-state	and	extreme-case	soundness
should	always	be	one	of	the	first	things	that	we	check	for.

https://vitalik.ca/general/2021/08/16/voting3.html
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In	Defense	of	Bitcoin	Maximalism

We've	been	hearing	for	years	that	the	future	is	blockchain,	not	Bitcoin.	The	future	of	the	world	won't	be	one	major	cryptocurrency,	or	even	a	few,	but	many
cryptocurrencies	-	and	the	winning	ones	will	have	strong	leadership	under	one	central	roof	to	adapt	rapidly	to	users'	needs	for	scale.	Bitcoin	is	a	boomer	coin,	and
Ethereum	is	soon	to	follow;	it	will	be	newer	and	more	energetic	assets	that	attract	the	new	waves	of	mass	users	who	don't	care	about	weird	libertarian	ideology	or
"self-sovereign	verification",	are	turned	off	by	toxicity	and	anti-government	mentality,	and	just	want	blockchain	defi	and	games	that	are	fast	and	work.

But	what	if	this	narrative	is	all	wrong,	and	the	ideas,	habits	and	practices	of	Bitcoin	maximalism	are	in	fact	pretty	close	to	correct?	What	if	Bitcoin	is	far	more	than
an	outdated	pet	rock	tied	to	a	network	effect?	What	if	Bitcoin	maximalists	actually	deeply	understand	that	they	are	operating	in	a	very	hostile	and	uncertain	world
where	there	are	things	that	need	to	be	fought	for,	and	their	actions,	personalities	and	opinions	on	protocol	design	deeply	reflect	that	fact?	What	if	we	live	in	a
world	of	honest	cryptocurrencies	(of	which	there	are	very	few)	and	grifter	cryptocurrencies	(of	which	there	are	very	many),	and	a	healthy	dose	of	intolerance	is	in
fact	necessary	to	prevent	the	former	from	sliding	into	the	latter?	That	is	the	argument	that	this	post	will	make.

We	live	in	a	dangerous	world,	and	protecting	freedom	is	serious	business
Hopefully,	this	is	much	more	obvious	now	than	it	was	six	weeks	ago,	when	many	people	still	seriously	thought	that	Vladimir	Putin	is	a	misunderstood	and	kindly
character	who	is	merely	trying	to	protect	Russia	and	save	Western	Civilization	from	the	gaypocalypse.	But	it's	still	worth	repeating.	We	live	in	a	dangerous
world,	where	there	are	plenty	of	bad-faith	actors	who	do	not	listen	to	compassion	and	reason.

A	blockchain	is	at	its	core	a	security	technology	-	a	technology	that	is	fundamentally	all	about	protecting	people	and	helping	them	survive	in	such	an	unfriendly
world.	It	is,	like	the	Phial	of	Galadriel,	"a	light	to	you	in	dark	places,	when	all	other	lights	go	out".	It	is	not	a	low-cost	light,	or	a	fluorescent	hippie	energy-efficient
light,	or	a	high-performance	light.	It	is	a	light	that	sacrifices	on	all	of	those	dimensions	to	optimize	for	one	thing	and	one	thing	only:	to	be	a	light	that	does	when	it
needs	to	do	when	you're	facing	the	toughest	challenge	of	your	life	and	there	is	a	friggin	twenty	foot	spider	staring	at	you	in	the	face.

Source:	https://www.blackgate.com/2014/12/23/frodo-baggins-lady-galadriel-and-the-games-of-the-mighty/

Blockchains	are	being	used	every	day	by	unbanked	and	underbanked	people,	by	activists,	by	sex	workers,	by	refugees,	and	by	many	other	groups	either	who	are
uninteresting	for	profit-seeking	centralized	financial	institutions	to	serve,	or	who	have	enemies	that	don't	want	them	to	be	served.	They	are	used	as	a	primary
lifeline	by	many	people	to	make	their	payments	and	store	their	savings.

And	to	that	end,	public	blockchains	sacrifice	a	lot	for	security:

Blockchains	require	each	transaction	to	be	independently	verified	thousands	of	times	to	be	accepted.
Unlike	centralized	systems	that	confirm	transactions	in	a	few	hundred	milliseconds,	blockchains	require	users	to	wait	anywhere	from	10	seconds	to	10
minutes	to	get	a	confirmation.
Blockchains	require	users	to	be	fully	in	charge	of	authenticating	themselves:	if	you	lose	your	key,	you	lose	your	coins.
Blockchains	sacrifice	privacy,	requiring	even	crazier	and	more	expensive	technology	to	get	that	privacy	back.

What	are	all	of	these	sacrifices	for?	To	create	a	system	that	can	survive	in	an	unfriendly	world,	and	actually	do	the	job	of	being	"a	light	in	dark
places,	when	all	other	lights	go	out".

Excellent	at	that	task	requires	two	key	ingredients:	(i)	a	robust	and	defensible	technology	stack	and	(ii)	a	robust	and	defensible	culture.	The	key	property	to
have	in	a	robust	and	defensible	technology	stack	is	a	focus	on	simplicity	and	deep	mathematical	purity:	a	1	MB	block	size,	a	21	million	coin	limit,	and	a	simple
Nakamoto	consensus	proof	of	work	mechanism	that	even	a	high	school	student	can	understand.	The	protocol	design	must	be	easy	to	justify	decades	and	centuries
down	the	line;	the	technology	and	parameter	choices	must	be	a	work	of	art.

The	second	ingredient	is	the	culture	of	uncompromising,	steadfast	minimalism.	This	must	be	a	culture	that	can	stand	unyieldingly	in	defending	itself	against
corporate	and	government	actors	trying	to	co-opt	the	ecosystem	from	outside,	as	well	as	bad	actors	inside	the	crypto	space	trying	to	exploit	it	for	personal	profit,	of
which	there	are	many.

Now,	what	do	Bitcoin	and	Ethereum	culture	actually	look	like?	Well,	let's	ask	Kevin	Pham:
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Don't	believe	this	is	representative?	Well,	let's	ask	Kevin	Pham	again:

Now,	you	might	say,	this	is	just	Ethereum	people	having	fun,	and	at	the	end	of	the	day	they	understand	what	they	have	to	do	and	what	they	are	dealing	with.	But
do	they?	Let's	look	at	the	kinds	of	people	that	Vitalik	Buterin,	the	founder	of	Ethereum,	hangs	out	with:

Vitalik	hangs	out	with	elite	tech	CEOs	in	Beijing,	China.

Vitalik	meets	Vladimir	Putin	in	Russia.



Vitalik	meets	Nir	Bakrat,	mayor	of	Jerusalem.

Vitalik	shakes	hands	with	Argentinian	former	president	Mauricio	Macri.

Vitalik	gives	a	friendly	hello	to	Eric	Schmidt,	former	CEO	of	Google	and	advisor	to	US
Department	of	Defense.

Vitalik	has	his	first	of	many	meetings	with	Audrey	Tang,	digital	minister	of	Taiwan.

And	this	is	only	a	small	selection.	The	immediate	question	that	anyone	looking	at	this	should	ask	is:	what	the	hell	is	the	point	of	publicly	meeting	with	all	these
people?	Some	of	these	people	are	very	decent	entrepreneurs	and	politicians,	but	others	are	actively	involved	in	serious	human	rights	abuses	that	Vitalik	certainly
does	not	support.	Does	Vitalik	not	realize	just	how	much	some	of	these	people	are	geopolitically	at	each	other's	throats?

Now,	maybe	he	is	just	an	idealistic	person	who	believes	in	talking	to	people	to	help	bring	about	world	peace,	and	a	follower	of	Frederick	Douglass's	dictum	to
"unite	with	anybody	to	do	right	and	with	nobody	to	do	wrong".	But	there's	also	a	simpler	hypothesis:	Vitalik	is	a	hippy-happy	globetrotting	pleasure	and	status-
seeker,	and	he	deeply	enjoys	meeting	and	feeling	respected	by	people	who	are	important.	And	it's	not	just	Vitalik;	companies	like	Consensys	are	totally	happy	to
partner	with	Saudi	Arabia,	and	the	ecosystem	as	a	whole	keeps	trying	to	look	to	mainstream	figures	for	validation.

Now	ask	yourself	the	question:	when	the	time	comes,	actually	important	things	are	happening	on	the	blockchain	-	actually	important	things	that	offend	people	who
are	powerful	-	which	ecosystem	would	be	more	willing	to	put	its	foot	down	and	refuse	to	censor	them	no	matter	how	much	pressure	is	applied	on	them	to	do	so?
The	ecosystem	with	globe-trotting	nomads	who	really	really	care	about	being	everyone's	friend,	or	the	ecosystem	with	people	who	take	pictures	of	themslves	with
an	AR15	and	an	axe	as	a	side	hobby?

Currency	is	not	"just	the	first	app".	It's	by	far	the	most	successful	one.
Many	people	of	the	"blockchain,	not	Bitcoin"	persuasion	argue	that	cryptocurrency	is	the	first	application	of	blockchains,	but	it's	a	very	boring	one,	and	the	true
potential	of	blockchains	lies	in	bigger	and	more	exciting	things.	Let's	go	through	the	list	of	applications	in	the	Ethereum	whitepaper:

Issuing	tokens
Financial	derivatives
Stablecoins
Identity	and	reputation	systems
Decentralized	file	storage
Decentralized	autonomous	organizations	(DAOs)
Peer-to-peer	gambling
Prediction	markets

Many	of	these	categories	have	applications	that	have	launched	and	that	have	at	least	some	users.	That	said,	cryptocurrency	people	really	value	empowering	under-
banked	people	in	the	"Global	South".	Which	of	these	applications	actually	have	lots	of	users	in	the	Global	South?

As	it	turns	out,	by	far	the	most	successful	one	is	storing	wealth	and	payments.	3%	of	Argentinians	own	cryptocurrency,	as	do	6%	of	Nigerians	and	12%	of	people	in
Ukraine.	By	far	the	biggest	instance	of	a	government	using	blockchains	to	accomplish	something	useful	today	is	cryptocurrency	donations	to	the	government	of
Ukraine,	which	have	raised	more	than	$100	million	if	you	include	donations	to	non-governmental	Ukraine-related	efforts.
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What	other	application	has	anywhere	close	to	that	level	of	actual,	real	adoption	today?	Perhaps	the	closest	is	ENS.	DAOs	are	real	and	growing,	but	today	far	too
many	of	them	are	appealing	to	wealthy	rich-country	people	whose	main	interest	is	having	fun	and	using	cartoon-character	profiles	to	satisfy	their	first-world	need
for	self-expression,	and	not	build	schools	and	hospitals	and	solve	other	real	world	problems.

Thus,	we	can	see	the	two	sides	pretty	clearly:	team	"blockchain",	privileged	people	in	wealthy	countries	who	love	to	virtue-signal	about	"moving	beyond	money	and
capitalism"	and	can't	help	being	excited	about	"decentralized	governance	experimentation"	as	a	hobby,	and	team	"Bitcoin",	a	highly	diverse	group	of	both	rich	and
poor	people	in	many	countries	around	the	world	including	the	Global	South,	who	are	actually	using	the	capitalist	tool	of	free	self-sovereign	money	to	provide	real
value	to	human	beings	today.

Focusing	exclusively	on	being	money	makes	for	better	money
A	common	misconception	about	why	Bitcoin	does	not	support	"richly	stateful"	smart	contracts	goes	as	follows.	Bitcoin	really	really	values	being	simple,	and
particularly	having	low	technical	complexity,	to	reduce	the	chance	that	something	will	go	wrong.	As	a	result,	it	doesn't	want	to	add	the	more	complicated	features
and	opcodes	that	are	necessary	to	be	able	to	support	more	complicated	smart	contracts	in	Ethereum.

This	misconception	is,	of	course,	wrong.	In	fact,	there	are	plenty	of	ways	to	add	rich	statefulness	into	Bitcoin;	search	for	the	word	"covenants"	in	Bitcoin	chat
archives	to	see	many	proposals	being	discussed.	And	many	of	these	proposals	are	surprisingly	simple.	The	reason	why	covenants	have	not	been	added	is	not	that
Bitcoin	developers	see	the	value	in	rich	statefulness	but	find	even	a	little	bit	more	protocol	complexity	intolerable.	Rather,	it's	because	Bitcoin	developers	are
worried	about	the	risks	of	the	systemic	complexity	that	rich	statefulness	being	possible	would	introduce	into	the	ecosystem!

A	recent	paper	by	Bitcoin	researchers	describes	some	ways	to	introduce	covenants	to	add	some	degree	of	rich	statefulness	to	Bitcoin.

Ethereum's	battle	with	miner-extractable	value	(MEV)	is	an	excellent	example	of	this	problem	appearing	in	practice.	It's	very	easy	in	Ethereum	to	build
applications	where	the	next	person	to	interact	with	some	contract	gets	a	substantial	reward,	causing	transactors	and	miners	to	fight	over	it,	and	contributing
greatly	to	network	centralization	risk	and	requiring	complicated	workarounds.	In	Bitcoin,	building	such	systemically	risky	applications	is	hard,	in	large	part
because	Bitcoin	lacks	rich	statefulness	and	focuses	on	the	simple	(and	MEV-free)	use	case	of	just	being	money.

Systemic	contagion	can	happen	in	non-technical	ways	too.	Bitcoin	just	being	money	means	that	Bitcoin	requires	relatively	few	developers,	helping	to	reduce	the
risk	that	developers	will	start	demanding	to	print	themselves	free	money	to	build	new	protocol	features.	Bitcoin	just	being	money	reduces	pressure	for	core
developers	to	keep	adding	features	to	"keep	up	with	the	competition"	and	"serve	developers'	needs".

In	so	many	ways,	systemic	effects	are	real,	and	it's	just	not	possible	for	a	currency	to	"enable"	an	ecosystem	of	highly	complex	and	risky	decentralized	applications
without	that	complexity	biting	it	back	somehow.	Bitcoin	makes	the	safe	choice.	If	Ethereum	continues	its	layer-2-centric	approach,	ETH-the-currency	may	gain
some	distance	from	the	application	ecosystem	that	it's	enabling	and	thereby	get	some	protection.	So-called	high-performance	layer-1	platforms,	on	the	other	hand,
stand	no	chance.

In	general,	the	earliest	projects	in	an	industry	are	the	most	"genuine"
Many	industries	and	fields	follow	a	similar	pattern.	First,	some	new	exciting	technology	either	gets	invented,	or	gets	a	big	leap	of	improvement	to	the	point	where
it's	actually	usable	for	something.	At	the	beginning,	the	technology	is	still	clunky,	it	is	too	risky	for	almost	anyone	to	touch	as	an	investment,	and	there	is	no	"social
proof"	that	people	can	use	it	to	become	successful.	As	a	result,	the	first	people	involved	are	going	to	be	the	idealists,	tech	geeks	and	others	who	are	genuinely
excited	about	the	technology	and	its	potential	to	improve	society.

Once	the	technology	proves	itself	enough,	however,	the	normies	come	in	-	an	event	that	in	internet	culture	is	often	called	Eternal	September.	And	these	are	not
just	regular	kindly	normies	who	want	to	feel	part	of	something	exciting,	but	business	normies,	wearing	suits,	who	start	scouring	the	ecosystem	wolf-eyed	for	ways
to	make	money	-	with	armies	of	venture	capitalists	just	as	eager	to	make	their	own	money	supporting	them	from	the	sidelines.	In	the	extreme	cases,	outright
grifters	come	in,	creating	blockchains	with	no	redeeming	social	or	technical	value	which	are	basically	borderline	scams.	But	the	reality	is	that	the	line	from
"altruistic	idealist"	and	"grifter"	is	really	a	spectrum.	And	the	longer	an	ecosystem	keeps	going,	the	harder	it	is	for	any	new	project	on	the	altruistic	side	of	the
spectrum	to	get	going.

One	noisy	proxy	for	the	blockchain	industry's	slow	replacement	of	philosophical	and	idealistic	values	with	short-term	profit-seeking	values	is	the	larger	and	larger
size	of	premines:	the	allocations	that	developers	of	a	cryptocurrency	give	to	themselves.
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Source	for	insider	allocations:	Messari.

Which	blockchain	communities	deeply	value	self-sovereignty,	privacy	and	decentralization,	and	are	making	to	get	big	sacrifices	to	get	it?	And	which	blockchain
communities	are	just	trying	to	pump	up	their	market	caps	and	make	money	for	founders	and	investors?	The	above	chart	should	make	it	pretty	clear.

Intolerance	is	good
The	above	makes	it	clear	why	Bitcoin's	status	as	the	first	cryptocurrency	gives	it	unique	advantages	that	are	extremely	difficult	for	any	cryptocurrency	created
within	the	last	five	years	to	replicate.	But	now	we	get	to	the	biggest	objection	against	Bitcoin	maximalist	culture:	why	is	it	so	toxic?

The	case	for	Bitcoin	toxicity	stems	from	Conquest's	second	law.	In	Robert	Conquest's	original	formulation,	the	law	says	that	"any	organization	not	explicitly	and
constitutionally	right-wing	will	sooner	or	later	become	left-wing".	But	really,	this	is	just	a	special	case	of	a	much	more	general	pattern,	and	one	that	in	the
modern	age	of	relentlessly	homogenizing	and	conformist	social	media	is	more	relevant	than	ever:

If	you	want	to	retain	an	identity	that	is	different	from	the	mainstream,	then	you	need	a	really	strong	culture	that	actively	resists	and	fights
assimilation	into	the	mainstream	every	time	it	tries	to	assert	its	hegemony.

Blockchains	are,	as	I	mentioned	above,	very	fundamentally	and	explicitly	a	counterculture	movement	that	is	trying	to	create	and	preserve	something	different	from
the	mainstream.	At	a	time	when	the	world	is	splitting	up	into	great	power	blocs	that	actively	suppress	social	and	economic	interaction	between	them,	blockchains
are	one	of	the	very	few	things	that	can	remain	global.	At	a	time	when	more	and	more	people	are	reaching	for	censorship	to	defeat	their	short-term	enemies,
blockchains	steadfastly	continue	to	censor	nothing.

The	only	correct	way	to	respond	to	"reasonable	adults"	trying	to	tell	you	that	to	"become	mainstream"	you	have	to	compromise	on	your	"extreme"	values.	Because
once	you	compromise	once,	you	can't	stop.

Blockchain	communities	also	have	to	fight	bad	actors	on	the	inside.	Bad	actors	include:

Scammers,	who	make	and	sell	projects	that	are	ultimately	valueless	(or	worse,	actively	harmful)	but	cling	to	the	"crypto"	and	"decentralization"	brand	(as
well	as	highly	abstract	ideas	of	humanism	and	friendship)	for	legitimacy.
Collaborationists,	who	publicly	and	loudly	virtue-signal	about	working	together	with	governments	and	actively	try	to	convince	governments	to	use	coercive
force	against	their	competitors.
Corporatists,	who	try	to	use	their	resources	to	take	over	the	development	of	blockchains,	and	often	push	for	protocol	changes	that	enable	centralization.

One	could	stand	against	all	of	these	actors	with	a	smiling	face,	politely	telling	the	world	why	they	"disagree	with	their	priorities".	But	this	is	unrealistic:	the	bad
actors	will	try	hard	to	embed	themselves	into	your	community,	and	at	that	point	it	becomes	psychologically	hard	to	criticize	them	with	the	sufficient	level	of	scorn
that	they	truly	require:	the	people	you're	criticizing	are	friends	of	your	friends.	And	so	any	culture	that	values	agreeableness	will	simply	fold	before	the	challenge,
and	let	scammers	roam	freely	through	the	wallets	of	innocent	newbies.

What	kind	of	culture	won't	fold?	A	culture	that	is	willing	and	eager	to	tell	both	scammers	on	the	inside	and	powerful	opponents	on	the	outside	to	go	the	way	of	the
Russian	warship.

Weird	crusades	against	seed	oils	are	good
One	powerful	bonding	tool	to	help	a	community	maintain	internal	cohesion	around	its	distinctive	values,	and	avoid	falling	into	the	morass	that	is	the	mainstream,	is
weird	beliefs	and	crusades	that	are	in	a	similar	spirit,	even	if	not	directly	related,	to	the	core	mission.	Ideally,	these	crusades	should	be	at	least	partially	correct,
poking	at	a	genuine	blind	spot	or	inconsistency	of	mainstream	values.

The	Bitcoin	community	is	good	at	this.	Their	most	recent	crusade	is	a	war	against	seed	oils,	oils	derived	from	vegetable	seeds	high	in	omega-6	fatty	acids	that	are
harmful	to	human	health.
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This	Bitcoiner	crusade	gets	treated	skeptically	when	reviewed	in	the	media,	but	the	media	treats	the	topic	much	more	favorably	when	"respectable"	tech	firms	are
tackling	it.	The	crusade	helps	to	remind	Bitcoiners	that	the	mainstream	media	is	fundamentally	tribal	and	hypocritical,	and	so	the	media's	shrill	attempts	to	slander
cryptocurrency	as	being	primarily	for	money	laundering	and	terrorism	should	be	treated	with	the	same	level	of	scorn.

Be	a	maximalist
Maximalism	is	often	derided	in	the	media	as	both	a	dangerous	toxic	right-wing	cult,	and	as	a	paper	tiger	that	will	disappear	as	soon	as	some	other	cryptocurrency
comes	in	and	takes	over	Bitcoin's	supreme	network	effect.	But	the	reality	is	that	none	of	the	arguments	for	maximalism	that	I	describe	above	depend	at	all
on	network	effects.	Network	effects	really	are	logarithmic,	not	quadratic:	once	a	cryptocurrency	is	"big	enough",	it	has	enough	liquidity	to	function	and	multi-
cryptocurrency	payment	processors	will	easily	add	it	to	their	collection.	But	the	claim	that	Bitcoin	is	an	outdated	pet	rock	and	its	value	derives	entirely	from	a
walking-zombie	network	effect	that	just	needs	a	little	push	to	collapse	is	similarly	completely	wrong.

Crypto-assets	like	Bitcoin	have	real	cultural	and	structural	advantages	that	make	them	powerful	assets	worth	holding	and	using.	Bitcoin	is	an	excellent	example	of
the	category,	though	it's	certainly	not	the	only	one;	other	honorable	cryptocurrencies	do	exist,	and	maximalists	have	been	willing	to	support	and	use	them.
Maximalism	is	not	just	Bitcoin-for-the-sake-of-Bitcoin;	rather,	it's	a	very	genuine	realization	that	most	other	cryptoassets	are	scams,	and	a	culture	of	intolerance	is
unavoidable	and	necessary	to	protect	newbies	and	make	sure	at	least	one	corner	of	that	space	continues	to	be	a	corner	worth	living	in.

It's	better	to	mislead	ten	newbies	into	avoiding	an	investment	that	turns	out	good	than	it	is	to	allow	a	single	newbie	to	get	bankrupted	by	a	grifter.

It's	better	to	make	your	protocol	too	simple	and	fail	to	serve	ten	low-value	short-attention-span	gambling	applications	than	it	is	to	make	it	too
complex	and	fail	to	serve	the	central	sound	money	use	case	that	underpins	everything	else.

And	it's	better	to	offend	millions	by	standing	aggressively	for	what	you	believe	in	than	it	is	to	try	to	keep	everyone	happy	and	end	up	standing	for
nothing.

Be	brave.	Fight	for	your	values.	Be	a	maximalist.
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The	roads	not	taken

The	Ethereum	protocol	development	community	has	made	a	lot	of	decisions	in	the	early	stages	of
Ethereum	that	have	had	a	large	impact	on	the	project's	trajectory.	In	some	cases,	Ethereum
developers	made	conscious	decisions	to	improve	in	some	place	where	we	thought	that	Bitcoin	erred.
In	other	places,	we	were	creating	something	new	entirely,	and	we	simply	had	to	come	up	with
something	to	fill	in	a	blank	-	but	there	were	many	somethings	to	choose	from.	And	in	still	other
places,	we	had	a	tradeoff	between	something	more	complex	and	something	simpler.	Sometimes,	we
chose	the	simpler	thing,	but	sometimes,	we	chose	the	more	complex	thing	too.

This	post	will	look	at	some	of	these	forks-in-the-road	as	I	remember	them.	Many	of	these	features
were	seriously	discussed	within	core	development	circles;	others	were	barely	considered	at	all	but
perhaps	really	should	have	been.	But	even	still,	it's	worth	looking	at	what	a	different	Ethereum	might
have	looked	like,	and	what	we	can	learn	from	this	going	forward.

Should	we	have	gone	with	a	much	simpler	version	of	proof	of
stake?
The	Gasper	proof	of	stake	that	Ethereum	is	very	soon	going	to	merge	to	is	a	complex	system,	but	a
very	powerful	system.	Some	of	its	properties	include:

Very	strong	single-block	confirmations	-	as	soon	as	a	transaction	gets	included	in	a	block,
usually	within	a	few	seconds	that	block	gets	solidified	to	the	point	that	it	cannot	be	reverted
unless	either	a	large	fraction	of	nodes	are	dishonest	or	there	is	extreme	network	latency.
Economic	finality	-	once	a	block	gets	finalized,	it	cannot	be	reverted	without	the	attacker
having	to	lose	millions	of	ETH	to	being	slashed.
Very	predictable	rewards	-	validators	reliably	earn	rewards	every	epoch	(6.4	minutes),
reducing	incentives	to	pool
Support	for	very	high	validator	count	-	unlike	most	other	chains	with	the	above	features,	the
Ethereum	beacon	chain	supports	hundreds	of	thousands	of	validators	(eg.	Tendermint	offers
even	faster	finality	than	Ethereum,	but	it	only	supports	a	few	hundred	validators)

But	making	a	system	that	has	these	properties	is	hard.	It	took	years	of	research,	years	of	failed
experiments,	and	generally	took	a	huge	amount	of	effort.	And	the	final	output	was	pretty	complex.
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If	our	researchers	did	not	have	to	worry	so	much	about	consensus	and	had	more	brain	cycles	to
spare,	then	maybe,	just	maybe,	rollups	could	have	been	invented	in	2016.	This	brings	us	to	a
question:	should	we	really	have	had	such	high	standards	for	our	proof	of	stake,	when	even	a
much	simpler	and	weaker	version	of	proof	of	stake	would	have	been	a	large	improvement
over	the	proof	of	work	status	quo?

Many	have	the	misconception	that	proof	of	stake	is	inherently	complex,	but	in	reality	there	are	plenty
of	proof	of	stake	algorithms	that	are	almost	as	simple	as	Nakamoto	PoW.	NXT	proof	of	stake	existed
since	2013	and	would	have	been	a	natural	candidate;	it	had	issues	but	those	issues	could	easily	have
been	patched,	and	we	could	have	had	a	reasonably	well-working	proof	of	stake	from	2017,	or	even
from	the	beginning.	The	reason	why	Gasper	is	more	complex	than	these	algorithms	is	simply	that	it
tries	to	accomplish	much	more	than	they	do.	But	if	we	had	been	more	modest	at	the	beginning,	we
could	have	focused	on	achieving	a	more	limited	set	of	objectives	first.

Proof	of	stake	from	the	beginning	would	in	my	opinion	have	been	a	mistake;	PoW	was	helpful	in
expanding	the	initial	issuance	distribution	and	making	Ethereum	accessible,	as	well	as	encouraging	a
hobbyist	community.	But	switching	to	a	simpler	proof	of	stake	in	2017,	or	even	2020,	could	have	led
to	much	less	environmental	damage	(and	anti-crypto	mentality	as	a	result	of	environmental	damage)
and	a	lot	more	research	talent	being	free	to	think	about	scaling.	Would	we	have	had	to	spend	a	lot	of
resources	on	making	a	better	proof	of	stake	eventually?	Yes.	But	it's	increasingly	looking	like	we'll
end	up	doing	that	anyway.

The	de-complexification	of	sharding
Ethereum	sharding	has	been	on	a	very	consistent	trajectory	of	becoming	less	and	less	complex	since
the	ideas	started	being	worked	on	in	2014.	First,	we	had	complex	sharding	with	built-in	execution
and	cross-shard	transactions.	Then,	we	simplified	the	protocol	by	moving	more	responsibilities	to	the
user	(eg.	in	a	cross-shard	transaction,	the	user	would	have	to	separately	pay	for	gas	on	both	shards).
Then,	we	switched	to	the	rollup-centric	roadmap	where,	from	the	protocol's	point	of	view,	shards	are
just	blobs	of	data.	Finally,	with	danksharding,	the	shard	fee	markets	are	merged	into	one,	and	the
final	design	just	looks	like	a	non-sharded	chain	but	where	some	data	availability	sampling	magic
happens	behind	the	scenes	to	make	sharded	verification	happen.
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Sharding	in	2015 Sharding	in	2022

But	what	if	we	had	gone	the	opposite	path?	Well,	there	actually	are	Ethereum	researchers	who
heavily	explored	a	much	more	sophisticated	sharding	system:	shards	would	be	chains,	there	would
be	fork	choice	rules	where	child	chains	depend	on	parent	chains,	cross-shard	messages	would	get
routed	by	the	protocol,	validators	would	be	rotated	between	shards,	and	even	applications	would	get
automatically	load-balanced	between	shards!

The	problem	with	that	approach:	those	forms	of	sharding	are	largely	just	ideas	and	mathematical
models,	whereas	Danksharding	is	a	complete	and	almost-ready-for-implementation	spec.	Hence,
given	Ethereum's	circumstances	and	constraints,	the	simplification	and	de-ambitionization	of
sharding	was,	in	my	opinion,	absolutely	the	right	move.	That	said,	the	more	ambitious	research	also
has	a	very	important	role	to	play:	it	identifies	promising	research	directions,	even	the	very	complex
ideas	often	have	"reasonably	simple"	versions	of	those	ideas	that	still	provide	a	lot	of	benefits,	and
there's	a	good	chance	that	it	will	significantly	influence	Ethereum's	protocol	development	(or	even
layer-2	protocols)	over	the	years	to	come.

More	or	less	features	in	the	EVM?
Realistically,	the	specification	of	the	EVM	was	basically,	with	the	exception	of	security	auditing,
viable	for	launch	by	mid-2014.	However,	over	the	next	few	months	we	continued	actively	exploring
new	features	that	we	felt	might	be	really	important	for	a	decentralized	application	blockchain.	Some
did	not	go	in,	others	did.

We	considered	adding	a	POST	opcode,	but	decided	against	it.	The	POST	opcode	would	have
made	an	asynchronous	call,	that	would	get	executed	after	the	rest	of	the	transaction	finishes.
We	considered	adding	an	ALARM	opcode,	but	decided	against	it.	ALARM	would	have
functioned	like	POST,	except	executing	the	asynchronous	call	in	some	future	block,	allowing
contracts	to	schedule	operations.

https://www.youtube.com/watch?v=lC-CNzWllKA
https://github.com/ethereum/consensus-specs#sharding
https://blog.ethereum.org/2014/08/27/state-ethereum-august-edition/
https://github.com/ethereum/go-ethereum/issues/117


We	added	logs,	which	allow	contracts	to	output	records	that	do	not	touch	the	state,	but	could
be	interpreted	by	dapp	interfaces	and	wallets.	Notably,	we	also	considered	making	ETH
transfers	emit	a	log,	but	decided	against	it	-	the	rationale	being	that	"people	will	soon
switch	to	smart	contract	wallets	anyway".
We	considered	expanding	SSTORE	to	support	byte	arrays,	but	decided	against	it,
because	of	concerns	about	complexity	and	safety.
We	added	precompiles,	contracts	which	execute	specialized	cryptographic	operations	with
native	implementations	at	a	much	cheaper	gas	cost	than	can	be	done	in	the	EVM.
In	the	months	right	after	launch,	state	rent	was	considered	again	and	again,	but	was	never
included.	It	was	just	too	complicated.	Today,	there	are	much	better	state	expiry	schemes	being
actively	explored,	though	stateless	verification	and	proposer/builder	separation	mean	that	it	is
now	a	much	lower	priority.

Looking	at	this	today,	most	of	the	decisions	to	not	add	more	features	have	proven	to	be	very	good
decisions.	There	was	no	obvious	reason	to	add	a	POST	opcode.	An	ALARM	opcode	is	actually	very
difficult	to	implement	safely:	what	happens	if	everyone	in	blocks	1...99999	sets	an	ALARM	to	execute	a
lot	of	code	at	block	100000?	Will	that	block	take	hours	to	process?	Will	some	scheduled	operations
get	pushed	back	to	later	blocks?	But	if	that	happens,	then	what	guarantees	is	ALARM	even	preserving?
SSTORE	for	byte	arrays	is	difficult	to	do	safely,	and	would	have	greatly	expanded	worst-case	witness
sizes.

The	state	rent	issue	is	more	challenging:	had	we	actually	implemented	some	kind	of	state	rent	from
day	1,	we	would	not	have	had	a	smart	contract	ecosystem	evolve	around	a	normalized	assumption	of
persistent	state.	Ethereum	would	have	been	harder	to	build	for,	but	it	could	have	been	more	scalable
and	sustainable.	At	the	same	time,	the	state	expiry	schemes	we	had	back	then	really	were	much
worse	than	what	we	have	now.	Sometimes,	good	ideas	just	take	years	to	arrive	at	and	there	is	no
better	way	around	that.

Alternative	paths	for	LOG

LOG	could	have	been	done	differently	in	two	different	ways:

1.	 We	could	have	made	ETH	transfers	auto-issue	a	LOG.	This	would	have	saved	a	lot	of	effort
and	software	bug	issues	for	exchanges	and	many	other	users,	and	would	have	accelerated
everyone	relying	on	logs	that	would	have	ironically	helped	smart	contract	wallet	adoption.

2.	 We	could	have	not	bothered	with	a	LOG	opcode	at	all,	and	instead	made	it	an	ERC:	there
would	be	a	standard	contract	that	has	a	function	submitLog	and	uses	the	technique	from	the
Ethereum	deposit	contract	to	compute	a	Merkle	root	of	all	logs	in	that	block.	Either	EIP-2929	or
block-scoped	storage	(equivalent	to	TSTORE	but	cleared	after	the	block)	would	have	made	this
cheap.

We	strongly	considered	(1),	but	rejected	it.	The	main	reason	was	simplicity:	it's	easier	for	logs	to	just
come	from	the	LOG	opcode.	We	also	(very	wrongly!)	expected	most	users	to	quickly	migrate	to	smart
contract	wallets,	which	could	have	logged	transfers	explicitly	using	the	opcode.

2.	 was	not	considered,	but	in	retrospect	it	was	always	an	option.	The	main	downside	of	(2)	would
have	been	the	lack	of	a	Bloom	filter	mechanism	for	quickly	scanning	for	logs.	But	as	it	turns	out,
the	Bloom	filter	mechanism	is	too	slow	to	be	user-friendly	for	dapps	anyway,	and	so	these	days
more	and	more	people	use	TheGraph	for	querying	anyway.

On	the	whole,	it	seems	very	possible	that	either	one	of	these	approaches	would	have	been	superior	to
the	status	quo.	Keeping	LOG	outside	the	protocol	would	have	kept	things	simpler,	but	if	it	was	inside
the	protocol	auto-logging	all	ETH	transfers	would	have	made	it	more	useful.

Today,	I	would	probably	favor	the	eventual	abolition	of	the	LOG	opcode	from	the	EVM.

What	if	the	EVM	was	something	totally	different?

There	were	two	natural	very	different	paths	that	the	EVM	could	have	taken:

1.	 Make	the	EVM	be	a	higher-level	language,	with	built-in	constructs	for	variables,	if-statements,
loops,	etc.

2.	 Make	the	EVM	be	a	copy	of	some	existing	VM	(LLVM,	WASM,	etc)

The	first	path	was	never	really	considered.	The	attraction	of	this	path	is	that	it	could	have	made
compilers	simpler,	and	allowed	more	developers	to	code	in	EVM	directly.	It	could	have	also	made	ZK-
EVM	constructions	simpler.	The	weakness	of	the	path	is	that	it	would	have	made	EVM	code
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structurally	more	complicated:	instead	of	being	a	simple	list	of	opcodes	in	a	row,	it	would	have	been
a	more	complicated	data	structure	that	would	have	had	to	be	stored	somehow.	That	said,	there	was	a
missed	opportunity	for	a	best-of-both-worlds:	some	EVM	changes	could	have	given	us	a	lot	of	those
benefits	while	keeping	the	basic	EVM	structure	roughly	as	is:	ban	dynamic	jumps	and	add	some
opcodes	designed	to	support	subroutines	(see	also:	EIP-2315),	allow	memory	access	only	on	32-byte
word	boundaries,	etc.

The	second	path	was	suggested	many	times,	and	rejected	many	times.	The	usual	argument	for	it	is
that	it	would	allow	programs	to	compile	from	existing	languages	(C,	Rust,	etc)	into	the	EVM.	The
argument	against	has	always	been	that	given	Ethereum's	unique	constraints	it	would	not	actually
provide	any	benefits:

Existing	compilers	from	high-level	languages	tend	to	not	care	about	total	code	size,	whereas
blockchain	code	must	optimize	heavily	to	cut	down	every	byte	of	code	size
We	need	multiple	implementations	of	the	VM	with	a	hard	requirement	that	two	implementations
never	process	the	same	code	differently.	Security-auditing	and	verifying	this	on	code	that	we	did
not	write	would	be	much	harder.
If	the	VM	specification	changes,	Ethereum	would	have	to	either	always	update	along	with	it	or
fall	more	and	more	out-of-sync.

Hence,	there	probably	was	never	a	viable	path	for	the	EVM	that's	radically	different	from	what	we
have	today,	though	there	are	lots	of	smaller	details	(jumps,	64	vs	256	bit,	etc)	that	could	have	led	to
much	better	outcomes	if	they	were	done	differently.

Should	the	ETH	supply	have	been	distributed	differently?
The	current	ETH	supply	is	approximately	represented	by	this	chart	from	Etherscan:

About	half	of	the	ETH	that	exists	today	was	sold	in	an	open	public	ether	sale,	where	anyone	could
send	BTC	to	a	standardized	bitcoin	address,	and	the	initial	ETH	supply	distribution	was	computed	by
an	open-source	script	that	scans	the	Bitcoin	blockchain	for	transactions	going	to	that	address.	Most
of	the	remainder	was	mined.	The	slice	at	the	bottom,	the	12M	ETH	marked	"other",	was	the
"premine"	-	a	piece	distributed	between	the	Ethereum	Foundation	and	~100	early	contributors	to	the
Ethereum	protocol.

There	are	two	main	criticisms	of	this	process:

The	premine,	as	well	as	the	fact	that	the	Ethereum	Foundation	received	the	sale	funds,
is	not	credibly	neutral.	A	few	recipient	addresses	were	hand-picked	through	a	closed	process,
and	the	Ethereum	Foundation	had	to	be	trusted	to	not	take	out	loans	to	recycle	funds	received
furing	the	sale	back	into	the	sale	to	give	itself	more	ETH	(we	did	not,	and	no	one	seriously
claims	that	we	have,	but	even	the	requirement	to	be	trusted	at	all	offends	some).
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The	premine	over-rewarded	very	early	contributors,	and	left	too	little	for	later
contributors.	75%	of	the	premine	went	to	rewarding	contributors	for	their	work	before	launch,
and	post-launch	the	Ethereum	Foundation	only	had	3	million	ETH	left.	Within	6	months,	the
need	to	sell	to	financially	survive	decreased	that	to	around	1	million	ETH.

In	a	way,	the	problems	were	related:	the	desire	to	minimize	perceptions	of	centralization	contributed
to	a	smaller	premine,	and	a	smaller	premine	was	exhausted	more	quickly.

This	is	not	the	only	way	that	things	could	have	been	done.	Zcash	has	a	different	approach:	a	constant
20%	of	the	block	reward	goes	to	a	set	of	recipients	hard-coded	in	the	protocol,	and	the	set	of
recipients	gets	re-negotiated	every	4	years	(so	far	this	has	happened	once).	This	would	have	been
much	more	sustainable,	but	it	would	have	been	much	more	heavily	criticized	as	centralized	(the
Zcash	community	seems	to	be	more	openly	okay	with	more	technocratic	leadership	than	the
Ethereum	community).

One	possible	alternative	path	would	be	something	similar	to	the	"DAO	from	day	1"	route	popular
among	some	defi	projects	today.	Here	is	a	possible	strawman	proposal:

We	agree	that	for	2	years,	a	block	reward	of	2	ETH	per	block	goes	into	a	dev	fund.
Anyone	who	purchases	ETH	in	the	ether	sale	could	specify	a	vote	for	their	preferred
distribution	of	the	dev	fund	(eg.	"1	ETH	per	block	to	the	Ethereum	Foundation,	0.4	ETH	to	the
Consensys	research	team,	0.2	ETH	to	Vlad	Zamfir...")
Recipients	that	got	voted	for	get	a	share	from	the	dev	fund	equal	to	the	median	of
everyone's	votes,	scaled	so	that	the	total	equals	2	ETH	per	block	(median	is	to	prevent	self-
dealing:	if	you	vote	for	yourself	you	get	nothing	unless	you	get	at	least	half	of	other	purchasers
to	mention	you)

The	sale	could	be	run	by	a	legal	entity	that	promises	to	distribute	the	bitcoin	received	during	the	sale
along	the	same	ratios	as	the	ETH	dev	fund	(or	burned,	if	we	really	wanted	to	make	bitcoiners	happy).
This	probably	would	have	led	to	the	Ethereum	Foundation	getting	a	lot	of	funding,	non-EF	groups
also	getting	a	lot	of	funding	(leading	to	more	ecosystem	decentralization),	all	without	breaking
credible	neutrality	one	single	bit.	The	main	downside	is	of	course	that	coin	voting	really	sucks,	but
pragmatically	we	could	have	realized	that	2014	was	still	an	early	and	idealistic	time	and	the	most
serious	downsides	of	coin	voting	would	only	start	coming	into	play	long	after	the	sale	ends.

Would	this	have	been	a	better	idea	and	set	a	better	precedent?	Maybe!	Though	realistically	even	if
the	dev	fund	had	been	fully	credibly	neutral,	the	people	who	yell	about	Ethereum's	premine	today
may	well	have	just	started	yelling	twice	as	hard	about	the	DAO	fork	instead.

What	can	we	learn	from	all	this?
In	general,	it	sometimes	feels	to	me	like	Ethereum's	biggest	challenges	come	from	balancing
between	two	visions	-	a	pure	and	simple	blockchain	that	values	safety	and	simplicity,	and	a
highly	performant	and	functional	platform	for	building	advanced	applications.	Many	of	the
examples	above	are	just	aspects	of	this:	do	we	have	fewer	features	and	be	more	Bitcoin-like,	or	more
features	and	be	more	developer-friendly?	Do	we	worry	a	lot	about	making	development	funding
credibly	neutral	and	be	more	Bitcoin-like,	or	do	we	just	worry	first	and	foremost	about	making	sure
devs	are	rewarded	enough	to	make	Ethereum	great?

My	personal	dream	is	to	try	to	achieve	both	visions	at	the	same	time	-	a	base	layer	where	the
specification	becomes	smaller	each	year	than	the	year	before	it,	and	a	powerful	developer-friendly
advanced	application	ecosystem	centered	around	layer-2	protocols.	That	said,	getting	to	such	an
ideal	world	takes	a	long	time,	and	a	more	explicit	realization	that	it	would	take	time	and	we
need	to	think	about	the	roadmap	step-by-step	would	have	probably	helped	us	a	lot.

Today,	there	are	a	lot	of	things	we	cannot	change,	but	there	are	many	things	that	we	still	can,	and
there	is	still	a	path	solidly	open	to	improving	both	functionality	and	simplicity.	Sometimes	the	path	is
a	winding	one:	we	need	to	add	some	more	complexity	first	to	enable	sharding,	which	in	turn	enables
lots	of	layer-2	scalability	on	top.	That	said,	reducing	complexity	is	possible,	and	Ethereum's	history
has	already	demonstrated	this:

EIP-150	made	the	call	stack	depth	limit	no	longer	relevant,	reducing	security	worries	for
contract	developers.
EIP-161	made	the	concept	of	an	"empty	account"	as	something	separate	from	an	account	whose
fields	are	zero	no	longer	exist.
EIP-3529	removed	part	of	the	refund	mechanism	and	made	gas	tokens	no	longer	viable.

https://z.cash/
https://electriccoin.co/blog/dev-fund-poll-shows-consensus/
https://vitalik.ca/general/2021/08/16/voting3.html
https://eips.ethereum.org/EIPS/eip-150
https://eips.ethereum.org/EIPS/eip-161
https://eips.ethereum.org/EIPS/eip-3529


Ideas	in	the	pipeline,	like	Verkle	trees,	reduce	complexity	even	further.	But	the	question	of	how	to
balance	the	two	visions	better	in	the	future	is	one	that	we	should	start	more	actively	thinking	about.

https://notes.ethereum.org/@vbuterin/verkle_tree_eip
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How	do	trusted	setups	work?

Necessary	background:	elliptic	curves	and	elliptic	curve	pairings.	See	also:	Dankrad	Feist's	article	on
KZG	polynomial	commitments.

Special	thanks	to	Justin	Drake,	Dankrad	Feist	and	Chih-Cheng	Liang	for	feedback	and	review.

Many	cryptographic	protocols,	especially	in	the	areas	of	data	availability	sampling	and	ZK-SNARKs
depend	on	trusted	setups.	A	trusted	setup	ceremony	is	a	procedure	that	is	done	once	to
generate	a	piece	of	data	that	must	then	be	used	every	time	some	cryptographic	protocol	is
run.	Generating	this	data	requires	some	secret	information;	the	"trust"	comes	from	the	fact	that
some	person	or	some	group	of	people	has	to	generate	these	secrets,	use	them	to	generate	the	data,
and	then	publish	the	data	and	forget	the	secrets.	But	once	the	data	is	generated,	and	the	secrets	are
forgotten,	no	further	participation	from	the	creators	of	the	ceremony	is	required.

There	are	many	types	of	trusted	setups.	The	earliest	instance	of	a	trusted	setup	being	used	in	a	major
protocol	is	the	original	Zcash	ceremony	in	2016.	This	ceremony	was	very	complex,	and	required
many	rounds	of	communication,	so	it	could	only	have	six	participants.	Everyone	using	Zcash	at	that
point	was	effectively	trusting	that	at	least	one	of	the	six	participants	was	honest.	More	modern
protocols	usually	use	the	powers-of-tau	setup,	which	has	a	1-of-N	trust	model	with	\(N\)	typically	in
the	hundreds.	That	is	to	say,	hundreds	of	people	participate	in	generating	the	data	together,
and	only	one	of	them	needs	to	be	honest	and	not	publish	their	secret	for	the	final	output	to
be	secure.	Well-executed	setups	like	this	are	often	considered	"close	enough	to	trustless"	in
practice.

This	article	will	explain	how	the	KZG	setup	works,	why	it	works,	and	the	future	of	trusted	setup
protocols.	Anyone	proficient	in	code	should	also	feel	free	to	follow	along	this	code	implementation:
https://github.com/ethereum/research/blob/master/trusted_setup/trusted_setup.py.

What	does	a	powers-of-tau	setup	look	like?
A	powers-of-tau	setup	is	made	up	of	two	series	of	elliptic	curve	points	that	look	as	follows:

\([G_1,	G_1	*	s,	G_1	*	s^2	...	G_1	*	s^{n_1-1}]\)		

\([G_2,	G_2	*	s,	G_2	*	s^2	...	G_2	*	s^{n_2-1}]\)

file:///home/runner/index.html
https://vitalik.ca/general/2017/01/14/exploring_ecp.html
https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html
https://hackmd.io/@vbuterin/sharding_proposal
https://vitalik.ca/general/2021/01/26/snarks.html
https://spectrum.ieee.org/the-crazy-security-behind-the-birth-of-zcash
https://vitalik.ca/general/2020/08/20/trust.html
https://github.com/ethereum/research/blob/master/trusted_setup/trusted_setup.py


\(G_1\)	and	\(G_2\)	are	the	standardized	generator	points	of	the	two	elliptic	curve	groups;	in	BLS12-
381,	\(G_1\)	points	are	(in	compressed	form)	48	bytes	long	and	\(G_2\)	points	are	96	bytes	long.	\
(n_1\)	and	\(n_2\)	are	the	lengths	of	the	\(G_1\)	and	\(G_2\)	sides	of	the	setup.	Some	protocols	require
\(n_2	=	2\),	others	require	\(n_1\)	and	\(n_2\)	to	both	be	large,	and	some	are	in	the	middle	(eg.
Ethereum's	data	availability	sampling	in	its	current	form	requires	\(n_1	=	4096\)	and	\(n_2	=	16\)).	\
(s\)	is	the	secret	that	is	used	to	generate	the	points,	and	needs	to	be	forgotten.

To	make	a	KZG	commitment	to	a	polynomial	\(P(x)	=	\sum_i	c_i	x^i\),	we	simply	take	a	linear
combination	\(\sum_i	c_i	S_i\),	where	\(S_i	=	G_1	*	s^i\)	(the	elliptic	curve	points	in	the	trusted
setup).	The	\(G_2\)	points	in	the	setup	are	used	to	verify	evaluations	of	polynomials	that	we	make
commitments	to;	I	won't	go	into	verification	here	in	more	detail,	though	Dankrad	does	in	his	post.

Intuitively,	what	value	is	the	trusted	setup	providing?
It's	worth	understanding	what	is	philosophically	going	on	here,	and	why	the	trusted	setup	is
providing	value.	A	polynomial	commitment	is	committing	to	a	piece	of	size-\(N\)	data	with	a	size	\
(O(1)\)	object	(a	single	elliptic	curve	point).	We	could	do	this	with	a	plain	Pedersen	commitment:	just
set	the	\(S_i\)	values	to	be	\(N\)	random	elliptic	curve	points	that	have	no	known	relationship	with
each	other,	and	commit	to	polynomials	with	\(\sum_i	c_i	S_i\)	as	before.	And	in	fact,	this	is	exactly
what	IPA	evaluation	proofs	do.

However,	any	IPA-based	proofs	take	\(O(N)\)	time	to	verify,	and	there's	an	unavoidable	reason	why:	a
commitment	to	a	polynomial	\(P(x)\)	using	the	base	points	\([S_0,	S_1	...	S_i	...	S_{n-1}]\)	would
commit	to	a	different	polynomial	if	we	use	the	base	points	\([S_0,	S_1	...	(S_i	*	2)	...	S_{n-1}]\).

A	valid	commitment	to	the	polynomial	\(3x^3	+	8x^2	+	2x	+	6\)	under	one	set	of	base	points	is	a
valid	commitment	to	\(3x^3	+	4x^2	+	2x	+	6\)	under	a	different	set	of	base	points.

If	we	want	to	make	an	IPA-based	proof	for	some	statement	(say,	that	this	polynomial	evaluated	at	\(x
=	10\)	equals	\(3826\)),	the	proof	should	pass	with	the	first	set	of	base	points	and	fail	with	the
second.	Hence,	whatever	the	proof	verification	procedure	is	cannot	avoid	somehow	taking	into
account	each	and	every	one	of	the	\(S_i\)	values,	and	so	it	unavoidably	takes	\(O(N)\)	time.

But	with	a	trusted	setup,	there	is	a	hidden	mathematical	relationship	between	the	points.
It's	guaranteed	that	\(S_{i+1}	=	s	*	S_i\)	with	the	same	factor	\(s\)	between	any	two	adjacent	points.
If	\([S_0,	S_1	...	S_i	...	S_{n-1}]\)	is	a	valid	setup,	the	"edited	setup"	\([S_0,	S_1	...	(S_i	*	2)	...	S_{n-
1}]\)	cannot	also	be	a	valid	setup.	Hence,	we	don't	need	\(O(n)\)	computation;	instead,	we	take
advantage	of	this	mathematical	relationship	to	verify	anything	we	need	to	verify	in	constant
time.

However,	the	mathematical	relationship	has	to	remain	secret:	if	\(s\)	is	known,	then	anyone	could
come	up	with	a	commitment	that	stands	for	many	different	polynomials:	if	\(C\)	commits	to	\(P(x)\),	it
also	commits	to	\(\frac{P(x)	*	x}{s}\),	or	\(P(x)	-	x	+	s\),	or	many	other	things.	This	would	completely
break	all	applications	of	polynomial	commitments.	Hence,	while	some	secret	\(s\)	must	have
existed	at	one	point	to	make	possible	the	mathematical	link	between	the	\(S_i\)	values	that
enables	efficient	verification,	the	\(s\)	must	also	have	been	forgotten.

How	do	multi-participant	setups	work?
It's	easy	to	see	how	one	participant	can	generate	a	setup:	just	pick	a	random	\(s\),	and	generate	the
elliptic	curve	points	using	that	\(s\).	But	a	single-participant	trusted	setup	is	insecure:	you	have	to
trust	one	specific	person!

https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html
https://vitalik.ca/general/2021/11/05/halo.html


The	solution	to	this	is	multi-participant	trusted	setups,	where	by	"multi"	we	mean	a	lot	of
participants:	over	100	is	normal,	and	for	smaller	setups	it's	possible	to	get	over	1000.	Here	is	how	a
multi-participant	powers-of-tau	setup	works.

Take	an	existing	setup	(note	that	you	don't	know	\(s\),	you	just	know	the	points):

\([G_1,	G_1	*	s,	G_1	*	s^2	...	G_1	*	s^{n_1-1}]\)		

\([G_2,	G_2	*	s,	G_2	*	s^2	...	G_2	*	s^{n_2-1}]\)

Now,	choose	your	own	random	secret	\(t\).	Compute:

\([G_1,	(G_1	*	s)	*	t,	(G_1	*	s^2)	*	t^2	...	(G_1	*	s^{n_1-1})	*	t^{n_2-1}]\)		

\([G_2,	(G_2	*	s)	*	t,	(G_2	*	s^2)	*	t^2	...	(G_2	*	s^{n_2-1})	*	t^{n_2-1}]\)

Notice	that	this	is	equivalent	to:

\([G_1,	G_1	*	(st),	G_1	*	(st)^2	...	G_1	*	(st)^{n_1-1}]\)		

\([G_2,	G_2	*	(st),	G_2	*	(st)^2	...	G_2	*	(st)^{n_2-1}]\)

That	is	to	say,	you've	created	a	valid	setup	with	the	secret	\(s	*	t\)!	You	never	give	your	\(t\)	to	the
previous	participants,	and	the	previous	participants	never	give	you	their	secrets	that	went	into	\(s\).
And	as	long	as	any	one	of	the	participants	is	honest	and	does	not	reveal	their	part	of	the	secret,	the
combined	secret	does	not	get	revealed.	In	particular,	finite	fields	have	the	property	that	if	you	know
know	\(s\)	but	not	\(t\),	and	\(t\)	is	securely	randomly	generated,	then	you	know	nothing	about	\(s*t\)!

Verifying	the	setup
To	verify	that	each	participant	actually	participated,	each	participant	can	provide	a	proof	that
consists	of	(i)	the	\(G_1	*	s\)	point	that	they	received	and	(ii)	\(G_2	*	t\),	where	\(t\)	is	the	secret	that
they	introduce.	The	list	of	these	proofs	can	be	used	to	verify	that	the	final	setup	combines	together
all	the	secrets	(as	opposed	to,	say,	the	last	participant	just	forgetting	the	previous	values	and
outputting	a	setup	with	just	their	own	secret,	which	they	keep	so	they	can	cheat	in	any	protocols	that
use	the	setup).

\(s_1\)	is	the	first	participant's	secret,	\(s_2\)	is	the	second	participant's	secret,	etc.	The	pairing	check
at	each	step	proves	that	the	setup	at	each	step	actually	came	from	a	combination	of	the	setup	at	the

previous	step	and	a	new	secret	known	by	the	participant	at	that	step.



Each	participant	should	reveal	their	proof	on	some	publicly	verifiable	medium	(eg.	personal	website,
transaction	from	their	.eth	address,	Twitter).	Note	that	this	mechanism	does	not	prevent	someone
from	claiming	to	have	participated	at	some	index	where	someone	else	has	(assuming	that	other
person	has	revealed	their	proof),	but	it's	generally	considered	that	this	does	not	matter:	if	someone	is
willing	to	lie	about	having	participated,	they	would	also	be	willing	to	lie	about	having	deleted	their
secret.	As	long	as	at	least	one	of	the	people	who	publicly	claim	to	have	participated	is	honest,	the
setup	is	secure.

In	addition	to	the	above	check,	we	also	want	to	verify	that	all	the	powers	in	the	setup	are	correctly
constructed	(ie.	they're	powers	of	the	same	secret).	To	do	this,	we	could	do	a	series	of	pairing
checks,	verifying	that	\(e(S_{i+1},	G_2)	=	e(S_i,	T_1)\)	(where	\(T_1\)	is	the	\(G_2	*	s\)	value	in	the
setup)	for	every	\(i\).	This	verifies	that	the	factor	between	each	\(S_i\)	and	\(S_{i+1}\)	is	the	same	as
the	factor	between	\(T_1\)	and	\(G_2\).	We	can	then	do	the	same	on	the	\(G_2\)	side.

But	that's	a	lot	of	pairings	and	is	expensive.	Instead,	we	take	a	random	linear	combination	\(L_1	=
\sum_{i=0}^{n_1-2}	r_iS_i\),	and	the	same	linear	combination	shifted	by	one:	\(L_2	=
\sum_{i=0}^{n_1-2}	r_iS_{i+1}\).	We	use	a	single	pairing	check	to	verify	that	they	match	up:	\
(e(L_2,	G_2)	=	e(L_1,	T_1)\).

We	can	even	combine	the	process	for	the	\(G_1\)	side	and	the	\(G_2\)	side	together:	in	addition	to
computing	\(L_1\)	and	\(L_2\)	as	above,	we	also	compute	\(L_3	=	\sum_{i=0}^{n_2-2}	q_iT_i\)	(\(q_i\)
is	another	set	of	random	coefficients)	and	\(L_4	=	\sum_{i=0}^{n_2-2}	q_iT_{i+1}\),	and	check	\
(e(L_2,	L_3)	=	e(L_1,	L_4)\).

Setups	in	Lagrange	form
In	many	use	cases,	you	don't	want	to	work	with	polynomials	in	coefficient	form	(eg.	\(P(x)	=	3x^3	+
8x^2	+	2x	+	6\)),	you	want	to	work	with	polynomials	in	evaluation	form	(eg.	\(P(x)\)	is	the	polynomial
that	evaluates	to	\([19,	146,	9,	187]\)	on	the	domain	\([1,	189,	336,	148]\)	modulo	337).	Evaluation
form	has	many	advantages	(eg.	you	can	multiply	and	sometimes	divide	polynomials	in	\(O(N)\)	time)
and	you	can	even	use	it	to	evaluate	in	\(O(N)\)	time.	In	particular,	data	availability	sampling	expects
the	blobs	to	be	in	evaluation	form.

To	work	with	these	cases,	it's	often	convenient	to	convert	the	trusted	setup	to	evaluation	form.	This
would	allow	you	to	take	the	evaluations	(\([19,	146,	9,	187]\)	in	the	above	example)	and	use	them	to
compute	the	commitment	directly.

This	is	done	most	easily	with	a	Fast	Fourier	transform	(FFT),	but	passing	the	curve	points	as	input
instead	of	numbers.	I'll	avoid	repeating	a	full	detailed	explanation	of	FFTs	here,	but	here	is	an
implementation;	it	is	actually	not	that	difficult.

The	future	of	trusted	setups
Powers-of-tau	is	not	the	only	kind	of	trusted	setup	out	there.	Some	other	notable	(actual	or	potential)
trusted	setups	include:

The	more	complicated	setups	in	older	ZK-SNARK	protocols	(eg.	see	here),	which	are	sometimes
still	used	(particularly	Groth16)	because	verification	is	cheaper	than	PLONK.
Some	cryptographic	protocols	(eg.	DARK)	depend	on	hidden-order	groups,	groups	where	it	is
not	known	what	number	an	element	can	be	multiplied	by	to	get	the	zero	element.	Fully	trustless
versions	of	this	exist	(see:	class	groups),	but	by	far	the	most	efficient	version	uses	RSA	groups
(powers	of	\(x\)	mod	\(n	=	pq\)	where	\(p\)	and	\(q\)	are	not	known).	Trusted	setup	ceremonies
for	this	with	1-of-n	trust	assumptions	are	possible,	but	are	very	complicated	to	implement.
If/when	indistinguishability	obfuscation	becomes	viable,	many	protocols	that	depend	on	it
will	involve	someone	creating	and	publishing	an	obfuscated	program	that	does	something	with	a
hidden	internal	secret.	This	is	a	trusted	setup:	the	creator(s)	would	need	to	possess	the	secret	to
create	the	program,	and	would	need	to	delete	it	afterwards.

Cryptography	continues	to	be	a	rapidly	evolving	field,	and	how	important	trusted	setups	are	could
easily	change.	It's	possible	that	techniques	for	working	with	IPAs	and	Halo-style	ideas	will	improve	to
the	point	where	KZG	becomes	outdated	and	unnecessary,	or	that	quantum	computers	will	make
anything	based	on	elliptic	curves	non-viable	ten	years	from	now	and	we'll	be	stuck	working	with
trusted-setup-free	hash-based	protocols.	It's	also	possible	that	what	we	can	do	with	KZG	will	improve
even	faster,	or	that	a	new	area	of	cryptography	will	emerge	that	depends	on	a	different	kind	of
trusted	setup.
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To	the	extent	that	trusted	setup	ceremonies	are	necessary,	it	is	important	to	remember	that	not	all
trusted	setups	are	created	equal.	176	participants	is	better	than	6,	and	2000	would	be	even
better.	A	ceremony	small	enough	that	it	can	be	run	inside	a	browser	or	phone	application	(eg.	the
ZKopru	setup	is	web-based)	could	attract	far	more	participants	than	one	that	requires	running	a
complicated	software	package.	Every	ceremony	should	ideally	have	participants	running	multiple
independently	built	software	implementations	and	running	different	operating	systems	and
environments,	to	reduce	common	mode	failure	risks.	Ceremonies	that	require	only	one	round	of
interaction	per	participant	(like	powers-of-tau)	are	far	better	than	multi-round	ceremonies,	both	due
to	the	ability	to	support	far	more	participants	and	due	to	the	greater	ease	of	writing	multiple
implementations.	Ceremonies	should	ideally	be	universal	(the	output	of	one	ceremony	being	able	to
support	a	wide	range	of	protocols).	These	are	all	things	that	we	can	and	should	keep	working	on,	to
ensure	that	trusted	setups	can	be	as	secure	and	as	trusted	as	possible.

https://medium.com/aztec-protocol/aztec-crs-the-biggest-mpc-setup-in-history-has-successfully-finished-74c6909cd0c4
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Encapsulated	vs	systemic	complexity	in	protocol
design

One	of	the	main	goals	of	Ethereum	protocol	design	is	to	minimize	complexity:	make	the	protocol	as	simple	as
possible,	while	still	making	a	blockchain	that	can	do	what	an	effective	blockchain	needs	to	do.	The	Ethereum
protocol	is	far	from	perfect	at	this,	especially	since	much	of	it	was	designed	in	2014-16	when	we	understood
much	less,	but	we	nevertheless	make	an	active	effort	to	reduce	complexity	whenever	possible.

One	of	the	challenges	of	this	goal,	however,	is	that	complexity	is	difficult	to	define,	and	sometimes,	you	have
to	trade	off	between	two	choices	that	introduce	different	kinds	of	complexity	and	have	different	costs.	How
do	we	compare?

One	powerful	intellectual	tool	that	allows	for	more	nuanced	thinking	about	complexity	is	to	draw	a
distinction	between	what	we	will	call	encapsulated	complexity	and	systemic	complexity.

Encapsulated	complexity	occurs	when	there	is	a	system	with	sub-systems	that	are	internally	complex,	but
that	present	a	simple	"interface"	to	the	outside.	Systemic	complexity	occurs	when	the	different	parts	of	a
system	can't	even	be	cleanly	separated,	and	have	complex	interactions	with	each	other.

Here	are	a	few	examples.

BLS	signatures	vs	Schnorr	signatures

BLS	signatures	and	Schnorr	signatures	are	two	popular	types	of	cryptographic	signature	schemes	that	can
be	made	with	elliptic	curves.

BLS	signatures	appear	mathematically	very	simple:

Signing:	\(\sigma	=	H(m)	*	k\)

Verifying:	\(e([1],	\sigma)	\stackrel{?}{=}	e(H(m),	K)\)

\(H\)	is	a	hash	function,	\(m\)	is	the	message,	and	\(k\)	and	\(K\)	are	the	private	and	public	keys.	So	far,	so
simple.	However,	the	true	complexity	is	hidden	inside	the	definition	of	the	\(e\)	function:	elliptic	curve
pairings,	one	of	the	most	devilishly	hard-to-understand	pieces	of	math	in	all	of	cryptography.
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Now,	consider	Schnorr	signatures.	Schnorr	signatures	rely	only	on	basic	elliptic	curves.	But	the	signing	and
verification	logic	is	somewhat	more	complex:

So...	which	type	of	signature	is	"simpler"?	It	depends	what	you	care	about!	BLS	signatures	have	a	huge
amount	of	technical	complexity,	but	the	complexity	is	all	buried	within	the	definition	of	the	\(e\)	function.	If
you	treat	the	\(e\)	function	as	a	black	box,	BLS	signatures	are	actually	really	easy.	Schnorr	signatures,	on	the
other	hand,	have	less	total	complexity,	but	they	have	more	pieces	that	could	interact	with	the	outside	world
in	tricky	ways.

For	example:

Doing	a	BLS	multi-signature	(a	combined	signature	from	two	keys	\(k_1\)	and	\(k_2\))	is	easy:	just	take	\
(\sigma_1	+	\sigma_2\).	But	a	Schnorr	multi-signature	requires	two	rounds	of	interaction,	and	there	are
tricky	key	cancellation	attacks	that	need	to	be	dealt	with.
Schnorr	signatures	require	random	number	generation,	BLS	signatures	do	not.

Elliptic	curve	pairings	in	general	are	a	powerful	"complexity	sponge"	in	that	they	contain	large	amounts	of
encapsulated	complexity,	but	enable	solutions	with	much	less	systemic	complexity.	This	is	also	true	in	the
area	of	polynomial	commitments:	compare	the	simplicity	of	KZG	commitments	(which	require	pairings)	to	the
much	more	complicated	internal	logic	of	inner	product	arguments	(which	do	not).

Cryptography	vs	cryptoeconomics

One	important	design	choice	that	appears	in	many	blockchain	designs	is	that	of	cryptography	versus
cryptoeconomics.	Often	(eg.	in	rollups)	this	comes	in	the	form	of	a	choice	between	validity	proofs	(aka.	ZK-
SNARKs)	and	fraud	proofs.

ZK-SNARKs	are	complex	technology.	While	the	basic	ideas	behind	how	they	work	can	be	explained	in	a
single	post,	actually	implementing	a	ZK-SNARK	to	verify	some	computation	involves	many	times	more
complexity	than	the	computation	itself	(hence	why	ZK-SNARKs	for	the	EVM	are	still	under	development
while	fraud	proofs	for	the	EVM	are	already	in	the	testing	stage).	Implementing	a	ZK-SNARK	effectively
involves	circuit	design	with	special-purpose	optimization,	working	with	unfamiliar	programming	languages,
and	many	other	challenges.	Fraud	proofs,	on	the	other	hand,	are	inherently	simple:	if	someone	makes	a
challenge,	you	just	directly	run	the	computation	on-chain.	For	efficiency,	a	binary-search	scheme	is
sometimes	added,	but	even	that	doesn't	add	too	much	complexity.

But	while	ZK-SNARKs	are	complex,	their	complexity	is	encapsulated	complexity.	The	relatively	light
complexity	of	fraud	proofs,	on	the	other	hand,	is	systemic.	Here	are	some	examples	of	systemic	complexity
that	fraud	proofs	introduce:

They	require	careful	incentive	engineering	to	avoid	the	verifier's	dilemma.
If	done	in-consensus,	they	require	extra	transaction	types	for	the	fraud	proofs,	along	with	reasoning
about	what	happens	if	many	actors	compete	to	submit	a	fraud	proof	at	the	same	time.
They	depend	on	a	synchronous	network.
They	allow	censorship	attacks	to	be	also	used	to	commit	theft.
Rollups	based	on	fraud	proofs	require	liquidity	providers	to	support	instant	withdrawals.

For	these	reasons,	even	from	a	complexity	perspective	purely	cryptographic	solutions	based	on	ZK-SNARKs
are	likely	to	be	long-run	safer:	ZK-SNARKs	have	are	more	complicated	parts	that	some	people	have	to	think
about,	but	they	have	fewer	dangling	caveats	that	everyone	has	to	think	about.
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Miscellaneous	examples

Proof	of	work	(Nakamoto	consensus)	-	low	encapsulated	complexity,	as	the	mechanism	is	extremely
simple	and	easy	to	understand,	but	higher	systemic	complexity	(eg.	selfish	mining	attacks).
Hash	functions	-	high	encapsulated	complexity,	but	very	easy-to-understand	properties	so	low
systemic	complexity.
Random	shuffling	algorithms	-	shuffling	algorithms	can	either	be	internally	complicated	(as	in	Whisk)
but	lead	to	easy-to-understand	guarantees	of	strong	randomness,	or	internally	simpler	but	lead	to
randomness	properties	that	are	weaker	and	more	difficult	to	analyze	(systemic	complexity).
Miner	extractable	value	(MEV)	-	a	protocol	that	is	powerful	enough	to	support	complex	transactions
can	be	fairly	simple	internally,	but	those	complex	transactions	can	have	complex	systemic	effects	on	the
protocol's	incentives	by	contributing	to	the	incentive	to	propose	blocks	in	very	irregular	ways.
Verkle	trees	-	Verkle	trees	do	have	some	encapsulated	complexity,	in	fact	quite	a	bit	more	than	plain
Merkle	hash	trees.	Systemically,	however,	Verkle	trees	present	the	exact	same	relatively	clean-and-
simple	interface	of	a	key-value	map.	The	main	systemic	complexity	"leak"	is	the	possibility	of	an	attacker
manipulating	the	tree	to	make	a	particular	value	have	a	very	long	branch;	but	this	risk	is	the	same	for
both	Verkle	trees	and	Merkle	trees.

How	do	we	make	the	tradeoff?

Often,	the	choice	with	less	encapsulated	complexity	is	also	the	choice	with	less	systemic	complexity,	and	so
there	is	one	choice	that	is	obviously	simpler.	But	at	other	times,	you	have	to	make	a	hard	choice	between	one
type	of	complexity	and	the	other.	What	should	be	clear	at	this	point	is	that	complexity	is	less	dangerous	if
it	is	encapsulated.	The	risks	from	complexity	of	a	system	are	not	a	simple	function	of	how	long	the
specification	is;	a	small	10-line	piece	of	the	specification	that	interacts	with	every	other	piece	adds	more
complexity	than	a	100-line	function	that	is	otherwise	treated	as	a	black	box.

However,	there	are	limits	to	this	approach	of	preferring	encapsulated	complexity.	Software	bugs	can	occur
in	any	piece	of	code,	and	as	it	gets	bigger	the	probability	of	a	bug	approaches	1.	Sometimes,	when	you	need
to	interact	with	a	sub-system	in	an	unexpected	and	new	way,	complexity	that	was	originally
encapsulated	can	become	systemic.

One	example	of	the	latter	is	Ethereum's	current	two-level	state	tree,	which	features	a	tree	of	account	objects,
where	each	account	object	in	turn	has	its	own	storage	tree.

This	tree	structure	is	complex,	but	at	the	beginning	the	complexity	seemed	to	be	well-encapsulated:	the	rest
of	the	protocol	interacts	with	the	tree	as	a	key/value	store	that	you	can	read	and	write	to,	so	we	don't	have	to
worry	about	how	the	tree	is	structured.

Later,	however,	the	complexity	turned	out	to	have	systemic	effects:	the	ability	of	accounts	to	have	arbitrarily
large	storage	trees	meant	that	there	was	no	way	to	reliably	expect	a	particular	slice	of	the	state	(eg.	"all
accounts	starting	with	0x1234")	to	have	a	predictable	size.	This	makes	it	harder	to	split	up	the	state	into
pieces,	complicating	the	design	of	syncing	protocols	and	attempts	to	distribute	the	storage	process.	Why	did
encapsulated	complexity	become	systemic?	Because	the	interface	changed.	The	fix?	The	current
proposal	to	move	to	Verkle	trees	also	includes	a	move	to	a	well-balanced	single-layer	design	for	the	tree,

Ultimately,	which	type	of	complexity	to	favor	in	any	given	situation	is	a	question	with	no	easy	answers.	The
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best	that	we	can	do	is	to	have	an	attitude	of	moderately	favoring	encapsulated	complexity,	but	not	too	much,
and	exercise	our	judgement	in	each	specific	case.	Sometimes,	a	sacrifice	of	a	little	bit	of	systemic	complexity
to	allow	a	great	reduction	of	encapsulated	complexity	really	is	the	best	thing	to	do.	And	other	times,	you	can
even	misjudge	what	is	encapsulated	and	what	isn't.	Each	situation	is	different.
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Soulbound

One	feature	of	World	of	Warcraft	that	is	second	nature	to	its	players,	but	goes	mostly	undiscussed
outside	of	gaming	circles,	is	the	concept	of	soulbound	items.	A	soulbound	item,	once	picked	up,
cannot	be	transferred	or	sold	to	another	player.

Most	very	powerful	items	in	the	game	are	soulbound,	and	typically	require	completing	a	complicated
quest	or	killing	a	very	powerful	monster,	usually	with	the	help	of	anywhere	from	four	to	thirty	nine
other	players.	Hence,	in	order	to	get	your	character	anywhere	close	to	having	the	best	weapons	and
armor,	you	have	no	choice	but	to	participate	in	killing	some	of	these	extremely	difficult	monsters
yourself.

The	purpose	of	the	mechanic	is	fairly	clear:	it	keeps	the	game	challenging	and	interesting,	by	making
sure	that	to	get	the	best	items	you	have	to	actually	go	and	do	the	hard	thing	and	figure	out	how	to
kill	the	dragon.	You	can't	just	go	kill	boars	ten	hours	a	day	for	a	year,	get	thousands	of	gold,	and	buy
the	epic	magic	armor	from	other	players	who	killed	the	dragon	for	you.

Of	course,	the	system	is	very	imperfect:	you	could	just	pay	a	team	of	professionals	to	kill	the	dragon
with	you	and	let	you	collect	the	loot,	or	even	outright	buy	a	character	on	a	secondary	market,	and	do
this	all	with	out-of-game	US	dollars	so	you	don't	even	have	to	kill	boars.	But	even	still,	it	makes	for	a
much	better	game	than	every	item	always	having	a	price.

What	if	NFTs	could	be	soulbound?
NFTs	in	their	current	form	have	many	of	the	same	properties	as	rare	and	epic	items	in	a	massively
multiplayer	online	game.	They	have	social	signaling	value:	people	who	have	them	can	show	them	off,
and	there's	more	and	more	tools	precisely	to	help	users	do	that.	Very	recently,	Twitter	started	rolling
out	an	integration	that	allows	users	to	show	off	their	NFTs	on	their	picture	profile.

But	what	exactly	are	these	NFTs	signaling?	Certainly,	one	part	of	the	answer	is	some	kind	of	skill	in
acquiring	NFTs	and	knowing	which	NFTs	to	acquire.	But	because	NFTs	are	tradeable	items,	another
big	part	of	the	answer	inevitably	becomes	that	NFTs	are	about	signaling	wealth.
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CryptoPunks	are	now	regularly	being	sold	for	many	millions	of	dollars,	and	they	are	not	even	the
most	expensive	NFTs	out	there.	Image	source	here.

If	someone	shows	you	that	they	have	an	NFT	that	is	obtainable	by	doing	X,	you	can't	tell	whether
they	did	X	themselves	or	whether	they	just	paid	someone	else	to	do	X.	Some	of	the	time	this	is	not	a
problem:	for	an	NFT	supporting	a	charity,	someone	buying	it	off	the	secondary	market	is	sacrificing
their	own	funds	for	the	cause	and	they	are	helping	the	charity	by	contributing	to	others'	incentive	to
buy	the	NFT,	and	so	there	is	no	reason	to	discriminate	against	them.	And	indeed,	a	lot	of	good	can
come	from	charity	NFTs	alone.	But	what	if	we	want	to	create	NFTs	that	are	not	just	about	who	has
the	most	money,	and	that	actually	try	to	signal	something	else?

Perhaps	the	best	example	of	a	project	trying	to	do	this	is	POAP,	the	"proof	of	attendance	protocol".
POAP	is	a	standard	by	which	projects	can	send	NFTs	that	represent	the	idea	that	the	recipient
personally	participated	in	some	event.

Part	of	my	own	POAP	collection,	much	of	which	came	from	the	events	that	I	attended	over	the	years.

POAP	is	an	excellent	example	of	an	NFT	that	works	better	if	it	could	be	soulbound.	If	someone	is
looking	at	your	POAP,	they	are	not	interested	in	whether	or	not	you	paid	someone	who	attended
some	event.	They	are	interested	in	whether	or	not	you	personally	attended	that	event.	Proposals	to
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put	certificates	(eg.	driver's	licenses,	university	degrees,	proof	of	age)	on-chain	face	a	similar
problem:	they	would	be	much	less	valuable	if	someone	who	doesn't	meet	the	condition	themselves
could	just	go	buy	one	from	someone	who	does.

While	transferable	NFTs	have	their	place	and	can	be	really	valuable	on	their	own	for	supporting
artists	and	charities,	there	is	also	a	large	and	underexplored	design	space	of	what	non-transferable
NFTs	could	become.

What	if	governance	rights	could	be	soulbound?
This	is	a	topic	I	have	written	about	ad	nauseam	(see	[1]	[2]	[3]	[4]	[5]),	but	it	continues	to	be	worth
repeating:	there	are	very	bad	things	that	can	easily	happen	to	governance	mechanisms	if
governance	power	is	easily	transferable.	This	is	true	for	two	primary	types	of	reasons:

If	the	goal	is	for	governance	power	to	be	widely	distributed,	then	transferability	is
counterproductive	as	concentrated	interests	are	more	likely	to	buy	the	governance	rights	up
from	everyone	else.
If	the	goal	is	for	governance	power	to	go	to	the	competent,	then	transferability	is
counterproductive	because	nothing	stops	the	governance	rights	from	being	bought	up	by	the
determined	but	incompetent.

If	you	take	the	proverb	that	"those	who	most	want	to	rule	people	are	those	least	suited	to	do	it"
seriously,	then	you	should	be	suspicious	of	transferability,	precisely	because	transferability	makes
governance	power	flow	away	from	the	meek	who	are	most	likely	to	provide	valuable	input	to
governance	and	toward	the	power-hungry	who	are	most	likely	to	cause	problems.

So	what	if	we	try	to	make	governance	rights	non-transferable?	What	if	we	try	to	make	a	CityDAO
where	more	voting	power	goes	to	the	people	who	actually	live	in	the	city,	or	at	least	is	reliably
democratic	and	avoids	undue	influence	by	whales	hoarding	a	large	number	of	citizen	NFTs?	What	if
DAO	governance	of	blockchain	protocols	could	somehow	make	governance	power	conditional	on
participation?	Once	again,	a	large	and	fruitful	design	space	opens	up	that	today	is	difficult	to	access.

Implementing	non-transferability	in	practice
POAP	has	made	the	technical	decision	to	not	block	transferability	of	the	POAPs	themselves.	There
are	good	reasons	for	this:	users	might	have	a	good	reason	to	want	to	migrate	all	their	assets	from
one	wallet	to	another	(eg.	for	security),	and	the	security	of	non-transferability	implemented	"naively"
is	not	very	strong	anyway	because	users	could	just	create	a	wrapper	account	that	holds	the	NFT	and
then	sell	the	ownership	of	that.

And	indeed,	there	have	been	quite	a	few	cases	where	POAPs	have	frequently	been	bought	and	sold
when	an	economic	rationale	was	there	to	do	so.	Adidas	recently	released	a	POAP	for	free	to	their
fans	that	could	give	users	priority	access	at	a	merchandise	sale.	What	happened?	Well,	of	course,
many	of	the	POAPs	were	quickly	transferred	to	the	highest	bidder.
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More	transfers	than	items.	And	not	the	only	time.

To	solve	this	problem,	the	POAP	team	is	suggesting	that	developers	who	care	about	non-
transferability	implement	checks	on	their	own:	they	could	check	on-chain	if	the	current	owner	is	the
same	address	as	the	original	owner,	and	they	could	add	more	sophisticated	checks	over	time	if
deemed	necessary.	This	is,	for	now,	a	more	future-proof	approach.

Perhaps	the	one	NFT	that	is	the	most	robustly	non-transferable	today	is	the	proof-of-humanity
attestation.	Theoretically,	anyone	can	create	a	proof-of-humanity	profile	with	a	smart	contract
account	that	has	transferable	ownership,	and	then	sell	that	account.	But	the	proof-of-humanity
protocol	has	a	revocation	feature	that	allows	the	original	owner	to	make	a	video	asking	for	a	profile
to	be	removed,	and	a	Kleros	court	decides	whether	or	not	the	video	was	from	the	same	person	as	the
original	creator.	Once	the	profile	is	successfully	removed,	they	can	re-apply	to	make	a	new	profile.
Hence,	if	you	buy	someone	else's	proof-of-humanity	profile,	your	possession	can	be	very	quickly
taken	away	from	you,	making	transfers	of	ownership	non-viable.	Proof-of-humanity	profiles	are	de-
facto	soulbound,	and	infrastructure	built	on	top	of	them	could	allow	for	on-chain	items	in	general	to
be	soulbound	to	particular	humans.

Can	we	limit	transferability	without	going	all	the	way	and	basing	everything	on	proof	of	humanity?	It
becomes	harder,	but	there	are	medium-strength	approaches	that	are	probably	good	enough	for	some
use	cases.	Making	an	NFT	bound	to	an	ENS	name	is	one	simple	option,	if	we	assume	that	users	care
enough	about	their	ENS	names	that	they	are	not	willing	to	transfer	them.	For	now,	what	we're	likely
to	see	is	a	spectrum	of	approaches	to	limit	transferability,	with	different	projects	choosing	different
tradeoffs	between	security	and	convenience.

Non-transferability	and	privacy
Cryptographically	strong	privacy	for	transferable	assets	is	fairly	easy	to	understand:	you	take	your
coins,	put	them	into	tornado.cash	or	a	similar	platform,	and	withdraw	them	into	a	fresh	account.	But
how	can	we	add	privacy	for	soulbound	items	where	you	cannot	just	move	them	into	a	fresh	account
or	even	a	smart	contract?	If	proof	of	humanity	starts	getting	more	adoption,	privacy	becomes	even
more	important,	as	the	alternative	is	all	of	our	activity	being	mapped	on-chain	directly	to	a	human
face.

Fortunately,	a	few	fairly	simple	technical	options	are	possible:

Store	the	item	at	an	address	which	is	the	hash	of	(i)	an	index,	(ii)	the	recipient	address	and	(iii)	a
secret	belonging	to	the	recipient.	You	could	reveal	your	secret	to	an	interface	that	would	then
scan	for	all	possible	items	that	belong	to	your,	but	no	one	without	your	secret	could	see	which
items	are	yours.
Publish	a	hash	of	a	bunch	of	items,	and	give	each	recipient	their	Merkle	branch.
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If	a	smart	contract	needs	to	check	if	you	have	an	item	of	some	type,	you	can	provide	a	ZK-
SNARK.

Transfers	could	be	done	on-chain;	the	simplest	technique	may	just	be	a	transaction	that	calls	a
factory	contract	to	make	the	old	item	invalid	and	the	new	item	valid,	using	a	ZK-SNARK	to	prove	that
the	operation	is	valid.

Privacy	is	an	important	part	of	making	this	kind	of	ecosystem	work	well.	In	some	cases,	the
underlying	thing	that	the	item	is	representing	is	already	public,	and	so	there	is	no	point	in	trying	to
add	privacy.	But	in	many	other	cases,	users	would	not	want	to	reveal	everything	that	they	have.	If,
one	day	in	the	future,	being	vaccinated	becomes	a	POAP,	one	of	the	worst	things	we	could	do	would
be	to	create	a	system	where	the	POAP	is	automatically	advertised	for	everyone	to	see	and	everyone
has	no	choice	but	to	let	their	medical	decision	be	influenced	by	what	would	look	cool	in	their
particular	social	circle.	Privacy	being	a	core	part	of	the	design	can	avoid	these	bad	outcomes	and
increase	the	chance	that	we	create	something	great.

From	here	to	there
A	common	criticism	of	the	"web3"	space	as	it	exists	today	is	how	money-oriented	everything	is.
People	celebrate	the	ownership,	and	outright	waste,	of	large	amounts	of	wealth,	and	this	limits	the
appeal	and	the	long-term	sustainability	of	the	culture	that	emerges	around	these	items.	There	are	of
course	important	benefits	that	even	financialized	NFTs	can	provide,	such	as	funding	artists	and
charities	that	would	otherwise	go	unrecognized.	However,	there	are	limits	to	that	approach,	and	a	lot
of	underexplored	opportunity	in	trying	to	go	beyond	financialization.	Making	more	items	in	the
crypto	space	"soulbound"	can	be	one	path	toward	an	alternative,	where	NFTs	can	represent	much
more	of	who	you	are	and	not	just	what	you	can	afford.

However,	there	are	technical	challenges	to	doing	this,	and	an	uneasy	"interface"	between	the	desire
to	limit	or	prevent	transfers	and	a	blockchain	ecosystem	where	so	far	all	of	the	standards	are
designed	around	maximum	transferability.	Attaching	items	to	"identity	objects"	that	users	are	either
unable	(as	with	proof-of-humanity	profiles)	or	unwilling	(as	with	ENS	names)	to	trade	away	seems
like	the	most	promising	path,	but	challenges	remain	in	making	this	easy-to-use,	private	and	secure.
We	need	more	effort	on	thinking	through	and	solving	these	challenges.	If	we	can,	this	opens	a	much
wider	door	to	blockchains	being	at	the	center	of	ecosystems	that	are	collaborative	and	fun,	and	not
just	about	money.

https://palladiummag.com/2022/01/21/when-the-stagnation-goes-virtual/
https://vitalik.ca/general/2021/09/26/limits.html
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The	bulldozer	vs	vetocracy	political	axis

Typically,	attempts	to	collapse	down	political	preferences	into	a	few	dimensions	focus	on	two	primary	dimensions:	"authoritarian	vs	libertarian"	and	"left	vs	right".
You've	probably	seen	political	compasses	like	this:

There	have	been	many	variations	on	this,	and	even	an	entire	subreddit	dedicated	to	memes	based	on	these	charts.	I	even	made	a	spin	on	the	concept	myself,	with
this	"meta-political	compass"	where	at	each	point	on	the	compass	there	is	a	smaller	compass	depicting	what	the	people	at	that	point	on	the	compass	see	the	axes	of
the	compass	as	being.

Of	course,	"authoritarian	vs	libertarian"	and	"left	vs	right"	are	both	incredibly	un-nuanced	gross	oversimplifications.	But	us	puny-brained	human	beings	do	not	have
the	capacity	to	run	anything	close	to	accurate	simulations	of	humanity	inside	our	heads,	and	so	sometimes	incredibly	un-nuanced	gross	oversimplifications	are
something	we	need	to	understand	the	world.	But	what	if	there	are	other	incredibly	un-nuanced	gross	oversimplifications	worth	exploring?

Enter	the	bulldozer	vs	vetocracy	divide

Let	us	consider	a	political	axis	defined	by	these	two	opposing	poles:

Bulldozer:	single	actors	can	do	important	and	meaningful,	but	potentially	risky	and	disruptive,	things	without	asking	for	permission
Vetocracy:	doing	anything	potentially	disruptive	and	controversial	requires	getting	a	sign-off	from	a	large	number	of	different	and	diverse	actors,	any	of
whom	could	stop	it

Note	that	this	is	not	the	same	as	either	authoritarian	vs	libertarian	or	left	vs	right.	You	can	have	vetocratic	authoritarianism,	the	bulldozer	left,	or	any	other
combination.	Here	are	a	few	examples:

file:///home/runner/index.html
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The	key	difference	between	authoritarian	bulldozer	and	authoritarian	vetocracy	is	this:	is	the	government	more	likely	to	fail	by	doing	bad	things	or	by	preventing
good	things	from	happening?	Similarly	for	libertarian	bulldozer	vs	vetocracy:	are	private	actors	more	likely	to	fail	by	doing	bad	things,	or	by	standing	in	the	way	of
needed	good	things?

Sometimes,	I	hear	people	complaining	that	eg.	the	United	States	(but	other	countries	too)	is	falling	behind	because	too	many	people	use	freedom	as	an	excuse	to
prevent	needed	reforms	from	happening.	But	is	the	problem	really	freedom?	Isn't,	say,	restrictive	housing	policy	preventing	GDP	from	rising	by	36%	an	example	of
the	problem	precisely	being	people	not	having	enough	freedom	to	build	structures	on	their	own	land?	Shifting	the	argument	over	to	saying	that	there	is	too	much
vetocracy,	on	the	other	hand,	makes	the	argument	look	much	less	confusing:	individuals	excessively	blocking	governments	and	governments	excessively	blocking
individuals	are	not	opposites,	but	rather	two	sides	of	the	same	coin.

And	indeed,	recently	there	has	been	a	bunch	of	political	writing	pointing	the	finger	straight	at	vetocracy	as	a	source	of	many	huge	problems:

https://astralcodexten.substack.com/p/ezra-klein-on-vetocracy
https://www.vox.com/2020/4/22/21228469/marc-andreessen-build-government-coronavirus
https://www.vox.com/2016/10/26/13352946/francis-fukuyama-ezra-klein
https://www.politico.com/news/magazine/2019/11/29/penn-station-robert-caro-073564

And	on	the	other	side	of	the	coin,	people	are	often	confused	when	politicians	who	normally	do	not	respect	human	rights	suddenly	appear	very	pro-freedom	in	their
love	of	Bitcoin.	Are	they	libertarian,	or	are	they	authoritarian?	In	this	framework,	the	answer	is	simple:	they're	bulldozers,	with	all	the	benefits	and	risks	that	that
side	of	the	spectrum	brings.

What	is	vetocracy	good	for?

Though	the	change	that	cryptocurrency	proponents	seek	to	bring	to	the	world	is	often	bulldozery,	cryptocurrency	governance	internally	is	often	quite	vetocratic.
Bitcoin	governance	famously	makes	it	very	difficult	to	make	changes,	and	some	core	"constitutional	norms"	(eg.	the	21	million	coin	limit)	are	considered	so
inviolate	that	many	Bitcoin	users	consider	a	chain	that	violates	that	rule	to	be	by-definition	not	Bitcoin,	regardless	of	how	much	support	it	has.

Ethereum	protocol	research	is	sometimes	bulldozery	in	operation,	but	the	Ethereum	EIP	process	that	governs	the	final	stage	of	turning	a	research	proposal	into
something	that	actually	makes	it	into	the	blockchain	includes	a	fair	share	of	vetocracy,	though	still	less	than	Bitcoin.	Governance	over	irregular	state	changes,	hard
forks	that	interfere	with	the	operation	of	specific	applications	on-chain,	is	even	more	vetocratic:	after	the	DAO	fork,	not	a	single	proposal	to	intentionally	"fix"	some
application	by	altering	its	code	or	moving	its	balance	has	been	successful.

The	case	for	vetocracy	in	these	contexts	is	clear:	it	gives	people	a	feeling	of	safety	that	the	platform	they	build	or	invest	on	is	not	going	to	suddenly	change	the
rules	on	them	one	day	and	destroy	everything	they've	put	years	of	their	time	or	money	into.	Cryptocurrency	proponents	often	cite	Citadel	interfering	in	Gamestop
trading	as	an	example	of	the	opaque,	centralized	(and	bulldozery)	manipulation	that	they	are	fighting	against.	Web2	developers	often	complain	about	centralized
platforms	suddenly	changing	their	APIs	in	ways	that	destroy	startups	built	around	their	platforms.	And,	of	course....

Vitalik	Buterin,	bulldozer	victim

Ok	fine,	the	story	that	WoW	removing	Siphon	Life	was	the	direct	inspiration	to	Ethereum	is	exaggerated,	but	the	infamous	patch	that	ruined	my	beloved	warlock
and	my	response	to	it	were	very	real!

And	similarly,	the	case	for	vetocracy	in	politics	is	clear:	it's	a	response	to	the	often	ruinous	excesses	of	the	bulldozers,	both	relatively	minor	and	unthinkably
severe,	of	the	early	20th	century.

So	what's	the	synthesis?

The	primary	purpose	of	this	point	is	to	outline	an	axis,	not	to	argue	for	a	particular	position.	And	if	the	vetocracy	vs	bulldozer	axis	is	anything	like	the	libertarian	vs
authoritarian	axis,	it's	inevitably	going	to	have	internal	subtleties	and	contradictions:	much	like	a	free	society	will	see	people	voluntarily	joining	internally
autocratic	corporations	(yes,	even	lots	of	people	who	are	totally	not	economically	desperate	make	such	choices),	many	movements	will	be	vetocratic	internally	but
bulldozery	in	their	relationship	with	the	outside	world.

But	here	are	a	few	possible	things	that	one	could	believe	about	bulldozers	and	vetocracy:
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The	physical	world	has	too	much	vetocracy,	but	the	digital	world	has	too	many	bulldozers,	and	there	are	no	digital	places	that	are	truly	effective	refuges	from
the	bulldozers	(hence:	why	we	need	blockchains?)
Processes	that	create	durable	change	need	to	be	bulldozery	toward	the	status	quo	but	protecting	that	change	requires	a	vetocracy.	There's	some	optimal	rate
at	which	such	processes	should	happen;	too	much	and	there's	chaos,	not	enough	and	there's	stagnation.
A	few	key	institutions	should	be	protected	by	strong	vetocracy,	and	these	institutions	exist	both	to	enable	bulldozers	needed	to	enact	positive	change	and	to
give	people	things	they	can	depend	on	that	are	not	going	to	be	brought	down	by	bulldozers.
In	particular,	blockchain	base	layers	should	be	vetocratic,	but	application-layer	governance	should	leave	more	space	for	bulldozers
Better	economic	mechanisms	(quadratic	voting?	Harberger	taxes?)	can	get	us	many	of	the	benefits	of	both	vetocracy	and	bulldozers	without	many	of	the	costs.

Vetocracy	vs	bulldozer	is	a	particularly	useful	axis	to	use	when	thinking	about	non-governmental	forms	of	human	organization,	whether	for-profit	companies,	non-
profit	organizations,	blockchains,	or	something	else	entirely.	The	relatively	easier	ability	to	exit	from	such	systems	(compared	to	governments)	confounds
discussion	of	how	libertarian	vs	authoritarian	they	are,	and	so	far	blockchains	and	even	centralized	tech	platforms	have	not	really	found	many	ways	to	differentiate
themselves	on	the	left	vs	right	axis	(though	I	would	love	to	see	more	attempts	at	left-leaning	crypto	projects!).	The	vetocracy	vs	bulldozer	axis,	on	the	other	hand,
continues	to	map	to	non-governmental	structures	quite	well	-	potentially	making	it	very	relevant	in	discussing	these	new	kinds	of	non-governmental	structures	that
are	becoming	increasingly	important.

https://ericposner.com/quadratic-voting/
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Endgame

Special	thanks	to	a	whole	bunch	of	people	from	Optimism	and	Flashbots	for	discussion	and	thought
that	went	into	this	piece,	and	Karl	Floersch,	Phil	Daian,	Hasu	and	Alex	Obadia	for	feedback	and
review.

Consider	the	average	"big	block	chain"	-	very	high	block	frequency,	very	high	block	size,	many
thousands	of	transactions	per	second,	but	also	highly	centralized:	because	the	blocks	are	so	big,	only
a	few	dozen	or	few	hundred	nodes	can	afford	to	run	a	fully	participating	node	that	can	create	blocks
or	verify	the	existing	chain.	What	would	it	take	to	make	such	a	chain	acceptably	trustless	and
censorship	resistant,	at	least	by	my	standards?

Here	is	a	plausible	roadmap:

Add	a	second	tier	of	staking,	with	low	resource	requirements,	to	do	distributed	block
validation.	The	transactions	in	a	block	are	split	into	100	buckets,	with	a	Merkle	or	Verkle	tree
state	root	after	each	bucket.	Each	second-tier	staker	gets	randomly	assigned	to	one	of	the
buckets.	A	block	is	only	accepted	when	at	least	2/3	of	the	validators	assigned	to	each	bucket
sign	off	on	it.
Introduce	either	fraud	proofs	or	ZK-SNARKs	to	let	users	directly	(and	cheaply)	check
block	validity.	ZK-SNARKs	can	cryptographically	prove	block	validity	directly;	fraud	proofs	are
a	simpler	scheme	where	if	a	block	has	an	invalid	bucket,	anyone	can	broadcast	a	fraud	proof	of
just	that	bucket.	This	provides	another	layer	of	security	on	top	of	the	randomly-assigned
validators.
Introduce	data	availability	sampling	to	let	users	check	block	availability.	By	using	DAS
checks,	light	clients	can	verify	that	a	block	was	published	by	only	downloading	a	few	randomly
selected	pieces.
Add	secondary	transaction	channels	to	prevent	censorship.	One	way	to	do	this	is	to	allow
secondary	stakers	to	submit	lists	of	transactions	which	the	next	main	block	must	include.

What	do	we	get	after	all	of	this	is	done?	We	get	a	chain	where	block	production	is	still
centralized,	but	block	validation	is	trustless	and	highly	decentralized,	and	specialized	anti-
censorship	magic	prevents	the	block	producers	from	censoring.	It's	somewhat	aesthetically
ugly,	but	it	does	provide	the	basic	guarantees	that	we	are	looking	for:	even	if	every	single	one	of	the
primary	stakers	(the	block	producers)	is	intent	on	attacking	or	censoring,	the	worst	that	they	could
do	is	all	go	offline	entirely,	at	which	point	the	chain	stops	accepting	transactions	until	the	community
pools	their	resources	and	sets	up	one	primary-staker	node	that	is	honest.
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Now,	consider	one	possible	long-term	future	for	rollups...

Imagine	that	one	particular	rollup	-	whether	Arbitrum,	Optimism,	Zksync,	StarkNet	or	something
completely	new	-	does	a	really	good	job	of	engineering	their	node	implementation,	to	the	point	where
it	really	can	do	10,000	transactions	per	second	if	given	powerful	enough	hardware.	The	techniques
for	doing	this	are	in-principle	well-known,	and	implementations	were	made	by	Dan	Larimer	and
others	many	years	ago:	split	up	execution	into	one	CPU	thread	running	the	unparallelizable	but
cheap	business	logic	and	a	huge	number	of	other	threads	running	the	expensive	but	highly
parallelizable	cryptography.	Imagine	also	that	Ethereum	implements	sharding	with	data	availability
sampling,	and	has	the	space	to	store	that	rollup's	on-chain	data	between	its	64	shards.	As	a	result,
everyone	migrates	to	this	rollup.	What	would	that	world	look	like?

Once	again,	we	get	a	world	where,	block	production	is	centralized,	block	validation	is
trustless	and	highly	decentralized,	and	censorship	is	still	prevented.	Rollup	block	producers
have	to	process	a	huge	number	of	transactions,	and	so	it	is	a	difficult	market	to	enter,	but	they	have
no	way	to	push	invalid	blocks	through.	Block	availability	is	secured	by	the	underlying	chain,	and
block	validity	is	guaranteed	by	the	rollup	logic:	if	it's	a	ZK	rollup,	it's	ensured	by	SNARKs,	and	an
optimistic	rollup	is	secure	as	long	as	there	is	one	honest	actor	somewhere	running	a	fraud	prover
node	(they	can	be	subsidized	with	Gitcoin	grants).	Furthermore,	because	users	always	have	the
option	of	submitting	transactions	through	the	on-chain	secondary	inclusion	channel,	rollup
sequencers	also	cannot	effectively	censor.

Now,	consider	the	other	possible	long-term	future	of	rollups...

No	single	rollup	succeeds	at	holding	anywhere	close	to	the	majority	of	Ethereum	activity.	Instead,
they	all	top	out	at	a	few	hundred	transactions	per	second.	We	get	a	multi-rollup	future	for	Ethereum	-
the	Cosmos	multi–chain	vision,	but	on	top	of	a	base	layer	providing	data	availability	and	shared
security.	Users	frequently	rely	on	cross-rollup	bridging	to	jump	between	different	rollups	without
paying	the	high	fees	on	the	main	chain.	What	would	that	world	look	like?

It	seems	like	we	could	have	it	all:	decentralized	validation,	robust	censorship	resistance,	and	even
distributed	block	production,	because	the	rollups	are	all	invididually	small	and	so	easy	to	start
producing	blocks	in.	But	the	decentralization	of	block	production	may	not	last,	because	of	the
possibility	of	cross-domain	MEV.	There	are	a	number	of	benefits	to	being	able	to	construct	the	next
block	on	many	domains	at	the	same	time:	you	can	create	blocks	that	use	arbitrage	opportunities	that
rely	on	making	transactions	in	two	rollups,	or	one	rollup	and	the	main	chain,	or	even	more	complex
combinations.
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A	cross-domain	MEV	opportunity	discovered	by	Western	Gate

Hence,	in	a	multi-domain	world,	there	are	strong	pressures	toward	the	same	people	controlling	block
production	on	all	domains.	It	may	not	happen,	but	there's	a	good	chance	that	it	will,	and	we	have	to
be	prepared	for	that	possibility.	What	can	we	do	about	it?	So	far,	the	best	that	we	know	how	to	do	is
to	use	two	techniques	in	combination:

Rollups	implement	some	mechanism	for	auctioning	off	block	production	at	each	slot,	or	the
Ethereum	base	layer	implements	proposer/builder	separation	(PBS)	(or	both).	This	ensures
that	at	least	any	centralization	tendencies	in	block	production	don't	lead	to	a	completely	elite-
captured	and	concentrated	staking	pool	market	dominating	block	validation.
Rollups	implement	censorship-resistant	bypass	channels,	and	the	Ethereum	base	layer
implements	PBS	anti-censorship	techniques.	This	ensures	that	if	the	winners	of	the	potentially
highly	centralized	"pure"	block	production	market	try	to	censor	transactions,	there	are	ways	to
bypass	the	censorship.

So	what's	the	result?	Block	production	is	centralized,	block	validation	is	trustless	and	highly
decentralized,	and	censorship	is	still	prevented.
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Three	paths	toward	the	same	destination.

So	what	does	this	mean?
While	there	are	many	paths	toward	building	a	scalable	and	secure	long-term	blockchain	ecosystem,
it's	looking	like	they	are	all	building	toward	very	similar	futures.	There's	a	high	chance	that	block
production	will	end	up	centralized:	either	the	network	effects	within	rollups	or	the	network	effects	of
cross-domain	MEV	push	us	in	that	direction	in	their	own	different	ways.	But	what	we	can	do	is	use
protocol-level	techniques	such	as	committee	validation,	data	availability	sampling	and	bypass
channels	to	"regulate"	this	market,	ensuring	that	the	winners	cannot	abuse	their	power.

What	does	this	mean	for	block	producers?	Block	production	is	likely	to	become	a	specialized
market,	and	the	domain	expertise	is	likely	to	carry	over	across	different	domains.	90%	of	what	makes
a	good	Optimism	block	producer	also	makes	a	good	Arbitrum	block	producer,	and	a	good	Polygon
block	producer,	and	even	a	good	Ethereum	base	layer	block	producer.	If	there	are	many	domains,
cross-domain	arbitrage	may	also	become	an	important	source	of	revenue.

What	does	this	mean	for	Ethereum?	First	of	all,	Ethereum	is	very	well-positioned	to	adjust	to	this
future	world,	despite	the	inherent	uncertainty.	The	profound	benefit	of	the	Ethereum	rollup-centric
roadmap	is	that	it	means	that	Ethereum	is	open	to	all	of	the	futures,	and	does	not	have	to	commit	to
an	opinion	about	which	one	will	necessarily	win.	Will	users	very	strongly	want	to	be	on	a	single
rollup?	Ethereum,	following	its	existing	course,	can	be	the	base	layer	of	that,	automatically	providing
the	anti-fraud	and	anti-censorship	"armor"	that	high-capacity	domains	need	to	be	secure.	Is	making	a
high-capacity	domain	too	technically	complicated,	or	do	users	just	have	a	great	need	for	variety?
Ethereum	can	be	the	base	layer	of	that	too	-	and	a	very	good	one,	as	the	common	root	of	trust	makes
it	far	easier	to	move	assets	between	rollups	safely	and	cheaply.

But	also,	Ethereum	researchers	should	think	hard	about	what	levels	of	decentralization	in	block
production	are	actually	achievable.	It	may	not	be	worth	it	to	add	complicated	plumbing	to	make
highly	decentralized	block	production	easy	if	cross-domain	MEV	(or	even	cross-shard	MEV	from	one
rollup	taking	up	multiple	shards)	make	it	unsustainable	regardless.

https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698


What	does	this	mean	for	big	block	chains?	There	is	a	path	for	them	to	turn	into	something
trustless	and	censorship	resistant,	and	we'll	soon	find	out	if	their	core	developers	and	communities
actually	value	censorship	resistance	and	decentralization	enough	for	them	to	do	it!

It	will	likely	take	years	for	all	of	this	to	play	out.	Sharding	and	data	availability	sampling	are	complex
technologies	to	implement.	It	will	take	years	of	refinement	and	audits	for	people	to	be	fully
comfortable	storing	their	assets	in	a	ZK-rollup	running	a	full	EVM.	And	cross-domain	MEV	research
too	is	still	in	its	infancy.	But	it	does	look	increasingly	clear	how	a	realistic	but	bright	future	for
scalable	blockchains	is	likely	to	emerge.
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Review	of	Optimism	retro	funding	round	1

Special	thanks	to	Karl	Floersch	and	Haonan	Li	for	feedback	and	review,	and	Jinglan	Wang	for	discussion.

Last	month,	Optimism	ran	their	first	round	of	retroactive	public	goods	funding,	allocating	a	total	of	$1	million	to	58	projects	to	reward	the	good	work	that	these
projects	have	already	done	for	the	Optimism	and	Ethereum	ecosystems.	In	addition	to	being	the	first	major	retroactive	general-purpose	public	goods	funding
experiment,	it's	also	the	first	experiment	in	a	new	kind	of	governance	through	badge	holders	-	not	a	very	small	decision-making	board	and	also	not	a	fully	public
vote,	but	instead	a	quadratic	vote	among	a	medium-sized	group	of	22	participants.

The	entire	process	was	highly	transparent	from	start	to	finish:

The	rules	that	the	badge	holders	were	supposed	to	follow	were	enshrined	in	the	badge	holder	instructions
You	can	see	the	projects	that	were	nominated	in	this	spreadsheet
All	discussion	between	the	badge	holders	happened	in	publicly	viewable	forums.	In	addition	to	Twitter	conversation	(eg.	Jeff	Coleman's	thread	and	also
others),	all	of	the	explicit	structured	discussion	channels	were	publicly	viewable:	the	#retroactive-public-goods	channel	on	the	Optimism	discord,	and	a
published	Zoom	call
The	full	results,	and	the	individual	badge	holder	votes	that	went	into	the	results,	can	be	viewed	in	this	spreadsheet

And	finally,	here	are	the	results	in	an	easy-to-read	chart	form:

Much	like	the	Gitcoin	quadratic	funding	rounds	and	the	MolochDAO	grants,	this	is	yet	another	instance	of	the	Ethereum	ecosystem	establishing	itself	as	a	key
player	in	the	innovative	public	goods	funding	mechanism	design	space.	But	what	can	we	learn	from	this	experiment?

Analyzing	the	results
First,	let	us	see	if	there	are	any	interesting	takeaways	that	can	be	seen	by	looking	at	the	results.	But	what	do	we	compare	the	results	to?	The	most	natural	point	of
comparison	is	the	other	major	public	goods	funding	experiment	that	we've	had	so	far:	the	Gitcoin	quadratic	funding	rounds	(in	this	case,	round	11).

Gitcoin	round	11	(tech	only) Optimism	retro	round	1

Probably	the	most	obvious	property	of	the	Optimism	retro	results	that	can	be	seen	without	any	comparisons	is	the	category	of	the	winners:	every	major	Optimism

file:///home/runner/index.html
https://www.optimism.io/
https://medium.com/ethereum-optimism/retroactive-public-goods-funding-33c9b7d00f0c
https://www.notion.so/optimismpbc/Public-Badge-Holder-Manual-d05c3695ef684d1fb62ef38690fb3ff7
https://docs.google.com/spreadsheets/d/1rphUkII5-49VmRVKaQBxsOYRNsO56ifGSSLctQyduWg
https://twitter.com/technocrypto/status/1454191422601678854?t=qYCreicPHwjsbpkZgBo69w&s=19
https://twitter.com/austingriffith/status/1446221993678815237?s=20
file:///home/runner/work/vitalik-blog-pdf/vitalik-blog-pdf/html/discord.optimism.io
https://vitalik.ca/files/misc_files/retro_recording.mp4
https://docs.google.com/spreadsheets/d/1g4ilAByMNQsmlBC8cskQip7Ojd_qK6IhozJCyoVfU9k
https://vitalik.ca/general/2021/04/02/round9.html
https://www.molochdao.com/


retro	winner	was	a	technology	project.	There	was	nothing	in	the	badge	holder	instructions	that	specified	this;	non-tech	projects	(say,	the	translations	at
ethereum.cn)	were	absolutely	eligible.	And	yet,	due	to	some	combination	of	choice	of	badge	holders	and	subconscious	biases,	the	round	seems	to	have	been
understood	as	being	tech-oriented.	Hence,	I	restricted	the	Gitcoin	results	in	the	table	above	to	technology	("DApp	Tech"	+	"Infra	Tech")	to	focus	on	the	remaining
differences.

Some	other	key	remaining	differences	are:

The	retro	round	was	low	variance:	the	top-receiving	project	only	got	three	times	more	(in	fact,	exactly	three	times	more)	than	the	25th,	whereas	in	the
Gitcoin	chart	combining	the	two	categories	the	gap	was	over	5x,	and	if	you	look	at	DApp	Tech	or	Infra	Tech	separately	the	gap	is	over	15x!	I	personally	blame
this	on	Gitcoin	using	standard	quadratic	funding	(\(reward	\approx	(\sum_i	\sqrt	x_i)	^2\))	and	the	retro	round	using	\(\sum_i	\sqrt	x_i\)	without	the	square;
perhaps	the	next	retro	round	should	just	add	the	square.
The	retro	round	winners	are	more	well-known	projects:	this	is	actually	an	intended	consequence:	the	retro	round	focused	on	rewarding	projects	for	value
already	provided,	whereas	the	Gitcoin	round	was	open-ended	and	many	contributions	were	to	promising	new	projects	in	expectation	of	future	value.
The	retro	round	focused	more	on	infrastructure,	the	Gitcoin	round	more	on	more	user-facing	projects:	this	is	of	course	a	generalization,	as	there
are	plenty	of	infrastructure	projects	in	the	Gitcoin	list,	but	in	general	applications	that	are	directly	user-facing	are	much	more	prominent	there.	A	particularly
interesting	consequence	(or	cause?)	of	this	is	that	the	Gitcoin	round	more	on	projects	appealing	to	sub-communities	(eg.	gamers),	whereas	the	retro	round
focused	more	on	globally-valuable	projects	-	or,	less	charitably,	projects	appealing	to	the	one	particular	sub-community	that	is	Ethereum	developers.

It	is	my	own	(admittedly	highly	subjective)	opinion	that	the	retro	round	winner	selection	is	somewhat	higher	quality.	This	is	independent	of	the	above
three	differences;	it's	more	a	general	impression	that	the	specific	projects	that	were	chosen	as	top	recipients	on	the	right	were	very	high	quality	projects,	to	a
greater	extent	than	top	recipients	on	the	left.

Of	course,	this	could	have	two	causes:	(i)	a	smaller	but	more	skilled	number	of	badge	holders	("technocrats")	can	make	better	decisions	than	"the	crowd",	and	(ii)
it's	easier	to	judge	quality	retroactively	than	ahead	of	time.	And	this	gets	us	an	interesting	question:	what	if	a	simple	way	to	summarize	much	of	the	above
findings	is	that	technocrats	are	smarter	but	the	crowd	is	more	diverse?

Could	we	make	badge	holders	and	their	outputs	more	diverse?
To	better	understand	the	problem,	let	us	zoom	in	on	the	one	specific	example	that	I	already	mentioned	above:	ethereum.cn.	This	is	an	excellent	Chinese	Ethereum
community	project	(though	not	the	only	one!	See	also	EthPlanet),	which	has	been	providing	a	lot	of	resources	in	Chinese	for	people	to	learn	about	Ethereum,
including	translations	of	many	highly	technical	articles	written	by	Ethereum	community	members	and	about	Ethereum	originally	in	English.

Ethereum.cn	webpage.	Plenty	of	high	quality	technical	material	-	though	they	have	still	not	yet	gotten	the	memo	that	they	were	supposed	to	rename	"eth2"	to
"consensus	layer".	Minus	ten	retroactive	reward	points	for	them.

What	knowledge	does	a	badge	holder	need	to	be	able	to	effectively	determine	whether	ethereum.cn	is	an	awesome	project,	a	well-meaning	but	mediocre	project
that	few	Chinese	people	actually	visit,	or	a	scam?	Likely	the	following:

Ability	to	speak	and	understand	Chinese
Being	plugged	into	the	Chinese	community	and	understanding	the	social	dynamics	of	that	specific	project
Enough	understanding	of	both	the	tech	and	of	the	frame	of	mind	of	non-technical	readers	to	judge	the	site's	usefulness	for	them

Out	of	the	current,	heavily	US-focused,	badge	holders,	the	number	that	satisfy	these	requirements	is	basically	zero.	Even	the	two	Chinese-speaking	badge	holders
are	US-based	and	not	close	to	the	Chinese	Ethereum	community.

So,	what	happens	if	we	expand	the	badge	holder	set?	We	could	add	five	badge	holders	from	the	Chinese	Ethereum	community,	five	from	India,	five	from	Latin
America,	five	from	Africa,	and	five	from	Antarctica	to	represent	the	penguins.	At	the	same	time	we	could	also	diversify	among	areas	of	expertise:	some	technical
experts,	some	community	leaders,	some	people	plugged	into	the	Ethereum	gaming	world.	Hopefully,	we	can	get	enough	coverage	that	for	each	project	that's
valuable	to	Ethereum,	we	would	have	at	least	1-5	badge	holders	who	understands	enough	about	that	project	to	be	able	to	intelligently	vote	on	it.	But	then	we	see
the	problem:	there	would	only	be	1-5	badge	holders	able	to	intelligently	vote	on	it.

There	are	a	few	families	of	solutions	that	I	see:

1.	 Tweak	the	quadratic	voting	design.	In	theory,	quadratic	voting	has	the	unique	property	that	there's	very	little	incentive	to	vote	on	projects	that	you	do	not
understand.	Any	vote	you	make	takes	away	credits	that	you	could	use	to	vote	on	projects	you	understand	better.	However,	the	current	quadratic	voting	design
has	a	flaw	here:	not	voting	on	a	project	isn't	truly	a	neutral	non-vote,	it's	a	vote	for	the	project	getting	nothing.	I	don't	yet	have	great	ideas	for	how	to	do	this.
A	key	question	is:	if	zero	becomes	a	truly	neutral	vote,	then	how	much	money	does	a	project	get	if	nobody	makes	any	votes	on	it?	However,	this	is	worth
looking	into	more.

2.	 Split	up	the	voting	into	categories	or	sub-committees.	Badge	holders	would	first	vote	to	sort	projects	into	buckets,	and	the	badge	holders	within	each
bucket	("zero	knowledge	proofs",	"games",	"India"...)	would	then	make	the	decisions	from	there.	This	could	also	be	done	in	a	more	"liquid"	way	through
delegation	-	a	badge	holder	could	select	some	other	badge	holder	to	decide	their	vote	on	some	project,	and	they	would	automatically	copy	their	vote.

3.	 Everyone	still	votes	on	everything,	but	facilitate	more	discussion.	The	badge	holders	that	do	have	the	needed	domain	expertise	to	assess	a	given	project
(or	a	single	aspect	of	some	given	project)	come	up	with	their	opinions	and	write	a	document	or	spreadsheet	entry	to	express	their	reasoning.	Other	badge
holders	use	this	information	to	help	make	up	their	minds.

Once	the	number	of	decisions	to	be	made	gets	even	higher,	we	could	even	consider	ideas	like	in-protocol	random	sortition	(eg.	see	this	idea	to	incorporate
sortition	into	quadratic	voting)	to	reduce	the	number	of	decisions	that	each	participant	needs	to	make.	Quadratic	sortition	has	the	particularly	nice	benefit	that	it
naturally	leads	to	large	decisions	being	made	by	the	entire	group	and	small	decisions	being	made	by	smaller	groups.

http://ethereum.cn/
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The	means-testing	debate
In	the	post-round	retrospective	discussion	among	the	badgeholders,	one	of	the	key	questions	that	was	brought	up	is:	when	choosing	which	projects	to	fund,	should
badge	holders	take	into	account	whether	that	project	is	still	in	dire	need	of	funding,	and	de-prioritize	projects	that	are	already	well-funded	through	some
other	means?	That	is	to	say,	should	retroactive	rewards	be	means-tested?

In	a	"regular"	grants-funding	round,	the	rationale	for	answering	"yes"	is	clear:	increasing	a	project's	funding	from	$0	to	$100k	has	a	much	bigger	impact	on	its
ability	to	do	its	job	than	increasing	a	project's	funding	from	$10m	to	$10.1m.	But	Optimism	retro	funding	round	1	is	not	a	regular	grants-funding	round.	In	retro
funding,	the	objective	is	not	to	give	people	money	in	expectation	of	future	work	that	money	could	help	them	do.	Rather,	the	objective	is	to	reward
people	for	work	already	done,	to	change	the	incentives	for	anyone	working	on	projects	in	the	future.	With	this	in	mind,	to	what	extent	should	retroactive
project	funding	depend	on	how	much	a	given	project	actually	needs	the	funds?

The	case	for	means	testing

Suppose	that	you	are	a	20-year-old	developer,	and	you	are	deciding	whether	to	join	some	well-funded	defi	project	with	a	fancy	token,	or	to	work	on	some	cool	open-
source	fully	public	good	work	that	will	benefit	everyone.	If	you	join	the	well-funded	defi	project,	you	will	get	a	$100k	salary,	and	your	financial	situation	will	be
guaranteed	to	be	very	secure.	If	you	work	on	public-good	projects	on	your	own,	you	will	have	no	income.	You	have	some	savings	and	you	could	make	some	money
with	side	gigs,	but	it	will	be	difficult,	and	you're	not	sure	if	the	sacrifice	is	worth	it.

Now,	consider	two	worlds,	World	A	and	World	B.	First,	the	similarities:

There	are	ten	people	exactly	like	you	out	there	that	could	get	retro	rewards,	and	five	of	you	will.	Hence,	there's	a	50%	chance	you'll	get	a	retro	reward.
Theres's	a	30%	chance	that	your	work	will	propel	you	to	moderate	fame	and	you'll	be	hired	by	some	company	with	even	better	terms	than	the	original
defi	project	(or	even	start	your	own).

Now,	the	differences:

World	A	(means	testing):	retro	rewards	are	concentrated	among	the	actors	that	do	not	find	success	some	other	way
World	B	(no	means	testing):	retro	rewards	are	given	out	independently	of	whether	or	not	the	project	finds	success	in	some	other	way

Let's	look	at	your	chances	in	each	world.

Event Probability	(World	A) Probability	(World	B)
Independent	success	and	retroactive	reward 0% 15%
Independent	success	only 30% 15%
Retroactive	reward	only 50% 35%
Nothing 20% 35%

From	your	point	of	view	as	a	non-risk-neutral	human	being,	the	15%	chance	of	getting	success	twice	in	world	B	matters	much	less	than	the	fact	that	in	world	B
your	chances	of	being	left	completely	in	the	cold	with	nothing	are	nearly	double.

Hence,	if	we	want	to	encourage	people	in	this	hypothetical	20	year	old's	position	to	actually	contribute,	concentrating	retro	rewards	among	projects	who	did	not
already	get	rewarded	some	other	way	seems	prudent.

The	case	against	means	testing

Suppose	that	you	are	someone	who	contributes	a	small	amount	to	many	projects,	or	an	investor	seed-funding	public	good	projects	in	anticipation	of	retroactive
rewards.	In	this	case,	the	share	that	you	would	get	from	any	single	retroactive	reward	is	small.	Would	you	rather	have	a	10%	chance	of	getting	$10,100,	or	a	10%
chance	of	getting	$10,000	and	a	10%	chance	of	getting	$100?	It	really	doesn't	matter.

Furthermore,	your	chance	of	getting	rewarded	via	retroactive	funding	may	well	be	quite	disjoint	from	your	chance	of	getting	rewarded	some	other	way.	There	are
countless	stories	on	the	internet	of	people	putting	a	big	part	of	their	lives	into	a	project	when	that	project	was	non-profit	and	open-source,	seeing	that	project	go
for-profit	and	become	successful,	and	getting	absolutely	nothing	out	of	it	for	themselves.	In	all	of	these	cases,	it	doesn't	really	matter	whether	or	not	retroactive
rewards	care	on	whether	or	not	projects	are	needy.	In	fact,	it	would	probably	be	better	for	them	to	just	focus	on	judging	quality.

Means	testing	has	downsides	of	its	own.	It	would	require	badge	holders	to	expend	effort	to	determine	to	what	extent	a	project	is	well-funded	outside	the
retroactive	reward	system.	It	could	lead	to	projects	expending	effort	to	hide	their	wealth	and	appear	scrappy	to	increase	their	chance	of	getting	more	rewards.
Subjective	evaluations	of	neediness	of	recipients	could	turn	into	politicized	evaluations	of	moral	worthiness	of	recipients	that	introduce	more	controversy	into	the
mechanism.	In	the	extreme,	an	elaborate	tax	return	system	might	be	required	to	properly	enforce	fairness.

What	do	I	think?

In	general,	it	seems	like	doing	a	little	bit	of	prioritizing	projects	that	have	not	discovered	business	models	has	advantages,	but	we	should	not	do	too	much	of	that.
Projects	should	be	judged	by	their	effect	on	the	world	first	and	foremost.

Nominations
In	this	round,	anyone	could	nominate	projects	by	submitting	them	in	a	Google	form,	and	there	were	only	106	projects	nominated.	What	about	the	next	round,	now
that	people	know	for	sure	that	they	stand	a	chance	at	getting	thousands	of	dollars	in	payout?	What	about	the	round	a	year	in	the	hypothetical	future,	when	fees
from	millions	of	daily	transactions	are	paying	into	the	retro	funding	rounds,	and	individual	projects	are	getting	more	money	than	the	entire	round	is	today?

Some	kind	of	multi-level	structure	for	nominations	seems	inevitable.	There's	probably	no	need	to	enshrine	it	directly	into	the	voting	rules.	Instead,	we	can	look	at
this	as	one	particular	way	of	changing	the	structure	of	the	discussion:	nomination	rules	filter	out	the	nominations	that	badge	holders	need	to	look	at,	and	anything
the	badge	holders	do	not	look	at	will	get	zero	votes	by	default	(unless	a	badge	holder	really	cares	to	bypass	the	rules	because	they	have	their	own	reasons	to
believe	that	some	project	is	valuable).

https://en.wikipedia.org/wiki/Means_test


Some	possible	ideas:

Badge	holder	pre-approval:	for	a	proposal	to	become	visible,	it	must	be	approved	by	N	badge	holders	(eg.	N=3?).	Any	N	badge	holders	could	pre-approve
any	project;	this	is	an	anti-spam	speed	bump,	not	a	gate-keeping	sub-committee.
Require	proposers	to	provide	more	information	about	their	proposal,	justifying	it	and	reducing	the	work	badge	holders	need	to	do	to	go	through	it.	Badge
holders	would	also	appoint	a	separate	committee	and	entrust	it	with	sorting	through	these	proposals	and	forwarding	the	ones	that	follow	the	rules	and	pass	a
basic	smell	test	of	not	being	spam
Proposals	have	to	specify	a	category	(eg.	"zero	knowledge	proofs",	"games",	"India"),	and	badge	holders	who	had	declared	themselves	experts	in	that
category	would	review	those	proposals	and	forward	them	to	a	vote	only	if	they	chose	the	right	category	and	pass	a	basic	smell	test.
Proposing	requires	a	deposit	of	0.02	ETH.	If	your	proposal	gets	0	votes	(alternatively:	if	your	proposal	is	explicitly	deemed	to	be	"spam"),	your	deposit	is
lost.
Proposing	requires	a	proof-of-humanity	ID,	with	a	maximum	of	3	proposals	per	human.	If	your	proposals	get	0	votes	(alternatively:	if	any	of	your
proposals	is	explicitly	deemed	to	be	"spam"),	you	can	no	longer	submit	proposals	for	a	year	(or	you	have	to	provide	a	deposit).

Conflict	of	interest	rules
The	first	part	of	the	post-round	retrospective	discussion	was	taken	up	by	discussion	of	conflict	of	interest	rules.	The	badge	holder	instructions	include	the	following
lovely	clause:

6.	 		No	self-dealing	or	conflicts	of	interest	
RetroDAO	governance	participants	should	refrain	from	voting	on	sending	funds	to	organizations	where	any	portion	of	those	funds	is	expected	to	flow
to	them,	their	other	projects,	or	anyone	they	have	a	close	personal	or	economic	relationship	with.

As	far	as	I	can	tell,	this	was	honored.	Badge	holders	did	not	try	to	self-deal,	as	they	were	(as	far	as	I	can	tell)	good	people,	and	they	knew	their	reputations	were	on
the	line.	But	there	were	also	some	subjective	edge	cases:

Wording	issues	causing	confusion.	Some	badge	holders	wondered	about	the	word	"other":	could	badge	holders	direct	funds	to	their	own	primary	projects?
Additionally,	the	"sending	funds	to	organizations	where..."	language	does	not	strictly	prohibit	direct	transfers	to	self.	These	were	arguably	simple	mistakes	in
writing	this	clause;	the	word	"other"	should	just	be	removed	and	"organizations"	replaced	with	"addresses".
What	if	a	badge	holder	is	part	of	a	nonprofit	that	itself	gives	out	grants	to	other	projects?	Could	the	badge	holder	vote	for	that	nonprofit?	The	badge
holder	would	not	benefit,	as	the	funds	would	100%	pass-through	to	others,	but	they	could	benefit	indirectly.
What	level	of	connection	counts	as	close	connection?	Ethereum	is	a	tight-knit	community	and	the	people	qualified	to	judge	the	best	projects	are	often	at
least	to	some	degree	friends	with	the	team	or	personally	involved	in	those	projects	precisely	because	they	respect	those	projects.	When	do	those	connections
step	over	the	line?

I	don't	think	there	are	perfect	answers	to	this;	rather,	the	line	will	inevitably	be	gray	and	can	only	be	discussed	and	refined	over	time.	The	main	mechanism-design
tweaks	that	can	mitigate	it	are	(i)	increasing	the	number	of	badge	holders,	diluting	the	portion	of	them	that	can	be	insiders	in	any	single	project,	(ii)	reducing	the
rewards	going	to	projects	that	only	a	few	badge	holders	support	(my	suggestion	above	to	set	the	reward	to	\((\sum_i	\sqrt	x_i)^2\)	instead	of	\(\sum_i	\sqrt	x_i\)
would	help	here	too),	and	(iii)	making	sure	it's	possible	for	badge	holders	to	counteract	clear	abuses	if	they	do	show	up.

Should	badge	holder	votes	be	secret	ballot?
In	this	round,	badge	holder	votes	were	completely	transparent;	anyone	can	see	how	each	badge	holder	votes.	But	transparent	voting	has	a	huge	downside:	it's
vulnerable	to	bribery,	including	informal	bribery	of	the	kind	that	even	good	people	easily	succumb	to.	Badge	holders	could	end	up	supporting	projects	in	part	with
the	subconscious	motivation	of	winning	favor	with	them.	Even	more	realistically,	badge	holders	may	be	unwilling	to	make	negative	votes	even	when	they	are
justified,	because	a	public	negative	vote	could	easily	rupture	a	relationship.

Secret	ballots	are	the	natural	alternative.	Secret	ballots	are	used	widely	in	democratic	elections	where	any	citizen	(or	sometimes	resident)	can	vote,	precisely	to
prevent	vote	buying	and	more	coercive	forms	of	influencing	how	people	vote.	However,	in	typical	elections,	votes	within	executive	and	legislative	bodies	are
typically	public.	The	usual	reasons	for	this	have	to	do	with	theories	of	democratic	accountability:	voters	need	to	know	how	their	representatives	vote	so	that	they
can	choose	their	representatives	and	know	that	they	are	not	completely	lying	about	their	stated	values.	But	there's	also	a	dark	side	to	accountability:	elected
officials	making	public	votes	are	accountable	to	anyone	who	is	trying	to	bribe	them.

Secret	ballots	within	government	bodies	do	have	precedent:

The	Israeli	Knesset	uses	secret	votes	to	elect	the	president	and	a	few	other	officials
The	Italian	parliament	has	used	secret	votes	in	a	variety	of	contexts.	In	the	19th	century,	it	was	considered	an	important	way	to	protect	parliament	votes	from
interference	by	a	monarchy.
Discussions	in	US	parliaments	were	less	transparent	before	1970,	and	some	researchers	argue	that	the	switch	to	more	transparency	led	to	more	corruption.
Voting	in	juries	is	often	secret.	Sometimes,	even	the	identities	of	jurors	are	secret.

In	general,	the	conclusion	seems	to	be	that	secret	votes	in	government	bodies	have	complicated	consequences;	it's	not	clear	that	they	should	be	used	everywhere,
but	it's	also	not	clear	that	transparency	is	an	absolute	good	either.

In	the	context	of	Optimism	retro	funding	specifically,	the	main	specific	argument	I	heard	against	secret	voting	is	that	it	would	make	it	harder	for	badge	holders	to
rally	and	vote	against	other	badge	holders	making	votes	that	are	clearly	very	wrong	or	even	malicious.	Today,	if	a	few	rogue	badge	holders	start	supporting	a
project	that	has	not	provided	value	and	is	clearly	a	cash	grab	for	those	badge	holders,	the	other	badge	holders	can	see	this	and	make	negative	votes	to	counteract
this	attack.	With	secret	ballots,	it's	not	clear	how	this	could	be	done.

I	personally	would	favor	the	second	round	of	Optimism	retro	funding	using	completely	secret	votes	(except	perhaps	open	to	a	few	researchers	under	conditions	of
non-disclosure)	so	we	can	tell	what	the	material	differences	are	in	the	outcome.	Given	the	current	small	and	tight-knit	set	of	badge	holders,	dealing	with	rogue
badge	hodlers	is	likely	not	a	primary	concern,	but	in	the	future	it	will	be;	hence,	coming	up	with	a	secret	ballot	design	that	allows	counter-voting	or	some
alternative	strategy	is	an	important	research	problem.

Other	ideas	for	structuring	discussion
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The	level	of	participation	among	badge	holders	was	very	uneven.	Some	(particularly	Jeff	Coleman	and	Matt	Garnett)	put	a	lot	of	effort	into	their	participation,
publicly	expressing	their	detailed	reasoning	in	Twitter	threads	and	helping	to	set	up	calls	for	more	detailed	discussion.	Others	participated	in	the	discussion	on
Discord	and	still	others	just	voted	and	did	little	else.

There	was	a	choice	made	(ok	fine,	I	was	the	one	who	suggested	it)	that	the	#retroactive-public-goods	channel	should	be	readable	by	all	(it's	in	the	Optimism
discord),	but	to	prevent	spam	only	badge	holders	should	be	able	to	speak.	This	reduced	many	people's	ability	to	participate,	especially	ironically	enough	my	own	(I
am	not	a	badge	holder,	and	my	self-imposed	Twitter	quarantine,	which	only	allows	me	to	tweet	links	to	my	own	long-form	content,	prevented	me	from	engaging	on
Twitter).

These	two	factors	together	meant	that	there	was	not	that	much	discussion	taking	place;	certainly	less	than	I	had	been	hoping	for.	What	are	some	ways	to
encourage	more	discussion?

Some	ideas:

Badge	holders	could	vote	in	advisors,	who	cannot	vote	but	can	speak	in	the	#retroactive-public-goods	channel	and	other	badge-holder-only	meetings.
Badge	holders	could	be	required	to	explain	their	decisions,	eg.	writing	a	post	or	a	paragraph	for	each	project	they	made	votes	on.
Consider	compensating	badge	holders,	either	through	an	explicit	fixed	fee	or	through	a	norm	that	badge	holders	themselves	who	made	exceptional
contributions	to	discussion	are	eligible	for	rewards	in	future	rounds.
Add	more	discussion	formats.	If	the	number	of	badge	holders	increases	and	there	are	subgroups	with	different	specialties,	there	could	be	more	chat	rooms
and	each	of	them	could	invite	outsiders.	Another	option	is	to	create	a	dedicated	subreddit.

It's	probably	a	good	idea	to	start	experimenting	with	more	ideas	like	this.

Conclusions
Generally,	I	think	Round	1	of	Optimism	retro	funding	has	been	a	success.	Many	interesting	and	valuable	projects	were	funded,	there	was	quite	a	bit	of	discussion,
and	all	of	this	despite	it	only	being	the	first	round.

There	are	a	number	of	ideas	that	could	be	introduced	or	experimented	with	in	subsequent	rounds:

Increase	the	number	and	diversity	of	badge	holders,	while	making	sure	that	there	is	some	solution	to	the	problem	that	only	a	few	badge	holders	will	be
experts	in	any	individual	project's	domain.
Add	some	kind	of	two-layer	nomination	structure,	to	lower	the	decision-making	burden	that	the	entire	badge	holder	set	is	exposed	to
Use	secret	ballots
Add	more	discussion	channels,	and	more	ways	for	non-badge-holders	to	participate.	This	could	involve	reforming	how	existing	channels	work,	or	it
could	involve	adding	new	channels,	or	even	specialized	channels	for	specific	categories	of	projects.
Change	the	reward	formula	to	increase	variance,	from	the	current	\(\sum_i	\sqrt	x_i\)	to	the	standard	quadratic	funding	formula	of	\((\sum_i	\sqrt	x_i)	^2\).

In	the	long	term,	if	we	want	retro	funding	to	be	a	sustainable	institution,	there	is	also	the	question	of	how	new	badge	holders	are	to	be	chosen	(and,	in	cases	of
malfeasance,	how	badge	holders	could	be	removed).	Currently,	the	selection	is	centralized.	In	the	future,	we	need	some	alternative.	One	possible	idea	for	round
2	is	to	simply	allow	existing	badge	holders	to	vote	in	a	few	new	badge	holders.	In	the	longer	term,	to	prevent	it	from	being	an	insular	bureaucracy,	perhaps	one
badge	holder	each	round	could	be	chosen	by	something	with	more	open	participation,	like	a	proof-of-humanity	vote?

In	any	case,	retroactive	public	goods	funding	is	still	an	exciting	and	new	experiment	in	institutional	innovation	in	multiple	ways.	It's	an	experiment	in	non-coin-
driven	decentralized	governance,	and	it's	an	experiment	in	making	things	happen	through	retroactive,	rather	than	proactive,	incentives.	To	make	the	experiment
fully	work,	a	lot	more	innovation	will	need	to	happen	both	in	the	mechanism	itself	and	in	the	ecosystem	that	needs	to	form	around	it.	When	will	we	see	the	first
retro	funding-focused	angel	investor?	Whatever	ends	up	happening,	I'm	looking	forward	to	seeing	how	this	experiment	evolves	in	the	rounds	to	come.
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Halo	and	more:	exploring	incremental
verification	and	SNARKs	without	pairings

Special	thanks	to	Justin	Drake	and	Sean	Bowe	for	wonderfully	pedantic	and	thoughtful	feedback	and
review,	and	to	Pratyush	Mishra	for	discussion	that	contributed	to	the	original	IPA	exposition.

Readers	who	have	been	following	the	ZK-SNARK	space	closely	should	by	now	be	familiar	with	the
high	level	of	how	ZK-SNARKs	work.	ZK-SNARKs	are	based	on	checking	equations	where	the
elements	going	into	the	equations	are	mathematical	abstractions	like	polynomials	(or	in	rank-1
constraint	systems	matrices	and	vectors)	that	can	hold	a	lot	of	data.	There	are	three	major	families	of
cryptographic	technologies	that	allow	us	to	represent	these	abstractions	succinctly:	Merkle	trees	(for
FRI),	regular	elliptic	curves	(for	inner	product	arguments	(IPAs)),	and	elliptic	curves	with	pairings
and	trusted	setups	(for	KZG	commitments).	These	three	technologies	lead	to	the	three	types	of
proofs:	FRI	leads	to	STARKs,	KZG	commitments	lead	to	"regular"	SNARKs,	and	IPA-based	schemes
lead	to	bulletproofs.	These	three	technologies	have	very	distinct	tradeoffs:

Technology Cryptographic
assumptions Proof	size Verification	time

FRI Hashes	only	(quantum
safe!) Large	(10-200	kB) Medium	(poly-

logarithmic)
Inner	product
arguments	(IPAs) Basic	elliptic	curves Medium	(1-3	kB) Very	high	(linear)

KZG	commitments Elliptic	curves	+
pairings	+	trusted	setup Short	(~500	bytes) Low	(constant)

So	far,	the	first	and	the	third	have	seen	the	most	attention.	The	reason	for	this	has	to	do	with	that
pesky	right	column	in	the	second	row	of	the	table:	elliptic	curve-based	inner	product	arguments	have
linear	verification	time.	What	this	means	that	even	though	the	size	of	a	proof	is	small,	the	amount	of
time	needed	to	verify	the	proof	always	takes	longer	than	just	running	the	computation	yourself.	This
makes	IPAs	non-viable	for	scalability-related	ZK-SNARK	use	cases:	there's	no	point	in	using	an	IPA-
based	argument	to	prove	the	validity	of	an	Ethereum	block,	because	verifying	the	proof	will	take
longer	than	just	checking	the	block	yourself.	KZG	and	FRI-based	proofs,	on	the	other	hand,	really	are
much	faster	to	verify	than	doing	the	computation	yourself,	so	one	of	those	two	seems	like	the	obvious
choice.

More	recently,	however,	there	has	been	a	slew	of	research	into	techniques	for	merging
multiple	IPA	proofs	into	one.	Much	of	the	initial	work	on	this	was	done	as	part	of	designing	the
Halo	protocol	which	is	going	into	Zcash.	These	merging	techniques	are	cheap,	and	a	merged	proof
takes	no	longer	to	verify	than	a	single	one	of	the	proofs	that	it's	merging.	This	opens	a	way	forward
for	IPAs	to	be	useful:	instead	of	verifying	a	size-\(n\)	computation	with	a	proof	that	takes	still	takes	\
(O(n)\)	time	to	verify,	break	that	computation	up	into	smaller	size-\(k\)	steps,	make	\(\frac{n}{k}\)
proofs	for	each	step,	and	merge	them	together	so	the	verifier's	work	goes	down	to	a	little	more	than	\
(O(k)\).	These	techniques	also	allow	us	to	do	incremental	verification:	if	new	things	keep	being
introduced	that	need	to	be	proven,	you	can	just	keep	taking	the	existing	proof,	mixing	it	in	with	a
proof	of	the	new	statement,	and	getting	a	proof	of	the	new	combined	statement	out.	This	is	really
useful	for	verifying	the	integrity	of,	say,	an	entire	blockchain.

So	how	do	these	techniques	work,	and	what	can	they	do?	That's	exactly	what	this	post	is	about.

Background:	how	do	inner	product	arguments	work?
Inner	product	arguments	are	a	proof	scheme	that	can	work	over	many	mathematical	structures,	but
usually	we	focus	on	IPAs	over	elliptic	curve	points.	IPAs	can	be	made	over	simple	elliptic	curves,
theoretically	even	Bitcoin	and	Ethereum's	secp256k1	(though	some	special	properties	are	preferred
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to	make	FFTs	more	efficient);	no	need	for	insanely	complicated	pairing	schemes	that	despite	having
written	an	explainer	article	and	an	implementation	I	can	still	barely	understand	myself.

We'll	start	off	with	the	commitment	scheme,	typically	called	Pedersen	vector	commitments.	To	be
able	to	commit	to	degree	\(<	n\)	polynomials,	we	first	publicly	choose	a	set	of	base	points,	\(G_0	...
G_{n-1}\).	These	points	can	be	generated	through	a	pseudo-random	procedure	that	can	be	re-
executed	by	anyone	(eg.	the	x	coordinate	of	\(G_i\)	can	be	\(hash(i,	j)\)	for	the	lowest	integer	\(j	\ge	0\)
that	produces	a	valid	point);	this	is	not	a	trusted	setup	as	it	does	not	rely	on	any	specific	party	to
introduce	secret	information.

To	commit	to	a	polynomial	\(P(x)	=	\sum_i	c_i	x^i\),	the	prover	computes	\(com(P)	=	\sum_i	c_i	G_i\).
For	example,	\(com(x^2	+	4)\)	would	equal	\(G_2	+	4	*	G_0\)	(remember,	the	\(+\)	and	\(*\)	here	are
elliptic	curve	addition	and	multiplication).	Cryptographers	will	also	often	add	an	extra	\(r	\cdot	H\)
hiding	parameter	for	privacy,	but	for	simplicity	of	exposition	we'll	ignore	privacy	for	now;	in	general,
it's	not	that	hard	to	add	privacy	into	all	of	these	schemes.

Though	it's	not	really	mathematically	accurate	to	think	of	elliptic	curve	points	as	being	like	real
numbers	that	have	sizes,	area	is	nevertheless	a	good	intuition	for	thinking	about	linear	combinations

of	elliptic	curve	points	like	we	use	in	these	commitments.	The	blue	area	here	is	the	value	of	the
Pedersen	commitment	\(C	=	\sum_i	c_i	G_i\)	to	the	polynomial	\(P	=	\sum_i	c_i	x^i\).

Now,	let's	get	into	how	the	proof	works.	Our	final	goal	will	be	a	polynomial	evaluation	proof:
given	some	\(z\),	we	want	to	make	a	proof	that	\(P(z)	=	a\),	where	this	proof	can	be	verified	by	anyone
who	has	the	commitment	\(C	=	com(P)\).	But	first,	we'll	focus	on	a	simpler	task:	proving	that	\
(C\)	is	a	valid	commitment	to	any	polynomial	at	all	-	that	is,	proving	that	\(C\)	was	constructed
by	taking	a	linear	combination	\(\sum_i	c_i	G_i\)	of	the	points	\(\{G_0	...	G_{n-1}\}\),	without	anything
else	mixed	in.

Of	course,	technically	any	point	is	some	multiple	of	\(G_0\)	and	so	it's	theoretically	a	valid
commitment	of	something,	but	what	we	care	about	is	proving	that	the	prover	knows	some	\(\{c_0	...
c_{n-1}\}\)	such	that	\(\sum_i	c_i	G_i	=	C\).	A	commitment	\(C\)	cannot	commit	to	multiple	distinct
polynomials	that	the	prover	knows	about,	because	if	it	could,	that	would	imply	that	elliptic	curves	are
broken.

The	prover	could,	of	course,	just	provide	\(\{c_0	...	c_{n-1}\}\)	directly	and	let	the	verifier	check	the
commitment.	But	this	takes	too	much	space.	So	instead,	we	try	to	reduce	the	problem	to	a	smaller
problem	of	half	the	size.	The	prover	provides	two	points,	\(L\)	and	\(R\),	representing	the	yellow	and
green	areas	in	this	diagram:
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You	may	be	able	to	see	where	this	is	going:	if	you	add	\(C	+	L	+	R\)	together	(remember:	\(C\)	was
the	original	commitment,	so	the	blue	area),	the	new	combined	point	can	be	expressed	as	a	sum	of
four	squares	instead	of	eight.	And	so	now,	the	prover	could	finish	by	providing	only	four	sums,	the
widths	of	each	of	the	new	squares.	Repeat	this	protocol	two	more	times,	and	we're	down	to	a	single
full	square,	which	the	prover	can	prove	by	sending	a	single	value	representing	its	width.

But	there's	a	problem:	if	\(C\)	is	incorrect	in	some	way	(eg.	the	prover	added	some	extra	point	\(H\)
into	it),	then	the	prover	could	just	subtract	\(H\)	from	\(L\)	or	\(R\)	to	compensate	for	it.	We	plug	this
hole	by	randomly	scaling	our	points	after	the	prover	provides	\(L\)	and	\(R\):

Choose	a	random	factor	\(\alpha\)	(typically,	we	set	\(\alpha\)	to	be	the	hash	of	all	data	added	to	the
proof	so	far,	including	the	\(L\)	and	\(R\),	to	ensure	the	verifier	can	also	compute	\(\alpha\)).	Every
even	\(G_i\)	point	gets	scaled	by	\(\alpha\),	every	odd	\(G_i\)	point	gets	scaled	down	by	the	same
factor.	Every	odd	coefficient	gets	scaled	up	by	\(\alpha\)	(notice	the	flip),	and	every	even	coefficient
gets	scaled	down	by	\(\alpha\).	Now,	notice	that:

The	yellow	area	(\(L\))	gets	multiplied	by	\(\alpha^2\)	(because	every	yellow	square	is	scaled	up
by	\(\alpha\)	on	both	dimensions)
The	green	area	(\(R\))	gets	divided	by	\(\alpha^2\)	(because	every	green	square	is	scaled	down
by	\(\alpha\)	on	both	dimensions)
The	blue	area	(\(C\))	remains	unchanged	(because	its	width	is	scaled	up	but	its	height	is	scaled
down)

Hence,	we	can	generate	our	new	half-size	instance	of	the	problem	with	some	simple	transformations:

\(G'_{i}	=	\alpha	G_{2i}	+	\frac{G_{2i+1}}{\alpha}\)



\(c'_{i}	=	\frac{c_{2i}}{\alpha}	+	\alpha	c_{2i+1}\)
\(C'	=	C	+	\alpha^2	L	+	\frac{R}{\alpha^2}\)

(Note:	in	some	implementations	you	instead	do	\(G'_i	=	\alpha	G_{2i}	+	G_{2i+1}\)	and	\(c'_i	=
c_{2i}	+	\alpha	c_{2i+1}\)	without	dividing	the	odd	points	by	\(\alpha\).	This	makes	the	equation	\(C'
=	\alpha	C	+	\alpha^2	L	+	R\),	which	is	less	symmetric,	but	ensures	that	the	function	to	compute	any
\(G'\)	in	any	round	of	the	protocol	becomes	a	polynomial	without	any	division.	Yet	another	alternative
is	to	do	\(G'_i	=	\alpha	G_{2i}	+	G_{2i+1}\)	and	\(c'_i	=	c_{2i}	+	\frac{c_{2i+1}}{\alpha}\),	which
avoids	any	\(\alpha^2\)	terms.)

And	then	we	repeat	the	process	until	we	get	down	to	one	point:

Finally,	we	have	a	size-1	problem:	prove	that	the	final	modified	\(C^*\)	(in	this	diagram	it's	\(C'''\)
because	we	had	to	do	three	iterations,	but	it's	\(log(n)\)	iterations	generally)	equals	the	final	modified
\(G^*_0\)	and	\(c^*_0\).	Here,	the	prover	just	provides	\(c^*_0\)	in	the	clear,	and	the	verifier	checks	\
(c^*_0	G^*_0	=	C^*\).	Computing	\(c^*_0\)	required	being	able	to	compute	a	linear	combination	of	\
(\{c_0	...	c_{n-1}\}\)	that	was	not	known	ahead	of	time,	so	providing	it	and	verifying	it	convinces	the
verifier	that	the	prover	actually	does	know	all	the	coefficients	that	go	into	the	commitment.	This
concludes	the	proof.

Recapping:

The	statement	we	are	proving	is	that	\(C\)	is	a	commitment	to	some	polynomial	\(P(x)	=	\sum_i
c_i	x^i\)	committed	to	using	the	agreed-upon	base	points	\(\{G_0	...	G_{n-1}\}\)
The	proof	consists	of	\(log(n)\)	pairs	of	\((L,	R)\)	values,	representing	the	yellow	and	green	areas
at	each	step.	The	prover	also	provides	the	final	\(c^*_0\)
The	verifier	walks	through	the	proof,	generating	the	\(\alpha\)	value	at	each	step	using	the	same
algorithm	as	the	prover	and	computing	the	new	\(C'\)	and	\(G'_i\)	values	(the	verifier	doesn't
know	the	\(c_i\)	values	so	they	can't	compute	any	\(c'_i\)	values)
At	the	end,	they	check	whether	or	not	\(c^*_0	G^*_0	=	C^*\)

On	the	whole,	the	proof	contains	\(2	*	log(n)\)	elliptic	curve	points	and	one	number	(for	pedants:	one
field	element).	Verifying	the	proof	takes	logarithmic	time	in	every	step	except	one:	computing	the
new	\(G'_i\)	values.	This	step	is,	unfortunately,	linear.

See	also:	Dankrad	Feist's	more	detailed	explanation	of	inner	product	arguments.

https://hackmd.io/yA9DlU5YQ3WtiFxC_2LAlg
https://dankradfeist.de/ethereum/2021/07/27/inner-product-arguments.html


Extension	to	polynomial	evaluations

We	can	extend	to	polynomial	evaluations	with	a	simple	clever	trick.	Suppose	we	are	trying	to	prove	\
(P(z)	=	a\).	The	prover	and	the	verifier	can	extend	the	base	points	\(G_0	...	G_{n-1}\)	by	attaching
powers	of	\(z\)	to	them:	the	new	base	points	become	\((G_0,	1),	(G_1,	z)	...	(G_{n-1},	z^{n-1})\).
These	pairs	can	be	treated	as	mathematical	objects	(for	pedants:	group	elements)	much	like	elliptic
curve	points	themselves;	to	add	them	you	do	so	element-by-element:	\((A,	x)	+	(B,	y)	=\)	\((A	+	B,\	x	+
y)\),	using	elliptic	curve	addition	for	the	points	and	regular	field	addition	for	the	numbers.

We	can	make	a	Pedersen	commitment	using	this	extended	base!

Now,	here's	a	puzzle.	Suppose	\(P(x)	=	\sum_i	c_i	x^i\),	where	\(P(z)	=	a\),	would	have	a	commitment
\(C	=	\sum_i	c_i	G_i\)	if	we	were	to	use	the	regular	elliptic	curve	points	we	used	before	as	a	base.	If
we	use	the	pairs	\((G_i,	z^i)\)	as	a	base	instead,	the	commitment	would	be	\((C,	y)\)	for	some	\(y\).
What	must	be	the	value	of	\(y\)?

The	answer	is:	it	must	be	equal	to	\(a\)!	This	is	easy	to	see:	the	commitment	is	\((C,	y)	=	\sum_i	c_i
(G_i,	z^i)\),	which	we	can	decompose	as	\((\sum_i	c_i	G_i,\	\sum_i	c_i	z^i)\).	The	former	is	equal	to	\
(C\),	and	the	latter	is	just	the	evaluation	\(P(z)\)!

Hence,	if	\(C\)	is	a	"regular"	commitment	to	\(P\)	using	\(\{G_0	...	G_{n-1}\}\)	as	a	base,	then	to	prove
that	\(P(z)	=	a\)	we	need	only	use	the	same	protocol	above,	but	proving	that	\((C,	a)\)	is	a	valid
commitment	using	\((G_0,	1),	(G_1,	z)	...	(G_{n-1},	z^{n-1})\)	as	a	base!

Note	that	in	practice,	this	is	usually	done	slightly	differently	as	an	optimization:	instead	of	attaching
the	numbers	to	the	points	and	explicitly	dealing	with	structures	of	the	form	\((G_i,	z^i)\),	we	add
another	randomly	chosen	base	point	\(H\)	and	express	it	as	\(G_i	+	z^i	H\).	This	saves	space.

See	here	for	an	example	implementation	of	this	whole	protocol.

So,	how	do	we	combine	these	proofs?
Suppose	that	you	are	given	two	polynomial	evaluation	proofs,	with	different	polynomials	and
different	evaluation	points,	and	want	to	make	a	proof	that	they	are	both	correct.	You	have:

Proof	\(\Pi_1\)	proving	that	\(P_1(z_1)	=	y_1\),	where	\(P_1\)	is	represented	by	\(com(P_1)	=	C_1\)
Proof	\(\Pi_2\)	proving	that	\(P_2(z_2)	=	y_2\),	where	\(P_2\)	is	represented	by	\(com(P_2)	=	C_2\)

Verifying	each	proof	takes	linear	time.	We	want	to	make	a	proof	that	proves	that	both	proofs	are
correct.	This	will	still	take	linear	time,	but	the	verifier	will	only	have	to	make	one	round	of	linear	time
verification	instead	of	two.

We	start	off	with	an	observation.	The	only	linear-time	step	in	performing	the	verification	of	the	proofs
is	computing	the	\(G'_i\)	values.	This	is	\(O(n)\)	work	because	you	have	to	combine	\(\frac{n}{2}\)
pairs	of	\(G_i\)	values	into	\(G'_i\)	values,	then	\(\frac{n}{4}\)	pairs	of	\(G'_i\)	values	into	\(G''_i\)
values,	and	so	on,	for	a	total	of	\(n\)	combinations	of	pairs.	But	if	you	look	at	the	algorithm	carefully,
you	will	notice	that	we	don't	actually	need	any	of	the	intermediate	\(G'_i\)	values;	we	only	need	the
final	\(G^*_0\).	This	\(G^*_0\)	is	a	linear	combination	of	the	initial	\(G_i\)	values.	What	are	the

https://github.com/ethereum/research/blob/master/bulletproofs/ipa_commitments.py


coefficients	to	that	linear	combination?	It	turns	out	that	the	\(G_i\)	coefficient	is	the	\(X^i\)	term	of
this	polynomial:

\[(X	+	\alpha_1)	*	(X^2	+	\alpha_2)\	*\	...\	*\	(X^{\frac{n}{2}}	+	\alpha_{log(n)})	\]

This	is	using	the	\(C'	=	\alpha	C	+	\alpha^2	L	+	R\)	version	we	mentioned	above.	The	ability	to
directly	compute	\(G^*_0\)	as	a	linear	combination	already	cuts	down	our	work	to	\(O(\frac{n}
{log(n)})\)	due	to	fast	linear	combination	algorithms,	but	we	can	go	further.

The	above	polynomial	has	degree	\(n	-	1\),	with	\(n\)	nonzero	coefficients.	But	its	un-expanded	form
has	size	\(log(n)\),	and	so	you	can	evaluate	the	polynomial	at	any	point	in	\(O(log(n))\)	time.
Additionally,	you	might	notice	that	\(G^*_0\)	is	a	commitment	to	this	polynomial,	so	we	can	directly
prove	evaluations!	So	here	is	what	we	do:

The	prover	computes	the	above	polynomial	for	each	proof;	we'll	call	these	polynomials	\(K_1\)
with	\(com(K_1)	=	D_1\)	and	\(K_2\)	with	\(com(K_2)	=	D_2\).	In	a	"normal"	verification,	the
verifier	would	be	computing	\(D_1\)	and	\(D_2\)	themselves	as	these	are	just	the	\(G^*_0\)	values
for	their	respective	proofs.	Here,	the	prover	provides	\(D_1\)	and	\(D_2\)	and	the	rest	of	the	work
is	proving	that	they're	correct.
To	prove	the	correctness	of	\(D_1\)	and	\(D_2\)	we'll	prove	that	they're	correct	at	a	random
point.	We	choose	a	random	point	\(t\),	and	evaluate	both	\(e_1	=	K_1(t)\)	and	\(e_2	=	K_2(t)\)
The	prover	generates	a	random	linear	combination	\(L(x)	=	K_1(x)	+	rK_2(x)\)	(and	the	verifier
can	generate	\(com(L)	=	D_1	+	rD_2\)).	The	prover	now	just	needs	to	make	a	single	proof	that	\
(L(t)	=	e_1	+	re_2\).

The	verifier	still	needs	to	do	a	bunch	of	extra	steps,	but	all	of	those	steps	take	either	\(O(1)\)	or	\
(O(log(n))\)	work:	evaluate	\(e_1	=	K_1(t)\)	and	\(e_2	=	K_2(t)\),	calculate	the	\(\alpha_i\)	coefficients
of	both	\(K_i\)	polynomials	in	the	first	place,	do	the	elliptic	curve	addition	\(com(L)	=	D_1	+	rD_2\).
But	this	all	takes	vastly	less	than	linear	time,	so	all	in	all	we	still	benefit:	the	verifier	only	needs	to	do
the	linear-time	step	of	computing	a	\(G^*_0\)	point	themselves	once.

https://ethresear.ch/t/simple-guide-to-fast-linear-combinations-aka-multiexponentiations/7238


This	technique	can	easily	be	generalized	to	merge	\(m	>	2\)	signatures.

From	merging	IPAs	to	merging	IPA-based	SNARKs:	Halo
Now,	we	get	into	the	core	mechanic	of	the	Halo	protocol	being	integrated	in	Zcash,	which	uses	this
proof	combining	technique	to	create	a	recursive	proof	system.	The	setup	is	simple:	suppose	you	have
a	chain,	where	each	block	has	an	associated	IPA-based	SNARK	(see	here	for	how	generic	SNARKs
from	polynomial	commitments	work)	proving	its	correctness.	You	want	to	create	a	new	block,
building	on	top	of	the	previous	tip	of	the	chain.	The	new	block	should	have	its	own	IPA-based	SNARK
proving	the	correctness	of	the	block.	In	fact,	this	proof	should	cover	both	the	correctness	of	the	new
block	and	the	correctness	of	the	previous	block's	proof	of	the	correctness	of	the	entire	chain	before
it.

IPA-based	proofs	by	themselves	cannot	do	this,	because	a	proof	of	a	statement	takes	longer	to	verify
than	checking	the	statement	itself,	so	a	proof	of	a	proof	will	take	even	longer	to	verify	than	both
proofs	separately.	But	proof	merging	can	do	it!

Essentially,	we	use	the	usual	"recursive	SNARK"	technique	to	verify	the	proofs,	except	the	"proof	of	a
proof"	part	is	only	proving	the	logarithmic	part	of	the	work.	We	add	an	extra	chain	of	aggregate
proofs,	using	a	trick	similar	to	the	proof	merging	scheme	above,	to	handle	the	linear	part	of	the	work.
To	verify	the	whole	chain,	the	verifier	need	only	verify	one	linear-time	proof	at	the	very	tip	of	the
chain.

The	precise	details	are	somewhat	different	from	the	exact	proof-combining	trick	in	the	previous
section	for	efficiency	reasons.	Instead	of	using	the	proof-combining	trick	to	combine	multiple	proofs,
we	use	it	on	a	single	proof,	just	to	re-randomize	the	point	that	the	polynomial	committed	to	by	\
(G^*_0\)	needs	to	be	evaluated	at.	We	then	use	the	same	newly	chosen	evaluation	point	to	evaluate
the	polynomials	in	the	proof	of	the	block's	correctness,	which	allows	us	to	prove	the	polynomial
evaluations	together	in	a	single	IPA.

Expressed	in	math:

Let	\(P(z)	=	a\)	be	the	previous	statement	that	needs	to	be	proven
The	prover	generates	\(G^*_0\)
The	prover	proves	the	correctness	of	the	new	block	plus	the	logarithmic	work	in	the	previous
statements	by	generating	a	PLONK	proof:	\(Q_L	*	A	+	Q_R	*	B	+	Q_O	*	C	+	Q_M	*	A	*	B	+	Q_C
=	Z	*	H\)
The	prover	chooses	a	random	point	\(t\),	and	proves	the	evaluation	of	a	linear	combination	of	\(\
{G^*_0,\	Q_L,\	A,\	Q_R,\	B,\	Q_O,\	C,\	Q_M,\	Q_C,\	Z,\	H\}\)	at	\(t\).	We	can	then	check	the	above
equation,	replacing	each	polynomial	with	its	now-verified	evaluation	at	\(t\),	to	verify	the	PLONK
proof.

Incremental	verification,	more	generally

The	size	of	each	"step"	does	not	need	to	be	a	full	block	verification;	it	could	be	something	as	small	as
a	single	step	of	a	virtual	machine.	The	smaller	the	steps	the	better:	it	ensures	that	the	linear	work
that	the	verifier	ultimately	has	to	do	at	the	end	is	less.	The	only	lower	bound	is	that	each	step	has	to
be	big	enough	to	contain	a	SNARK	verifying	the	\(log(n)\)	portion	of	the	work	of	a	step.

But	regardless	of	the	fine	details,	this	mechanism	allows	us	to	make	succinct	and	easy-to-verify
SNARKs,	including	easy	support	for	recursive	proofs	that	allow	you	to	extend	proofs	in	real	time	as
the	computation	extends	and	even	have	different	provers	to	do	different	parts	of	the	proving	work,

https://eprint.iacr.org/2019/1021.pdf
https://vitalik.ca/general/2021/01/26/snarks.html
https://vitalik.ca/general/2019/09/22/plonk.html#putting-it-all-together


all	without	pairings	or	a	trusted	setup!	The	main	downside	is	some	extra	technical	complexity,
compared	with	a	"simple"	polynomial-based	proof	using	eg.	KZG-based	commitments.

Technology Cryptographic
assumptions Proof	size Verification	time

FRI Hashes	only	(quantum
safe!) Large	(10-200	kB) Medium	(poly-

logarithmic)
Inner	product
arguments	(IPAs) Basic	elliptic	curves Medium	(1-3	kB) Very	high	(linear)

KZG	commitments Elliptic	curves	+
pairings	+	trusted	setup Short	(~500	bytes) Low	(constant)

IPA	+	Halo-style
aggregation Basic	elliptic	curves Medium	(1-3	kB) Medium	(constant	but

higher	than	KZG)

Not	just	polynomials!	Merging	R1CS	proofs
A	common	alternative	to	building	SNARKs	out	of	polynomial	games	is	building	SNARKs	out	of	matrix-
vector	multiplication	games.	Polynomials	and	vectors+matrices	are	both	natural	bases	for	SNARK
protocols	because	they	are	mathematical	abstractions	that	can	store	and	compute	over	large
amounts	of	data	at	the	same	time,	and	that	admit	commitment	schemes	that	allow	verifiers	to	check
equations	quickly.

In	R1CS	(see	a	more	detailed	description	here),	an	instance	of	the	game	consists	of	three	matrices	\
(A\),	\(B\),	\(C\),	and	a	solution	is	a	vector	\(Z\)	such	that	\((A	\cdot	Z)	\circ	(B	\cdot	Z)	=	C	\cdot	Z\)
(the	problem	is	often	in	practice	restricted	further	by	requiring	the	prover	to	make	part	of	\(Z\)	public
and	requiring	the	last	entry	of	\(Z\)	to	be	1).

An	R1CS	instance	with	a	single	constraint	(so	\(A\),	\(B\)	and	\(C\)	have	width	1),	with	a	satisfying	\
(Z\)	vector,	though	notice	that	here	the	\(Z\)	appears	on	the	left	and	has	1	in	the	top	position	instead

of	the	bottom.

Just	like	with	polynomial-based	SNARKs,	this	R1CS	game	can	be	turned	into	a	proof	scheme	by
creating	commitments	to	\(A\),	\(B\)	and	\(C\),	requiring	the	prover	to	provide	a	commitment	to	(the
private	portion	of)	\(Z\),	and	using	fancy	proving	tricks	to	prove	the	equation	\((A	\cdot	Z)	\circ	(B
\cdot	Z)	=	C	\cdot	Z\),	where	\(\circ\)	is	item-by-item	multiplication,	without	fully	revealing	any	of
these	objects.	And	just	like	with	IPAs,	this	R1CS	game	has	a	proof	merging	scheme!

Ioanna	Tzialla	et	al	describe	such	a	scheme	in	a	recent	paper	(see	page	8-9	for	their	description).
They	first	modify	the	game	by	introducing	an	expanded	equation:

\[	(A	\cdot	Z)	\circ	(B	\cdot	Z)	-	u	*	(C	\cdot	Z)	=	E\]

https://vitalik.ca/general/2016/12/10/qap.html
https://eprint.iacr.org/2021/1263.pdf


For	a	"base"	instance,	\(u	=	1\)	and	\(E	=	0\),	so	we	get	back	the	original	R1CS	equation.	The	extra
slack	variables	are	added	to	make	aggregation	possible;	aggregated	instances	will	have	other	values
of	\(u\)	and	\(E\).	Now,	suppose	that	you	have	two	solutions	to	the	same	instance,	though	with
different	\(u\)	and	\(E\)	variables:

\[(A	\cdot	Z_1)	\circ	(B	\cdot	Z_1)	-	u_1	*	(C	\cdot	Z_1)	=	E_1\]

\[(A	\cdot	Z_2)	\circ	(B	\cdot	Z_2)	-	u_2	*	(C	\cdot	Z_2)	=	E_2\]

The	trick	involves	taking	a	random	linear	combination	\(Z_3	=	Z_1	+	r	Z_2\),	and	making	the
equation	work	with	this	new	value.	First,	let's	evaluate	the	left	side:

\[	(A	\cdot	(Z_1	+	rZ_2))	\circ	(B	\cdot	(Z_1	+	rZ_2))	-	(u_1	+	ru_2)*(C	\cdot	(Z_1	+	rZ_2))	\]

This	expands	into	the	following	(grouping	the	\(1\),	\(r\)	and	\(r^2\)	terms	together):

\[(A	\cdot	Z_1)	\circ	(B	\cdot	Z_1)	-	u_1	*	(C	\cdot	Z_1)\]

\[r((A	\cdot	Z_1)	\circ	(B	\cdot	Z_2)	+	(A	\cdot	Z_2)	\circ	(B	\cdot	Z_1)	-	u_1	*	(C	\cdot	Z_2)	-	u_2	*	(C
\cdot	Z_1))\]

\[r^2((A	\cdot	Z_2)	\circ	(B	\cdot	Z_2)	-	u_2	*	(C	\cdot	Z_2))\]

The	first	term	is	just	\(E_1\);	the	third	term	is	\(r^2	*	E_2\).	The	middle	term	is	very	similar	to	the
cross-term	(the	yellow	+	green	areas)	near	the	very	start	of	this	post.	The	prover	simply	provides	the
middle	term	(without	the	\(r\)	factor),	and	just	like	in	the	IPA	proof,	the	randomization	forces	the
prover	to	be	honest.

Hence,	it's	possible	to	make	merging	schemes	for	R1CS-based	protocols	too.	Interestingly	enough,
we	don't	even	technically	need	to	have	a	"succinct"	protocol	for	proving	the	\[	(A	\cdot	Z)	\circ	(B
\cdot	Z)	=	u	*	(C	\cdot	Z)	+	E\]	relation	at	the	end;	instead,	the	prover	could	just	prove	by	opening	all
the	commitments	directly!	This	would	still	be	"succinct"	because	the	verifier	would	only	need	to
verify	one	proof	that	actually	represents	an	arbitrarily	large	number	of	statements.	However,	in
practice	having	a	succinct	protocol	for	this	last	step	is	better	because	it	keeps	the	proofs	smaller,	and
Tzialla	et	al's	paper	provides	such	a	protocol	too	(see	page	10).

Recap
We	don't	know	of	a	way	to	make	a	commitment	to	a	size-\(n\)	polynomial	where	evaluations	of
the	polynomial	can	be	verified	in	\(<	O(n)\)	time	directly.	The	best	that	we	can	do	is	make	a	\
(log(n)\)	sized	proof,	where	all	of	the	work	to	verify	it	is	logarithmic	except	for	one	final	\(O(n)\)-
time	piece.
But	what	we	can	do	is	merge	multiple	proofs	together.	Given	\(m\)	proofs	of	evaluations	of	size-\
(n\)	polynomials,	you	can	make	a	proof	that	covers	all	of	these	evaluations,	that	takes
logarithmic	work	plus	a	single	size-\(n\)	polynomial	proof	to	verify.
With	some	clever	trickery,	separating	out	the	logarithmic	parts	from	the	linear	parts	of	proof
verification,	we	can	leverage	this	to	make	recursive	SNARKs.
These	recursive	SNARKs	are	actually	more	efficient	than	doing	recursive	SNARKs	"directly"!	In
fact,	even	in	contexts	where	direct	recursive	SNARKs	are	possible	(eg.	proofs	with	KZG
commitments),	Halo-style	techniques	are	typically	used	instead	because	they	are	more	efficient.
It's	not	just	about	polynomials;	other	games	used	in	SNARKs	like	R1CS	can	also	be	aggregated
in	similar	clever	ways.
No	pairings	or	trusted	setups	required!

The	march	toward	faster	and	more	efficient	and	safer	ZK-SNARKs	just	keeps	going...

https://eprint.iacr.org/2021/1263.pdf
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Crypto	Cities

Special	thanks	to	Mr	Silly	and	Tina	Zhen	for	early	feedback	on	the	post,	and	to	a	big	long	list	of	people	for	discussion	of	the	ideas.

One	interesting	trend	of	the	last	year	has	been	the	growth	of	interest	in	local	government,	and	in	the	idea	of	local	governments	that	have	wider
variance	and	do	more	experimentation.	Over	the	past	year,	Miami	mayor	Francis	Suarez	has	pursued	a	Twitter-heavy	tech-startup-like	strategy	of
attracting	interest	in	the	city,	frequently	engaging	with	the	mainstream	tech	industry	and	crypto	community	on	Twitter.	Wyoming	now	has	a	DAO-
friendly	legal	structure,	Colorado	is	experimenting	with	quadratic	voting,	and	we're	seeing	more	and	more	experiments	making	more	pedestrian-
friendly	street	environments	for	the	offline	world.	We're	even	seeing	projects	with	varying	degrees	of	radicalness	-	Cul	de	sac,	Telosa,	CityDAO,
Nkwashi,	Prospera	and	many	more	-	trying	to	create	entire	neighborhoods	and	cities	from	scratch.

Another	interesting	trend	of	the	last	year	has	been	the	rapid	mainstreaming	of	crypto	ideas	such	as	coins,	non-fungible	tokens	and	decentralized
autonomous	organizations	(DAOs).	So	what	would	happen	if	we	combine	the	two	trends	together?	Does	it	make	sense	to	have	a	city	with	a	coin,	an
NFT,	a	DAO,	some	record-keeping	on-chain	for	anti-corruption,	or	even	all	four?	As	it	turns	out,	there	are	already	people	trying	to	do	just	that:

CityCoins.co,	a	project	that	sets	up	coins	intended	to	become	local	media	of	exchange,	where	a	portion	of	the	issuance	of	the	coin	goes	to	the
city	government.	MiamiCoin	already	exists,	and	"San	Francisco	Coin"	appears	to	be	coming	soon.
Other	experiments	with	coin	issuance	(eg.	see	this	project	in	Seoul)
Experiments	with	NFTs,	often	as	a	way	of	funding	local	artists.	Busan	is	hosting	a	government-backed	conference	exploring	what	they	could	do
with	NFTs.
Reno	mayor	Hillary	Schieve's	expansive	vision	for	blockchainifying	the	city,	including	NFT	sales	to	support	local	art,	a	RenoDAO	with
RenoCoins	issued	to	local	residents	that	could	get	revenue	from	the	government	renting	out	properties,	blockchain-secured	lotteries,	blockchain
voting	and	more.
Much	more	ambitious	projects	creating	crypto-oriented	cities	from	scratch:	see	CityDAO,	which	describes	itself	as,	well,	"building	a	city	on
the	Ethereum	blockchain"	-	DAOified	governance	and	all.

But	are	these	projects,	in	their	current	form,	good	ideas?	Are	there	any	changes	that	could	make	them	into	better	ideas?	Let	us	find	out...

Why	should	we	care	about	cities?
Many	national	governments	around	the	world	are	showing	themselves	to	be	inefficient	and	slow-moving	in	response	to	long-running	problems	and
rapid	changes	in	people's	underlying	needs.	In	short,	many	national	governments	are	missing	live	players.	Even	worse,	many	of	the	outside-the-box
political	ideas	that	are	being	considered	or	implemented	for	national	governance	today	are	honestly	quite	terrifying.	Do	you	want	the	USA	to	be	taken
over	by	a	clone	of	WW2-era	Portuguese	dictator	Antonio	Salazar,	or	perhaps	an	"American	Caesar",	to	beat	down	the	evil	scourge	of	American	leftism?
For	every	idea	that	can	be	reasonably	described	as	freedom-expanding	or	democratic,	there	are	ten	that	are	just	different	forms	of	centralized	control
and	walls	and	universal	surveillance.

Now	consider	local	governments.	Cities	and	states,	as	we've	seen	from	the	examples	at	the	start	of	this	post,	are	at	least	in	theory	capable
of	genuine	dynamism.	There	are	large	and	very	real	differences	of	culture	between	cities,	so	it's	easier	to	find	a	single	city	where	there	is	public
interest	in	adopting	any	particular	radical	idea	than	it	is	to	convince	an	entire	country	to	accept	it.	There	are	very	real	challenges	and	opportunities	in
local	public	goods,	urban	planning,	transportation	and	many	other	sectors	in	the	governance	of	cities	that	could	be	addressed.	Cities	have	tightly
cohesive	internal	economies	where	things	like	widespread	cryptocurrency	adoption	could	realistically	independently	happen.	Furthermore,	it's	less
likely	that	experiments	within	cities	will	lead	to	terrible	outcomes	both	because	cities	are	regulated	by	higher-level	governments	and	because	cities
have	an	easier	escape	valve:	people	who	are	unhappy	with	what's	going	on	can	more	easily	exit.

So	all	in	all,	it	seems	like	the	local	level	of	government	is	a	very	undervalued	one.	And	given	that	criticism	of	existing	smart	city	initiatives	often	heavily
focuses	on	concerns	around	centralized	governance,	lack	of	transparency	and	data	privacy,	blockchain	and	cryptographic	technologies	seem	like	a
promising	key	ingredient	for	a	more	open	and	participatory	way	forward.

What	are	city	projects	up	to	today?
Quite	a	lot	actually!	Each	of	these	experiments	is	still	small	scale	and	largely	still	trying	to	find	its	way	around,	but	they	are	all	at	least	seeds	that	could
turn	into	interesting	things.	Many	of	the	most	advanced	projects	are	in	the	United	States,	but	there	is	interest	across	the	world;	over	in	Korea	the
government	of	Busan	is	running	an	NFT	conference.	Here	are	a	few	examples	of	what	is	being	done	today.

Blockchain	experiments	in	Reno

Reno,	Nevada	mayor	Hillary	Schieve	is	a	blockchain	fan,	focusing	primarily	on	the	Tezos	ecosystem,	and	she	has	recently	been	exploring	blockchain-
related	ideas	(see	her	podcast	here)	in	the	governance	of	her	city:

Selling	NFTs	to	fund	local	art,	starting	with	an	NFT	of	the	"Space	Whale"	sculpture	in	the	middle	of	the	city
Creating	a	Reno	DAO,	governed	by	Reno	coins	that	Reno	residents	would	be	eligible	to	receive	via	an	airdrop.	The	Reno	DAO	could	start	to	get
sources	of	revenue;	one	proposed	idea	was	the	city	renting	out	properties	that	it	owns	and	the	revenue	going	into	a	DAO
Using	blockchains	to	secure	all	kinds	of	processes:	blockchain-secured	random	number	generators	for	casinos,	blockchain-secured	voting,
etc.

Reno	space	whale.	Source	here.
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CityCoins.co

CityCoins.co	is	a	project	built	on	Stacks,	a	blockchain	run	by	an	unusual	"proof	of	transfer"	(for	some	reason	abbreviated	PoX	and	not	PoT)	block
production	algorithm	that	is	built	around	the	Bitcoin	blockchain	and	ecosystem.	70%	of	the	coin's	supply	is	generated	by	an	ongoing	sale	mechanism:
anyone	with	STX	(the	Stacks	native	token)	can	send	their	STX	to	the	city	coin	contract	to	generate	city	coins;	the	STX	revenues	are	distributed	to
existing	city	coin	holders	who	stake	their	coins.	The	remaining	30%	is	made	available	to	the	city	government.

CityCoins	has	made	the	interesting	decision	of	trying	to	make	an	economic	model	that	does	not	depend	on	any	government	support.	The
local	government	does	not	need	to	be	involved	in	creating	a	CityCoins.co	coin;	a	community	group	can	launch	a	coin	by	themselves.	An	FAQ-provided
answer	to	"What	can	I	do	with	CityCoins?"	includes	examples	like	"CityCoins	communities	will	create	apps	that	use	tokens	for	rewards"	and	"local
businesses	can	provide	discounts	or	benefits	to	people	who	...	stack	their	CityCoins".	In	practice,	however,	the	MiamiCoin	community	is	not	going	at	it
alone;	the	Miami	government	has	already	de-facto	publicly	endorsed	it.

MiamiCoin	hackathon	winner:	a	site	that	allows	coworking	spaces	to	give	preferential	offers	to	MiamiCoin	holders.

CityDAO

CityDAO	is	the	most	radical	of	the	experiments:	Unlike	Miami	and	Reno,	which	are	existing	cities	with	existing	infrastructure	to	be	upgraded	and
people	to	be	convinced,	CityDAO	a	DAO	with	legal	status	under	the	Wyoming	DAO	law	(see	their	docs	here)	trying	to	create	entirely	new	cities	from
scratch.

So	far,	the	project	is	still	in	its	early	stages.	The	team	is	currently	finalizing	a	purchase	of	their	first	plot	of	land	in	a	far-off	corner	of	Wyoming.	The
plan	is	to	start	with	this	plot	of	land,	and	then	add	other	plots	of	land	in	the	future,	to	build	cities,	governed	by	a	DAO	and	making	heavy	use	of	radical
economic	ideas	like	Harberger	taxes	to	allocate	the	land,	make	collective	decisions	and	manage	resources.	Their	DAO	is	one	of	the	progressive	few
that	is	avoiding	coin	voting	governance;	instead,	the	governance	is	a	voting	scheme	based	on	"citizen"	NFTs,	and	ideas	have	been	floated	to	further
limit	votes	to	one-per-person	by	using	proof-of-humanity	verification.	The	NFTs	are	currently	being	sold	to	crowdfund	the	project;	you	can	buy	them	on
OpenSea.

What	do	I	think	cities	could	be	up	to?
Obviously	there	are	a	lot	of	things	that	cities	could	do	in	principle.	They	could	add	more	bike	lanes,	they	could	use	CO2	meters	and	far-UVC	light	to
more	effectively	reduce	COVID	spread	without	inconveniencing	people,	and	they	could	even	fund	life	extension	research.	But	my	primary	specialty	is
blockchains	and	this	post	is	about	blockchains,	so...	let's	focus	on	blockchains.

I	would	argue	that	there	are	two	distinct	categories	of	blockchain	ideas	that	make	sense:

1.	 Using	blockchains	to	create	more	trusted,	transparent	and	verifiable	versions	of	existing	processes.
2.	 Using	blockchains	to	implement	new	and	experimental	forms	of	ownership	for	land	and	other	scarce	assets,	as	well	as	new	and

experimental	forms	of	democratic	governance.

There's	a	natural	fit	between	blockchains	and	both	of	these	categories.	Anything	happening	on	a	blockchain	is	very	easy	to	publicly	verify,	with	lots	of
ready-made	freely	available	tools	to	help	people	do	that.	Any	application	built	on	a	blockchain	can	immediately	plug	in	to	and	interface	with	other
applications	in	the	entire	global	blockchain	ecosystem.	Blockchain-based	systems	are	efficient	in	a	way	that	paper	is	not,	and	publicly	verifiable	in	a
way	that	centralized	computing	systems	are	not	-	a	necessary	combination	if	you	want	to,	say,	make	a	new	form	of	voting	that	allows	citizens	to	give
high-volume	real-time	feedback	on	hundreds	or	thousands	of	different	issues.
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So	let's	get	into	the	specifics.

What	are	some	existing	processes	that	blockchains	could	make	more	trusted	and	transparent?

One	simple	idea	that	plenty	of	people,	including	government	officials	around	the	world,	have	brought	up	to	me	on	many	occasions	is	the	idea	of
governments	creating	a	whitelisted	internal-use-only	stablecoin	for	tracking	internal	government	payments.	Every	tax	payment	from	an	individual	or
organization	could	be	tied	to	a	publicly	visible	on-chain	record	minting	that	number	of	coins	(if	we	want	individual	tax	payment	quantities	to	be	private,
there	are	zero-knowledge	ways	to	make	only	the	total	public	but	still	convince	everyone	that	it	was	computed	correctly).	Transfers	between
departments	could	be	done	"in	the	clear",	and	the	coins	would	be	redeemed	only	by	individual	contractors	or	employees	claiming	their	payments	and
salaries.

This	system	could	easily	be	extended.	For	example,	procurement	processes	for	choosing	which	bidder	wins	a	government	contract	could	largely	be
done	on-chain.

Many	more	processes	could	be	made	more	trustworthy	with	blockchains:

Fair	random	number	generators	(eg.	for	lotteries)	-	VDFs,	such	as	the	one	Ethereum	is	expected	to	include,	could	serve	as	a	fair	random
number	generator	that	could	be	used	to	make	government-run	lotteries	more	trustworthy.	Fair	randomness	could	also	be	used	for	many	other	use
cases,	such	as	sortition	as	a	form	of	government.
Certificates,	for	example	cryptographic	proofs	that	some	particular	individual	is	a	resident	of	the	city,	could	be	done	on-chain	for	added
verifiability	and	security	(eg.	if	such	certificates	are	issued	on-chain,	it	would	become	obvious	if	a	large	number	of	false	certificates	are	issued).
This	can	be	used	by	all	kinds	of	local-government-issued	certificates.
Asset	registries,	for	land	and	other	assets,	as	well	as	more	complicated	forms	of	property	ownership	such	as	development	rights.	Due	to	the
need	for	courts	to	be	able	to	make	assignments	in	exceptional	situations,	these	registries	will	likely	never	be	fully	decentralized	bearer
instruments	in	the	same	way	that	cryptocurrencies	are,	but	putting	records	on-chain	can	still	make	it	easier	to	see	what	happened	in	what	order
in	a	dispute.

Eventually,	even	voting	could	be	done	on-chain.	Here,	many	complexities	and	dragons	loom	and	it's	really	important	to	be	careful;	a	sophisticated
solution	combining	blockchains,	zero	knowledge	proofs	and	other	cryptography	is	needed	to	achieve	all	the	desired	privacy	and	security	properties.
However,	if	humanity	is	ever	going	to	move	to	electronic	voting	at	all,	local	government	seems	like	the	perfect	place	to	start.

What	are	some	radical	economic	and	governance	experiments	that	could	be	interesting?
But	in	addition	to	these	kinds	of	blockchain	overlays	onto	things	that	governments	already	do,	we	can	also	look	at	blockchains	as	an	opportunity	for
governments	to	make	completely	new	and	radical	experiments	in	economics	and	governance.	These	are	not	necessarily	final	ideas	on	what	I	think
should	be	done;	they	are	more	initial	explorations	and	suggestions	for	possible	directions.	Once	an	experiment	starts,	real-world	feedback	is	often	by
far	the	most	useful	variable	to	determine	how	the	experiment	should	be	adjusted	in	the	future.

Experiment	#1:	a	more	comprehensive	vision	of	city	tokens

CityCoins.co	is	one	vision	for	how	city	tokens	could	work.	But	it	is	far	from	the	only	vision.	Indeed,	the	CityCoins.so	approach	has	significant	risks,
particularly	in	how	economic	model	is	heavily	tilted	toward	early	adopters.	70%	of	the	STX	revenue	from	minting	new	coins	is	given	to	existing	stakers
of	the	city	coin.	More	coins	will	be	issued	in	the	next	five	years	than	in	the	fifty	years	that	follow.	It's	a	good	deal	for	the	government	in	2021,	but	what
about	2051?	Once	a	government	endorses	a	particular	city	coin,	it	becomes	difficult	for	it	to	change	directions	in	the	future.	Hence,	it's	important	for
city	governments	to	think	carefully	about	these	issues,	and	choose	a	path	that	makes	sense	for	the	long	term.

Here	is	a	different	possible	sketch	of	a	narrative	of	how	city	tokens	might	work.	It's	far	from	the	only	possible	alternative	to	the	CityCoins.co
vision;	see	Steve	Waldman's	excellent	article	arguing	for	a	city-localized	medium	of	exchange	for	yet	another	possible	direction.	In	any	case,	city
tokens	are	a	wide	design	space,	and	there	are	many	different	options	worth	considering.	Anyway,	here	goes...

The	concept	of	home	ownership	in	its	current	form	is	a	notable	double-edged	sword,	and	the	specific	ways	in	which	it's	actively	encouraged	and	legally
structured	is	considered	by	many	to	be	one	of	the	biggest	economic	policy	mistakes	that	we	are	making	today.	There	is	an	inevitable	political
tension	between	a	home	as	a	place	to	live	and	a	home	as	an	investment	asset,	and	the	pressure	to	satisfy	communities	who	care	about	the
latter	often	ends	up	severely	harming	the	affordability	of	the	former.	A	resident	in	a	city	either	owns	a	home,	making	them	massively	over-exposed	to
land	prices	and	introducing	perverse	incentives	to	fight	against	construction	of	new	homes,	or	they	rent	a	home,	making	them	negatively	exposed	to
the	real	estate	market	and	thus	putting	them	economically	at	odds	with	the	goal	of	making	a	city	a	nice	place	to	live.

But	even	despite	all	of	these	problems,	many	still	find	home	ownership	to	be	not	just	a	good	personal	choice,	but	something	worthy	of	actively
subsidizing	or	socially	encouraging.	One	big	reason	is	that	it	nudges	people	to	save	money	and	build	up	their	net	worth.	Another	big	reason	is	that
despite	its	flaws,	it	creates	economic	alignment	between	residents	and	the	communities	they	live	in.	But	what	if	we	could	give	people	a	way	to
save	and	create	that	economic	alignment	without	the	flaws?	What	if	we	could	create	a	divisible	and	fungible	city	token,	that	residents	could	hold
as	many	units	of	as	they	can	afford	or	feel	comfortable	with,	and	whose	value	goes	up	as	the	city	prospers?

First,	let's	start	with	some	possible	objectives.	Not	all	are	necessary;	a	token	that	accomplishes	only	three	of	the	five	is	already	a	big	step	forward.	But
we'll	try	to	hit	as	many	of	them	as	possible:

Get	sustainable	sources	of	revenue	for	the	government.	The	city	token	economic	model	should	avoid	redirecting	existing	tax	revenue;
instead,	it	should	find	new	sources	of	revenue.
Create	economic	alignment	between	residents	and	the	city.	This	means	first	of	all	that	the	coin	itself	should	clearly	become	more	valuable
as	the	city	becomes	more	attractive.	But	it	also	means	that	the	economics	should	actively	encourage	residents	to	hold	the	coin	more	than	faraway
hedge	funds.
Promote	saving	and	wealth-building.	Home	ownership	does	this:	as	home	owners	make	mortgage	payments,	they	build	up	their	net	worth	by
default.	City	tokens	could	do	this	too,	making	it	attractive	to	accumulate	coins	over	time,	and	even	gamifying	the	experience.
Encourage	more	pro-social	activity,	such	as	positive	actions	that	help	the	city	and	more	sustainable	use	of	resources.
Be	egalitarian.	Don't	unduly	favor	wealthy	people	over	poor	people	(as	badly	designed	economic	mechanisms	often	do	accidentally).	A	token's
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divisibility,	avoiding	a	sharp	binary	divide	between	haves	and	have-nots,	does	a	lot	already,	but	we	can	go	further,	eg.	by	allocating	a	large
portion	of	new	issuance	to	residents	as	a	UBI.

One	pattern	that	seems	to	easily	meet	the	first	three	objectives	is	providing	benefits	to	holders:	if	you	hold	at	least	X	coins	(where	X	can	go	up	over
time),	you	get	some	set	of	services	for	free.	MiamiCoin	is	trying	to	encourage	businesses	to	do	this,	but	we	could	go	further	and	make	government
services	work	this	way	too.	One	simple	example	would	be	making	existing	public	parking	spaces	only	available	for	free	to	those	who	hold	at	least	some
number	of	coins	in	a	locked-up	form.	This	would	serve	a	few	goals	at	the	same	time:

Create	an	incentive	to	hold	the	coin,	sustaining	its	value.
Create	an	incentive	specifically	for	residents	to	hold	the	coin,	as	opposed	to	otherwise-unaligned	faraway	investors.	Furthermore,	the
incentive's	usefulness	is	capped	per-person,	so	it	encourages	widely	distributed	holdings.
Creates	economic	alignment	(city	becomes	more	attractive	->	more	people	want	to	park	->	coins	have	more	value).	Unlike	home	ownership,
this	creates	alignment	with	an	entire	town,	and	not	merely	a	very	specific	location	in	a	town.
Encourage	sustainable	use	of	resources:	it	would	reduce	usage	of	parking	spots	(though	people	without	coins	who	really	need	them	could	still
pay),	supporting	many	local	governments'	desires	to	open	up	more	space	on	the	roads	to	be	more	pedestrian-friendly.	Alternatively,	restaurants
could	also	be	allowed	to	lock	up	coins	through	the	same	mechanism	and	claim	parking	spaces	to	use	for	outdoor	seating.

But	to	avoid	perverse	incentives,	it's	extremely	important	to	avoid	overly	depending	on	one	specific	idea	and	instead	to	have	a	diverse	array	of	possible
revenue	sources.	One	excellent	gold	mine	of	places	to	give	city	tokens	value,	and	at	the	same	time	experiment	with	novel	governance
ideas,	is	zoning.	If	you	hold	at	least	Y	coins,	then	you	can	quadratically	vote	on	the	fee	that	nearby	landowners	have	to	pay	to	bypass	zoning
restrictions.	This	hybrid	market	+	direct	democracy	based	approach	would	be	much	more	efficient	than	current	overly	cumbersome	permitting
processes,	and	the	fee	itself	would	be	another	source	of	government	revenue.	More	generally,	any	of	the	ideas	in	the	next	section	could	be	combined
with	city	tokens	to	give	city	token	holders	more	places	to	use	them.

Experiment	#2:	more	radical	and	participatory	forms	of	governance

This	is	where	Radical	Markets	ideas	such	as	Harberger	taxes,	quadratic	voting	and	quadratic	funding	come	in.	I	already	brought	up	some	of	these
ideas	in	the	section	above,	but	you	don't	have	to	have	a	dedicated	city	token	to	do	them.	Some	limited	government	use	of	quadratic	voting	and	funding
has	already	happened:	see	the	Colorado	Democratic	party	and	the	Taiwanese	presidential	hackathon,	as	well	as	not-yet-government-backed
experiments	like	Gitcoin's	Boulder	Downtown	Stimulus.	But	we	could	do	more!

One	obvious	place	where	these	ideas	can	have	long-term	value	is	giving	developers	incentives	to	improve	the	aesthetics	of	buildings	that	they	are
building	(see	here,	here,	here	and	here	for	some	recent	examples	of	professional	blabbers	debating	the	aesthetics	of	modern	architecture).	Harberger
taxes	and	other	mechanisms	could	be	used	to	radically	reform	zoning	rules,	and	blockchains	could	be	used	to	administer	such	mechanisms	in	a	more
trustworthy	and	efficient	way.	Another	idea	that	is	more	viable	in	the	short	term	is	subsidizing	local	businesses,	similar	to	the	Downtown	Stimulus
but	on	a	larger	and	more	permanent	scale.	Businesses	produce	various	kinds	of	positive	externalities	in	their	local	communities	all	the	time,	and	those
externalities	could	be	more	effectively	rewarded.	Local	news	could	be	quadratically	funded,	revitalizing	a	long-struggling	industry.	Pricing	for
advertisements	could	be	set	based	on	real-time	votes	of	how	much	people	enjoy	looking	at	each	particular	ad,	encouraging	more	originality	and
creativity.

More	democratic	feedback	(and	possibly	even	retroactive	democratic	feedback!)	could	plausibly	create	better	incentives	in	all	of	these	areas.	And
21st-century	digital	democracy	through	real-time	online	quadratic	voting	and	funding	could	plausibly	do	a	much	better	job	than	20th-
century	democracy,	which	seems	in	practice	to	have	been	largely	characterized	by	rigid	building	codes	and	obstruction	at	planning	and
permitting	hearings.	And	of	course,	if	you're	going	to	use	blockchains	to	secure	voting,	starting	off	by	doing	it	with	fancy	new	kinds	of	votes	seems
far	more	safe	and	politically	feasible	than	re-fitting	existing	voting	systems.

Mandatory	solarpunk	picture	intended	to	evoke	a	positive	image	of	what	might	happen	to	our	cities	if	real-time	quadratic	votes	could	set	subsidies	and
prices	for	everything.

Conclusions
There	are	a	lot	of	worthwhile	ideas	for	cities	to	experiment	with	that	could	be	attempted	by	existing	cities	or	by	new	cities.	New	cities	of	course	have
the	advantage	of	not	having	existing	residents	with	existing	expectations	of	how	things	should	be	done;	but	the	concept	of	creating	a	new	city	itself	is,
in	modern	times,	relatively	untested.	Perhaps	the	multi-billion-dollar	capital	pools	in	the	hands	of	people	and	projects	enthusiastic	to	try	new	things
could	get	us	over	the	hump.	But	even	then,	existing	cities	will	likely	continue	to	be	the	place	where	most	people	live	for	the	foreseeable	future,	and
existing	cities	can	use	these	ideas	too.

Blockchains	can	be	very	useful	in	both	the	more	incremental	and	more	radical	ideas	that	were	proposed	here,	even	despite	the
inherently	"trusted"	nature	of	a	city	government.	Running	any	new	or	existing	mechanism	on-chain	gives	the	public	an	easy	ability	to	verify	that
everything	is	following	the	rules.	Public	chains	are	better:	the	benefits	from	existing	infrastructure	for	users	to	independently	verify	what	is	going	on
far	outweigh	the	losses	from	transaction	fees,	which	are	expected	to	quickly	decrease	very	soon	from	rollups	and	sharding.	If	strong	privacy	is
required,	blockchains	can	be	combined	zero	knowledge	cryptography	to	give	privacy	and	security	at	the	same	time.

The	main	trap	that	governments	should	avoid	is	too	quickly	sacrificing	optionality.	An	existing	city	could	fall	into	this	trap	by	launching	a	bad
city	token	instead	of	taking	things	more	slowly	and	launching	a	good	one.	A	new	city	could	fall	into	this	trap	by	selling	off	too	much	land,	sacrificing
the	entire	upside	to	a	small	group	of	early	adopters.	Starting	with	self-contained	experiments,	and	taking	things	slowly	on	moves	that	are	truly
irreversible,	is	ideal.	But	at	the	same	time,	it's	also	important	to	seize	the	opportunity	in	the	first	place.	There's	a	lot	that	can	and	should	be	improved
with	cities,	and	a	lot	of	opportunities;	despite	the	challenges,	crypto	cities	broadly	are	an	idea	whose	time	has	come.
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On	Nathan	Schneider	on	the	limits	of
cryptoeconomics

Nathan	Schneider	has	recently	released	an	article	describing	his	perspectives	on	cryptoeconomics,
and	particularly	on	the	limits	of	cryptoeconomic	approaches	to	governance	and	what
cryptoeconomics	could	be	augmented	with	to	improve	its	usefulness.	This	is,	of	course,	a	topic	that	is
dear	to	me	([1]	[2]	[3]	[4]	[5]),	so	it	is	heartening	to	see	someone	else	take	the	blockchain	space
seriously	as	an	intellectual	tradition	and	engage	with	the	issues	from	a	different	and	unique
perspective.

The	main	question	that	Nathan's	piece	is	trying	to	explore	is	simple.	There	is	a	large	body	of
intellectual	work	that	criticizes	a	bubble	of	concepts	that	they	refer	to	as	"economization",
"neoliberalism"	and	similar	terms,	arguing	that	they	corrode	democratic	political	values	and	leave
many	people's	needs	unmet	as	a	result.	The	world	of	cryptocurrency	is	very	economic	(lots	of	tokens
flying	around	everywhere,	with	lots	of	functions	being	assigned	to	those	tokens),	very	neo	(the	space
is	12	years	old!)	and	very	liberal	(freedom	and	voluntary	participation	are	core	to	the	whole	thing).
Do	these	critiques	also	apply	to	blockchain	systems?	If	so,	what	conclusions	should	we	draw,	and
how	could	blockchain	systems	be	designed	to	account	for	these	critiques?	Nathan's	answer:	more
hybrid	approaches	combining	ideas	from	both	economics	and	politics.	But	what	will	it	actually	take	to
achieve	that,	and	will	it	give	the	results	that	we	want?	My	answer:	yes,	but	there's	a	lot	of	subtleties
involved.

What	are	the	critiques	of	neoliberalism	and	economic	logic?
Near	the	beginning	of	Nathan's	piece,	he	describes	the	critiques	of	overuse	of	economic	logic	briefly.
That	said,	he	does	not	go	much	further	into	the	underlying	critiques	himself,	preferring	to	point	to
other	sources	that	have	already	covered	the	issue	in	depth:

The	economics	in	cryptoeconomics	raises	a	particular	set	of	anxieties.	Critics	have	long
warned	against	the	expansion	of	economic	logics,	crowding	out	space	for	vigorous	politics
in	public	life.	From	the	Zapatista	insurgents	of	southern	Mexico	(Hayden,	2002)	to	political
theorists	like	William	Davies	(2014)	and	Wendy	Brown	(2015),	the	"neoliberal"	aspiration
for	economics	to	guide	all	aspects	of	society	represents	a	threat	to	democratic	governance
and	human	personhood	itself.	Here	is	Brown:

Neoliberalism	transmogrifies	every	human	domain	and	endeavor,	along	with
humans	themselves,	according	to	a	specific	image	of	the	economic.	All	conduct	is
economic	conduct;	all	spheres	of	existence	are	framed	and	measured	by
economic	terms	and	metrics,	even	when	those	spheres	are	not	directly
monetized.	In	neoliberal	reason	and	in	domains	governed	by	it,	we	are	only	and
everywhere	homo	oeconomicus	(p.	10)

For	Brown	and	other	critics	of	neoliberalism,	the	ascent	of	the	economic	means	the	decline
of	the	political—the	space	for	collective	determinations	of	the	common	good	and	the	means
of	getting	there.

At	this	point,	it's	worth	pointing	out	that	the	"neoliberalism"	being	criticized	here	is	not	the	same	as
the	"neoliberalism"	that	is	cheerfully	promoted	by	the	lovely	folks	at	The	Neoliberal	Project;	the	thing
being	critiqued	here	is	a	kind	of	"enough	two-party	trade	can	solve	everything"	mentality,	whereas
The	Neoliberal	Project	favors	a	mix	of	markets	and	democracy.	But	what	is	the	thrust	of	the	critique
that	Nathan	is	pointing	to?	What's	the	problem	with	everyone	acting	much	more	like	homo
oeconomicus?	For	this,	we	can	take	a	detour	and	peek	into	the	source,	Wendy	Brown's	Undoing	the
Demos,	itself.	The	book	helpfully	provides	a	list	of	the	top	"four	deleterious	effects"	(the	below	are
reformatted	and	abridged	but	direct	quotes):

Intensified	inequality,	in	which	the	very	top	strata	acquires	and	retains	ever	more
wealth,	the	very	bottom	is	literally	turned	out	on	the	streets	or	into	the	growing	urban
and	sub-urban	slums	of	the	world,	while	the	middle	strata	works	more	hours	for	less
pay,	fewer	benefits,	less	security...
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Crass	or	unethical	commercialization	of	things	and	activities	considered
inappropriate	for	marketization.	The	claim	is	that	marketization	contributes	to	human
exploitation	or	degradation,	[...]	limits	or	stratifies	access	to	what	ought	to	be	broadly
accessible	and	shared,	[...]	or	because	it	enables	something	intrinsically	horrific	or
severely	denigrating	to	the	planet.
Ever-growing	intimacy	of	corporate	and	finance	capital	with	the	state,	and
corporate	domination	of	political	decisions	and	economic	policy
Economic	havoc	wreaked	on	the	economy	by	the	ascendance	and	liberty	of
finance	capital,	especially	the	destabilizing	effects	of	the	inherent	bubbles	and	other
dramatic	fluctuations	of	financial	markets.

The	bulk	of	Nathan's	article	follows	along	with	analyses	of	how	these	issues	affect	DAOs	and
governance	mechanisms	within	the	crypto	space	specifically.	Nathan	focuses	on	three	key	problems:

Plutocracy:	"Those	with	more	tokens	than	others	hold	more	[I	would	add,	disproportionately
more]	decision-making	power	than	others..."
Limited	exposure	to	diverse	motivations:	"Cryptoeconomics	sees	only	a	certain	slice	of	the
people	involved.	Concepts	such	as	self-	sacrifice,	duty,	and	honor	are	bedrock	features	of	most
political	and	business	organizations,	but	difficult	to	simulate	or	approximate	with
cryptoeconomic	incentive	design"
Positive	and	negative	externalities:	"Environmental	costs	are	classic	externalities—invisible
to	the	feedback	loops	that	the	system	understands	and	that	communicate	to	its	users	as
incentives	...	the	challenge	of	funding"public	goods"	is	another	example	of	an	externality	-	and
one	that	threatens	the	sustainability	of	crypteconomic	systems"

The	natural	questions	that	arise	for	me	are	(i)	to	what	extent	do	I	agree	with	this	critique	at	all	and
how	it	fits	in	with	my	own	thinking,	and	(ii)	how	does	this	affect	blockchains,	and	what	do	blockchain
protocols	need	to	actually	do	to	avoid	these	traps?

What	do	I	think	of	the	critiques	of	neoliberalism	generally?

I	disagree	with	some,	agree	with	others.	I	have	always	been	suspicious	of	criticism	of	"crass	and
unethical	commercialization",	because	it	frequently	feels	like	the	author	is	attempting	to	launder
their	own	feelings	of	disgust	and	aesthetic	preferences	into	grand	ethical	and	political	ideologies	-	a
sin	common	among	all	such	ideologies,	often	the	right	(random	example	here)	even	more	than	the
left.	Back	in	the	days	when	I	had	much	less	money	and	would	sometimes	walk	a	full	hour	to	the
airport	to	avoid	a	taxi	fare,	I	remember	thinking	that	I	would	love	to	get	compensated	for	donating
blood	or	using	my	body	for	clinical	trials.	And	so	to	me,	the	idea	that	such	transactions	are	inhuman
exploitation	has	never	been	appealing.

But	at	the	same	time,	I	am	far	from	a	Walter	Block-style	defender	of	all	locally-voluntary	two-party
commerce.	I've	written	up	my	own	viewpoints	expressing	similar	concerns	to	parts	of	Wendy	Brown's
list	in	various	articles:

Multiple	pieces	decrying	the	evils	of	vote	buying,	or	even	financialized	governance	generally
The	importance	of	public	goods	funding.
Failure	modes	in	financial	markets	due	to	subtle	issues	like	capital	efficiency.

So	where	does	my	own	opposition	to	mixing	finance	and	governance	come	from?	This	is	a
complicated	topic,	and	my	conclusions	are	in	large	part	a	result	of	my	own	failure	after	years	of
attempts	to	find	a	financialized	governance	mechanism	that	is	economically	stable.	So	here	goes...

Finance	is	the	absence	of	collusion	prevention
Out	of	the	standard	assumptions	in	what	gets	pejoratively	called	"spherical	cow	economics",	people
normally	tend	to	focus	on	the	unrealistic	nature	of	perfect	information	and	perfect	rationality.	But
the	unrealistic	assumption	that	is	hidden	in	the	list	that	strikes	me	as	even	more	misleading	is
individual	choice:	the	idea	that	each	agent	is	separately	making	their	own	decisions,	no	agent	has	a
positive	or	negative	stake	in	another	agent's	outcomes,	and	there	are	no	"side	games";	the	only	thing
that	sees	each	agent's	decisions	is	the	black	box	that	we	call	"the	mechanism".
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This	assumption	is	often	used	to	bootstrap	complex	contraptions	such	as	the	VCG	mechanism,	whose
theoretical	optimality	is	based	on	beautiful	arguments	that	because	the	price	each	player	pays	only
depends	on	other	players'	bids,	each	player	has	no	incentive	to	make	a	bid	that	does	not	reflect	their
true	value	in	order	to	manipulate	the	price.	A	beautiful	argument	in	theory,	but	it	breaks	down
completely	once	you	introduce	the	possibility	that	even	two	of	the	players	are	either	allies	or
adversaries	outside	the	mechanism.

Economics,	and	economics-inspired	philosophy,	is	great	at	describing	the	complexities	that	arise
when	the	number	of	players	"playing	the	game"	increases	from	one	to	two	(see	the	tale	of	Crusoe	and
Friday	in	Murray	Rothbard's	The	Ethics	of	Liberty	for	one	example).	But	what	this	philosophical
tradition	completely	misses	is	that	going	up	to	three	players	adds	an	even	further	layer	of	complexity.
In	an	interaction	between	two	people,	the	two	can	ignore	each	other,	fight	or	trade.	In	an	interaction
between	three	people,	there	exists	a	new	strategy:	any	two	of	the	three	can	communicate	and	band
together	to	gang	up	on	the	third.	Three	is	the	smallest	denominator	where	it's	possible	to	talk	about
a	51%+	attack	that	has	someone	outside	the	clique	to	be	a	victim.

When	there's	only	two	people,	more	coordination	can	only	be	good.	But	once	there's	three
people,	the	wrong	kind	of	coordination	can	be	harmful,	and	techniques	to	prevent	harmful
coordination	(including	decentralization	itself)	can	become	very	valuable.	And	it's	this
management	of	coordination	that	is	the	essence	of	"politics".

Going	from	two	people	to	three	introduces	the	possibility	of	harms	from	unbalanced	coordination:	it's	not	just	"the
individual	versus	the	group",	it's	"the	individual	versus	the	group	versus	the	world".	
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Now,	we	can	understand	try	to	use	this	framework	to	understand	the	pitfalls	of	"finance".	Finance
can	be	viewed	as	a	set	of	patterns	that	naturally	emerge	in	many	kinds	of	systems	that	do
not	attempt	to	prevent	collusion.	Any	system	which	claims	to	be	non-finance,	but	does	not
actually	make	an	effort	to	prevent	collusion,	will	eventually	acquire	the	characteristics	of	finance,	if
not	something	worse.	To	see	why	this	is	the	case,	compare	two	point	systems	we	are	all	familiar	with:
money,	and	Twitter	likes.	Both	kinds	of	points	are	valuable	for	extrinsic	reasons,	both	have	inevitably
become	status	symbols,	and	both	are	number	games	where	people	spend	a	lot	of	time	optimizing	to
try	to	get	a	higher	score.	And	yet,	they	behave	very	differently.	So	what's	the	fundamental	difference
between	the	two?

The	answer	is	simple:	it's	the	lack	of	an	efficient	market	to	enable	agreements	like	"I	like	your	tweet
if	you	like	mine",	or	"I	like	your	tweet	if	you	pay	me	in	some	other	currency".	If	such	a	market	existed
and	was	easy	to	use,	Twitter	would	collapse	completely	(something	like	hyperinflation	would	happen,
with	the	likely	outcome	that	everyone	would	run	automated	bots	that	like	every	tweet	to	claim
rewards),	and	even	the	likes-for-money	markets	that	exist	illicitly	today	are	a	big	problem	for	Twitter.
With	money,	however,	"I	send	X	to	you	if	you	send	Y	to	me"	is	not	an	attack	vector,	it's	just	a	boring
old	currency	exchange	transaction.	A	Twitter	clone	that	does	not	prevent	like-for-like	markets	would
"hyperinflate"	into	everyone	liking	everything,	and	if	that	Twitter	clone	tried	to	stop	the
hyperinflation	by	limiting	the	number	of	likes	each	user	can	make,	the	likes	would	behave	like	a
currency,	and	the	end	result	would	behave	the	same	as	if	Twitter	just	added	a	tipping	feature.

So	what's	the	problem	with	finance?	Well,	if	finance	is	optimized	and	structured	collusion,	then	we
can	look	for	places	where	finance	causes	problems	by	using	our	existing	economic	tools	to
understand	which	mechanisms	break	if	you	introduce	collusion!	Unfortunately,	governance	by	voting
is	a	central	example	of	this	category;	I've	covered	why	in	the	"moving	beyond	coin	voting
governance"	post	and	many	other	occasions.	Even	worse,	cooperative	game	theory	suggests	that
there	might	be	no	possible	way	to	make	a	fully	collusion-resistant	governance	mechanism.

And	so	we	get	the	fundamental	conundrum:	the	cypherpunk	spirit	is	fundamentally	about	making
maximally	immutable	systems	that	work	with	as	little	information	as	possible	about	who	is
participating	("on	the	internet,	nobody	knows	you're	a	dog"),	but	making	new	forms	of	governance
requires	the	system	to	have	richer	information	about	its	participants	and	ability	to	dynamically
respond	to	attacks	in	order	to	remain	stable	in	the	face	of	actors	with	unforeseen	incentives.	Failure
to	do	this	means	that	everything	looks	like	finance,	which	means,	well....	perennial	over-
representation	of	concentrated	interests,	and	all	the	problems	that	come	as	a	result.

On	the	internet,	nobody	knows	if	you're	0.0244	of	a	dog	(image	source).	But	what	does	this	mean	for
governance?

The	central	role	of	collusion	in	understanding	the	difference
between	Kleros	and	regular	courts
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Now,	let	us	get	back	to	Nathan's	article.	The	distinction	between	financial	and	non-financial
mechanisms	is	key	in	the	article.	Let	us	start	off	with	a	description	of	the	Kleros	court:

The	jurors	stood	to	earn	rewards	by	correctly	choosing	the	answer	that	they	expected	other
jurors	to	independently	select.	This	process	implements	the	"Schelling	point"	concept	in
game	theory	(Aouidef	et	al.,	2021;	Dylag	&	Smith,	2021).	Such	a	jury	does	not	deliberate,
does	not	seek	a	common	good	together;	its	members	unite	through	self-interest.	Before
coming	to	the	jury,	the	factual	basis	of	the	case	was	supposed	to	come	not	from	official
organs	or	respected	news	organizations	but	from	anonymous	users	similarly	disciplined	by
reward-seeking.	The	prediction	market	itself	was	premised	on	the	supposition	that	people
make	better	forecasts	when	they	stand	to	gain	or	lose	the	equivalent	of	money	in	the
process.	The	politics	of	the	presidential	election	in	question,	here,	had	been	thoroughly
transmuted	into	a	cluster	of	economies.

The	implicit	critique	is	clear:	the	Kleros	court	is	ultimately	motivated	to	make	decisions	not	on	the
basis	of	their	"true"	correctness	or	incorrectness,	but	rather	on	the	basis	of	their	financial	interests.
If	Kleros	is	deciding	whether	Biden	or	Trump	won	the	2020	election,	and	one	Kleros	juror	really	likes
Trump,	precommits	to	voting	in	his	favor,	and	bribes	other	jurors	to	vote	the	same	way,	other	jurors
are	likely	to	fall	in	line	because	of	Kleros's	conformity	incentives:	jurors	are	rewarded	if	their	vote
agrees	with	the	majority	vote,	and	penalized	otherwise.	The	theoretical	answer	to	this	is	the	right	to
exit:	if	the	majority	of	Kleros	jurors	vote	to	proclaim	that	Trump	won	the	election,	a	minority	can	spin
off	a	fork	of	Kleros	where	Biden	is	considered	to	have	won,	and	their	fork	may	well	get	a	higher
market	price	than	the	original.	Sometimes,	this	actually	works!	But,	as	Nathan	points	out,	it	is	not
always	so	simple:

But	exit	may	not	be	as	easy	as	it	appears,	whether	it	be	from	a	social-media	network	or	a
protocol.	The	persistent	dominance	of	early-to-market	blockchains	like	Bitcoin	and
Ethereum	suggests	that	cryptoeconomics	similarly	favors	incumbency.

But	alongside	the	implicit	critique	is	an	implicit	promise:	that	regular	courts	are	somehow	able	to
rise	above	self-interest	and	"seek	a	common	good	together"	and	thereby	avoid	some	of	these	failure
modes.	What	is	it	that	financialized	Kleros	courts	lack,	but	non-financialized	regular	courts	retain,
that	makes	them	more	robust?	One	possible	answer	is	that	courts	lack	Kleros's	explicit	conformity
incentive.	But	if	you	just	take	Kleros	as-is,	remove	the	conformity	incentive	(say,	there's	a	reward	for
voting	that	does	not	depend	on	how	you	vote),	and	do	nothing	else,	you	risk	creating	even	more
problems.	Kleros	judges	could	get	lazy,	but	more	importantly	if	there's	no	incentive	at	all	to	choose
how	you	vote,	even	the	tiniest	bribe	could	affect	a	judge's	decision.

So	now	we	get	to	the	real	answer:	the	key	difference	between	financialized	Kleros	courts	and	non-
financialized	regular	courts	is	that	financialized	Kleros	courts	are,	well...	financialized.	They	make	no
effort	to	explicitly	prevent	collusion.	Non-financialized	courts,	on	the	other	hand,	do	prevent	collusion
in	two	key	ways:

Bribing	a	judge	to	vote	in	a	particular	way	is	explicitly	illegal
The	judge	position	itself	is	non-fungible.	It	gets	awarded	to	specific	carefully-selected
individuals,	and	they	cannot	simply	go	and	sell	or	reallocate	their	entire	judging	rights	and
salary	to	someone	else.

The	only	reason	why	political	and	legal	systems	work	is	that	a	lot	of	hard	thinking	and	work	has	gone
on	behind	the	scenes	to	insulate	the	decision-makers	from	extrinsic	incentives,	and	punish	them
explicitly	if	they	are	discovered	to	be	accepting	incentives	from	the	outside.	The	lack	of	extrinsic
motivation	allows	the	intrinsic	motivation	to	shine	through.	Furthermore,	the	lack	of
transferability	allows	governance	power	to	be	given	to	specific	actors	whose	intrinsic
motivations	we	trust,	avoiding	governance	power	always	flowing	to	"the	highest	bidder".	But
in	the	case	of	Kleros,	the	lack	of	hostile	extrinsic	motivation	cannot	be	guaranteed,	and
transferability	is	unavoidable,	and	so	overpoweringly	strong	in-mechanism	extrinsic	motivation	(the
conformity	incentive)	was	the	best	solution	they	could	find	to	deal	with	the	problem.

And	of	course,	the	"final	backstop"	that	Kleros	relies	on,	the	right	of	users	to	fork	away,	itself
depends	on	social	coordination	to	take	place	-	a	messy	and	difficult	institution,	often	derided	by
cryptoeconomic	purists	as	"proof	of	social	media",	that	works	precisely	because	public	discussion	has
lots	of	informal	collusion	detection	and	prevention	all	over	the	place.

Collusion	in	understanding	DAO	governance	issues
But	what	happens	when	there	is	no	single	right	answer	that	they	can	expect	voters	to	converge	on?
This	is	where	we	move	away	from	adjudication	and	toward	governance	(yes,	I	know	that	adjudication
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has	unavoidably	grey	edge	cases	too.	Governance	just	has	them	much	more	often).	Nathan	writes:

Governance	by	economics	is	nothing	new.	Joint-stock	companies	conventionally	operate	on
plutocratic	governance—more	shares	equals	more	votes.	This	arrangement	is	economically
efficient	for	aligning	shareholder	interests	(Davidson	and	Potts,	this	issue),	even	while	it
may	sideline	such	externalities	as	fair	wages	and	environmental	impacts...

In	my	opinion,	this	actually	concedes	too	much!	Governance	by	economics	is	not	"efficient"	once	you
drop	the	spherical-cow	assumption	of	no	collusion,	because	it	is	inherently	vulnerable	to	51%	of	the
stakeholders	colluding	to	liquidate	the	company	and	split	its	resources	among	themselves.	The	only
reason	why	this	does	not	happen	much	more	often	"in	real	life"	is	because	of	many	decades	of
shareholder	regulation	that	have	been	explicitly	built	up	to	ban	the	most	common	types	of	abuses.
This	regulation	is,	of	course,	non-"economic"	(or,	in	my	lingo,	it	makes	corporate	governance	less
financialized),	because	it's	an	explicit	attempt	to	prevent	collusion.

Notably,	Nathan's	favored	solutions	do	not	try	to	regulate	coin	voting.	Instead,	they	try	to	limit	the
harms	of	its	weaknesses	by	combining	it	with	additional	mechanisms:

Rather	than	relying	on	direct	token	voting,	as	other	protocols	have	done,	The	Graph	uses	a
board-like	mediating	layer,	the	Graph	Council,	on	which	the	protocol's	major	stakeholder
groups	have	representatives.	In	this	case,	the	proposal	had	the	potential	to	favor	one	group
of	stakeholders	over	others,	and	passing	a	decision	through	the	Council	requires	multiple
stakeholder	groups	to	agree.	At	the	same	time,	the	Snapshot	vote	put	pressure	on	the
Council	to	implement	the	will	of	token-holders.

In	the	case	of	1Hive,	the	anti-financialization	protections	are	described	as	being	purely	cultural:

According	to	a	slogan	that	appears	repeatedly	in	1Hive	discussions,	"Come	for	the	honey,
stay	for	the	bees."	That	is,	although	economics	figures	prominently	as	one	first	encounters
and	explores	1Hive,	participants	understand	the	community's	primary	value	as
interpersonal,	social,	and	non-economic.

I	am	personally	skeptical	of	the	latter	approach:	it	can	work	well	in	low-economic-value	communities
that	are	fun	oriented,	but	if	such	an	approach	is	attempted	in	a	more	serious	system	with	widely	open
participation	and	enough	at	stake	to	invite	determined	attack,	it	will	not	survive	for	long.	As	I	wrote
above,	"any	system	which	claims	to	be	non-finance,	but	does	not	actually	make	an	effort	to	prevent
collusion,	will	eventually	acquire	the	characteristics	of	finance".

[Edit/correction	2021.09.27:	it	has	been	brought	to	my	attention	that	in	addition	to	culture,
financialization	is	limited	by	(i)	conviction	voting,	and	(ii)	juries	enforcing	a	covenant.	I'm
skeptical	of	conviction	voting	in	the	long	run;	many	DAOs	use	it	today,	but	in	the	long	term
it	can	be	defeated	by	wrapper	tokens.	The	covenant,	on	the	other	hand,	is	interesting.	My
fault	for	not	checking	in	more	detail.]

The	money	is	called	honey.	But	is	calling	money	honey	enough	to	make	it	work	differently	than
money?	If	not,	how	much	more	do	you	have	to	do?

The	solution	in	TheGraph	is	very	much	an	instance	of	collusion	prevention:	the	participants	have
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been	hand-picked	to	come	from	diverse	constituencies	and	to	be	trusted	and	upstanding	people	who
are	unlikely	to	sell	their	voting	rights.	Hence,	I	am	bullish	on	that	approach	if	it	successfully	avoids
centralization.

So	how	can	we	solve	these	problems	more	generally?
Nathan's	post	argues:

A	napkin	sketch	of	classical,	never-quite-achieved	liberal	democracy	(Brown,	2015)	would
depict	a	market	(governed	through	economic	incentives)	enclosed	in	politics	(governed
through	deliberation	on	the	common	good).	Economics	has	its	place,	but	the	system	is	not
economics	all	the	way	down;	the	rules	that	guide	the	market,	and	that	enable	it	in	the	first
place,	are	decided	democratically,	on	the	basis	of	citizens'	civil	rights	rather	than	their
economic	power.	By	designing	democracy	into	the	base-layer	of	the	system,	it	is	possible	to
overcome	the	kinds	of	limitations	that	cryptoeconomics	is	vulnerable	to,	such	as	by
counteracting	plutocracy	with	mass	participation	and	making	visible	the	externalities	that
markets	might	otherwise	fail	to	see.

There	is	one	key	difference	between	blockchain	political	theory	and	traditional	nation-state	political
theory	-	and	one	where,	in	the	long	run,	nation	states	may	well	have	to	learn	from	blockchains.
Nation-state	political	theory	talks	about	"markets	embedded	in	democracy"	as	though	democracy	is
an	encompassing	base	layer	that	encompasses	all	of	society.	In	reality,	this	is	not	true:	there	are
multiple	countries,	and	every	country	at	least	to	some	degree	permits	trade	with	outside	countries
whose	behavior	they	cannot	regulate.	Individuals	and	companies	have	choices	about	which	countries
they	live	in	and	do	business	in.	Hence,	markets	are	not	just	embedded	in	democracy,	they	also
surround	it,	and	the	real	world	is	a	complicated	interplay	between	the	two.

Blockchain	systems,	instead	of	trying	to	fight	this	interconnectedness,	embrace	it.	A	blockchain
system	has	no	ability	to	regular	"the	market"	in	the	sense	of	people's	general	ability	to	freely	make
transactions.	But	what	it	can	do	is	regulate	and	structure	(or	even	create)	specific	markets,	setting
up	patterns	of	specific	behaviors	whose	incentives	are	ultimately	set	and	guided	by	institutions	that
have	anti-collusion	guardrails	built	in,	and	can	resist	pressure	from	economic	actors.	And	indeed,	this
is	the	direction	Nathan	ends	up	going	in	as	well.	He	talks	positively	about	the	design	of	Civil	as	an
example	of	precisely	this	spirit:

The	aborted	Ethereum-based	project	Civil	sought	to	leverage	cryptoeconomics	to	protect
journalism	against	censorship	and	degraded	professional	standards	(Schneider,	2020).	Part
of	the	system	was	the	Civil	Council,	a	board	of	prominent	journalists	who	served	as	a	kind
of	supreme	court	for	adjudicating	the	practices	of	the	network's	newsrooms.	Token	holders
could	earn	rewards	by	successfully	challenging	a	newsroom's	practices;	the	success	or
failure	of	a	challenge	ultimately	depended	on	the	judgment	of	the	Civil	Council,	designed	to
be	free	of	economic	incentives	clouding	its	deliberations.	In	this	way,	a	cryptoeconomic
enforcement	market	served	a	non-economic	social	mission.	This	kind	of	design	could	enable
cryptoeconomic	networks	to	serve	purposes	not	reducible	to	economic	feedback	loops.

This	is	fundamentally	very	similar	to	an	idea	that	I	proposed	in	2018:	prediction	markets	to	scale	up
content	moderation.	Instead	of	doing	content	moderation	by	running	a	low-quality	AI	algorithm	on	all
content,	with	lots	of	false	positives,	there	could	be	an	open	mini	prediction	market	on	each	post,	and
if	the	volume	got	high	enough	a	high-quality	committee	could	step	in	an	adjudicate,	and	the
prediction	market	participants	would	be	penalized	or	rewarded	based	on	whether	or	not	they	had
correctly	predicted	the	outcome.	In	the	mean	time,	posts	with	prediction	market	scores	predicting
that	the	post	would	be	removed	would	not	be	shown	to	users	who	did	not	explicitly	opt-in	to
participate	in	the	prediction	game.	There	is	precedent	for	this	kind	of	open	but	accountable
moderation:	Slashdot	meta	moderation	is	arguably	a	limited	version	of	it.	This	more	financialized
version	of	meta-moderation	through	prediction	markets	could	produce	superior	outcomes	because
the	incentives	invite	highly	competent	and	professional	participants	to	take	part.

Nathan	then	expands:

I	have	argued	that	pairing	cryptoeconomics	with	political	systems	can	help	overcome	the
limitations	that	bedevil	cryptoeconomic	governance	alone.	Introducing	purpose-centric
mechanisms	and	temporal	modulation	can	compensate	for	the	blind-spots	of	token
economies.	But	I	am	not	arguing	against	cryptoeconomics	altogether.	Nor	am	I	arguing
that	these	sorts	of	politics	must	occur	in	every	app	and	protocol.	Liberal	democratic	theory
permits	diverse	forms	of	association	and	business	within	a	democratic	structure,	and
similarly	politics	may	be	necessary	only	at	key	leverage	points	in	an	ecosystem	to	overcome
the	limitations	of	cryptoeconomics	alone.
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This	seems	broadly	correct.	Financialization,	as	Nathan	points	out	in	his	conclusion,	has	benefits	in
that	it	attracts	a	large	amount	of	motivation	and	energy	into	building	and	participating	in	systems
that	would	not	otherwise	exist.	Furthermore,	preventing	financialization	is	very	difficult	and	high
cost,	and	works	best	when	done	sparingly,	where	it	is	needed	most.	However,	it	is	also	true	that
financialized	systems	are	much	more	stable	if	their	incentives	are	anchored	around	a	system	that	is
ultimately	non-financial.

Prediction	markets	avoid	the	plutocracy	issues	inherent	in	coin	voting	because	they	introduce
individual	accountability:	users	who	acted	in	favor	of	what	ultimately	turns	out	to	be	a	bad	decision
suffer	more	than	users	who	acted	against	it.	However,	a	prediction	market	requires	some	statistic
that	it	is	measuring,	and	measurement	oracles	cannot	be	made	secure	through	cryptoeconomics
alone:	at	the	very	least,	community	forking	as	a	backstop	against	attacks	is	required.	And	if	we	want
to	avoid	the	messiness	of	frequent	forks,	some	other	explicit	non-financialized	mechanism	at	the
center	is	a	valuable	alternative.

Conclusions
In	his	conclusion,	Nathan	writes:

But	the	autonomy	of	cryptoeconomic	systems	from	external	regulation	could	make	them
even	more	vulnerable	to	runaway	feedback	loops,	in	which	narrow	incentives	overpower
the	common	good.	The	designers	of	these	systems	have	shown	an	admirable	capacity	to
devise	cryptoeconomic	mechanisms	of	many	kinds.	But	for	cryptoeconomics	to	achieve	the
institutional	scope	its	advocates	hope	for,	it	needs	to	make	space	for	less-economic	forms	of
governance.

If	cryptoeconomics	needs	a	political	layer,	and	is	no	longer	self-sufficient,	what	good	is
cryptoeconomics?	One	answer	might	be	that	cryptoeconomics	can	be	the	basis	for	securing
more	democratic	and	values-centered	governance,	where	incentives	can	reduce	reliance	on
military	or	police	power.	Through	mature	designs	that	integrate	with	less-economic
purposes,	cryptoeconomics	might	transcend	its	initial	limitations.	Politics	needs
cryptoeconomics,	too	...	by	integrating	cryptoeconomics	with	democracy,	both	legacies
seem	poised	to	benefit.

I	broadly	agree	with	both	conclusions.	The	language	of	collusion	prevention	can	be	helpful	for
understanding	why	cryptoeconomic	purism	so	severely	constricts	the	design	space.	"Finance"	is	a
category	of	patterns	that	emerge	when	systems	do	not	attempt	to	prevent	collusion.	When	a	system
does	not	prevent	collusion,	it	cannot	treat	different	individuals	differently,	or	even	different	numbers
of	individuals	differently:	whenever	a	"position"	to	exert	influence	exists,	the	owner	of	that	position
can	just	sell	it	to	the	highest	bidder.

Gavels	on	Amazon.	A	world	where	these	were	NFTs	that	actually	came	with	associated	judging	power
may	well	be	a	fun	one,	but	I	would	certainly	not	want	to	be	a	defendant!

The	language	of	defense-focused	design,	on	the	other	hand,	is	an	underrated	way	to	think	about
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where	some	of	the	advantages	of	blockchain-based	designs	can	be.	Nation	state	systems	often	deal
with	threats	with	one	of	two	totalizing	mentalities:	closed	borders	vs	conquer	the	world.	A	closed
borders	approach	attempts	to	make	hard	distinctions	between	an	"inside"	that	the	system	can
regulate	and	an	"outside"	that	the	system	cannot,	severely	restricting	flow	between	the	inside	and
the	outside.	Conquer-the-world	approaches	attempt	to	extraterritorialize	a	nation	state's	preferences,
seeking	a	state	of	affairs	where	there	is	no	place	in	the	entire	world	where	some	undesired	activity
can	happen.	Blockchains	are	structurally	unable	to	take	either	approach,	and	so	they	must	seek
alternatives.

Fortunately,	blockchains	do	have	one	very	powerful	tool	in	their	grasp	that	makes	security	under
such	porous	conditions	actually	feasible:	cryptography.	Cryptography	allows	everyone	to	verify	that
some	governance	procedure	was	executed	exactly	according	to	the	rules.	It	leaves	a	verifiable
evidence	trail	of	all	actions,	though	zero	knowledge	proofs	allow	mechanism	designers	freedom	in
picking	and	choosing	exactly	what	evidence	is	visible	and	what	evidence	is	not.	Cryptography	can
even	prevent	collusion!	Blockchains	allow	applications	to	live	on	a	substrate	that	their	governacne
does	not	control,	which	allows	them	to	effectively	implement	techniques	such	as,	for	example,	ensure
that	every	change	to	the	rules	only	takes	effect	with	a	60	day	delay.	Finally,	freedom	to	fork	is	much
more	practical,	and	forking	is	much	lower	in	economic	and	human	cost,	than	most	centralized
systems.

Blockchain-based	contraptions	have	a	lot	to	offer	the	world	that	other	kinds	of	systems	do	not.	On	the
other	hand,	Nathan	is	completely	correct	to	emphasize	that	blockchainized	should	not	be	equated
with	financialized.	There	is	plenty	of	room	for	blockchain-based	systems	that	do	not	look	like	money,
and	indeed	we	need	more	of	them.
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Alternatives	to	selling	at	below-market-
clearing	prices	for	achieving	fairness	(or
community	sentiment,	or	fun)

When	a	seller	wants	to	sell	a	fixed	supply	of	an	item	that	is	in	high	(or	uncertain	and	possibly	high)
demand,	one	choice	that	they	often	make	is	to	set	a	price	significantly	lower	than	what	"the	market
will	bear".	The	result	is	that	the	item	quickly	sells	out,	with	the	lucky	buyers	being	those	who
attempted	to	buy	first.	This	has	happened	in	a	number	of	situations	within	the	Ethereum	ecosystem,
notably	NFT	sales	and	token	sales	/	ICOs.	But	this	phenomenon	is	much	older	than	that;	concerts
and	restaurants	frequently	make	similar	choices,	keeping	prices	cheap	and	leading	to	seats	quickly
selling	out	or	buyers	waiting	in	long	lines.

Economists	have	for	a	long	time	asked	the	question:	why	do	sellers	do	this?	Basic	economic	theory
suggests	that	it's	best	if	sellers	sell	at	the	market-clearing	price	-	that	is,	the	price	at	which
the	amount	that	buyers	are	willing	to	buy	exactly	equals	the	amount	the	seller	has	to	sell.	If	the
seller	doesn't	know	what	the	market-clearing	price	is,	the	seller	should	sell	through	an
auction,	and	let	the	market	determine	the	price.	Selling	below	market-clearing	price	not	only
sacrifices	revenue	for	the	seller;	it	also	can	harm	the	buyers:	the	item	may	sell	out	so	quickly	that
many	buyers	have	no	opportunity	to	get	it	at	all,	no	matter	how	much	they	want	it	and	are	willing	to
pay	to	get	it.	Sometimes,	the	competitions	created	by	these	non-price-based	allocation	mechanisms
even	create	negative	externalities	that	harm	third	parties	-	an	effect	that,	as	we	will	see,	is
particularly	severe	in	the	Ethereum	ecosystem.

But	nevertheless,	the	fact	that	below-market-clearing	pricing	is	so	prevalent	suggests	that
there	must	be	some	convincing	reasons	why	sellers	do	it.	And	indeed,	as	the	research	into	this
topic	over	the	last	few	decades	has	shown,	there	often	are.	And	so	it's	worth	asking	the	question:	are
there	ways	of	achieving	the	same	goals	with	more	fairness,	less	inefficiency	and	less	harm?

Selling	at	below	market-clearing	prices	has	large
inefficiencies	and	negative	externalities
If	a	seller	sells	an	item	at	market	price,	or	through	an	auction,	someone	who	really	really	wants	that
item	has	a	simple	path	to	getting	it:	they	can	pay	the	high	price	or	if	it's	an	auction	they	can	bid	a
high	amount.	If	a	seller	sells	the	item	at	below	market	price,	then	demand	exceeds	supply,	and	so
some	people	will	get	the	item	and	others	won't.	But	the	mechanism	deciding	who	will	get	the	item	is
decidedly	not	random,	and	it's	often	not	well-correlated	with	how	much	participants	want	the	item.
Sometimes,	it	involves	being	faster	at	clicking	buttons	than	everyone	else.	At	other	times,	it	involves
waking	up	at	2	AM	in	your	timezone	(but	11	PM	or	even	2	PM	in	someone	else's).	And	at	still	other
times,	it	just	turns	into	an	"auction	by	other	means",	one	which	is	more	chaotic,	less	efficient	and
laden	with	far	more	negative	externalties.

Within	the	Ethereum	ecosystem,	there	are	many	clear	examples	of	this.	First,	we	can	look	at	the	ICO
craze	of	2017.	In	2017,	there	were	a	large	number	of	projects	launching	initial	coin	offerings	(ICOs),
and	a	typical	model	was	the	capped	sale:	the	project	would	set	the	price	of	the	token	and	a	hard
maximum	for	how	many	tokens	they	are	willing	to	sell,	and	at	some	point	in	time	the	sale	would	start
automatically.	Once	the	number	of	tokens	hit	the	cap,	the	sale	ends.

What's	the	result?	In	practice,	these	sales	would	often	end	in	as	little	as	30	seconds.	As	soon	as	(or
rather,	just	before)	the	sale	starts,	everyone	would	start	sending	transactions	in	to	try	to	get	in,
offering	higher	and	higher	fees	to	encourage	miners	to	include	their	transaction	first.	An	auction	by
another	name	-	except	with	revenues	going	to	the	miners	instead	of	the	token	seller,	and	the
extremely	harmful	negative	externality	of	pricing	out	every	other	application	on-chain	while	the	sale
is	going	on.
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The	most	expensive	transaction	in	the	BAT	sale	set	a	fee	of	580,000	gwei,	paying	a	fee	of	$6,600	to	get	included	in
the	sale.

Many	ICOs	after	that	tried	various	strategies	to	avoid	these	gas	price	auctions;	one	ICO	notably	had
a	smart	contract	that	checked	the	transaction's	gasprice	and	rejected	it	if	it	exceeded	50	gwei.	But
that	of	course,	did	not	solve	the	problem.	Buyers	wishing	to	cheat	the	system	sent	many	transactions,
hoping	that	at	least	one	would	get	in.	Once	again,	an	auction	by	another	name,	and	this	time
clogging	up	the	chain	even	more.

In	more	recent	times,	ICOs	have	become	less	popular,	but	NFTs	and	NFT	sales	are	now	very	popular.
Unfortunately,	the	NFT	space	failed	to	learn	the	lessons	from	2017;	they	make	fixed-quantity	fixed-
supply	sales	just	like	the	ICOs	did	(eg.	see	the	mint	function	on	lines	97-108	of	this	contract	here).
What's	the	result?

And	this	isn't	even	the	biggest	one;	some	NFT	sales	have	created	gas	price	spikes	as	high	as	2000	gwei.

Once	again,	sky-high	gas	prices	from	users	fighting	each	other	by	sending	higher	and	higher
transaction	fees	to	get	in	first.	An	auction	by	another	name,	pricing	out	every	other	application	on-
chain	for	15	minutes,	just	as	before.

So	why	do	sellers	sometimes	sell	below	market	price?
Selling	at	below	market	price	is	hardly	a	new	phenomenon,	both	within	the	blockchain	space	and
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outside,	and	over	the	decades	there	have	been	many	articles	and	papers	and	podcasts	writing	(and
sometimes	bitterly	complaining)	about	the	unwillingness	to	use	auctions	or	set	prices	to	market-
clearing	levels.

Many	of	the	arguments	are	very	similar	between	the	examples	in	the	blockchain	space	(NFTs	and
ICOs)	and	outside	the	blockchain	space	(popular	restaurants	and	concerts).	A	particular	concern	is
fairness	and	the	desire	to	not	lock	poorer	people	out	and	not	lose	fans	or	create	tension	as	a	result	of
being	perceived	as	greedy.	Kahneman,	Knetsch	and	Thaler's	1986	paper	is	a	good	exposition	of	how
perceptions	of	fairness	and	greed	can	influence	these	decisions.	In	my	own	recollection	of	the	2017
ICO	season,	the	desire	to	avoid	perceptions	of	greed	was	similarly	a	decisive	factor	in	discouraging
the	use	of	auction-like	mechanisms	(I	am	mostly	going	off	memory	here	and	do	not	have	many
sources,	though	I	did	find	a	link	to	a	no-longer-available	parody	video	making	some	kind	of
comparison	between	the	auction-based	Gnosis	ICO	and	the	National	Socialist	German	Workers'
Party).

In	addition	to	fairness	issues,	there	are	also	the	perennial	arguments	that	products	selling	out	and
having	long	lines	creates	a	perception	of	popularity	and	prestige,	which	makes	the	product	seem
even	more	attractive	to	others	further	down	the	line.	Sure,	in	a	rational	actor	model,	high	prices
should	have	the	same	effect	as	long	lines,	but	in	reality	long	lines	are	much	more	visible	than	high
prices	are.	This	is	just	as	true	for	ICOs	and	NFTs	as	it	is	for	restaurants.	In	addition	to	these
strategies	generating	more	marketing	value,	some	people	actually	find	participating	in	or	watching
the	game	of	grabbing	up	a	limited	set	of	opportunities	first	before	everyone	else	takes	them	all	to	be
quite	fun.

But	there	are	also	some	factors	specific	to	the	blockchain	space.	One	argument	for	selling	ICO	tokens
at	below-market-clearing	prices	(and	one	that	was	decisive	in	convincing	the	OmiseGo	team	to	adopt
their	capped	sale	strategy)	has	to	do	with	community	dynamics	of	token	issuance.	The	most	basic
rule	of	community	sentiment	management	is	simple:	you	want	prices	to	go	up,	not	down.	If
community	members	are	"in	the	green",	they	are	happy.	But	if	the	price	goes	lower	than	what	it	was
when	the	community	members	bought,	leaving	them	at	a	net	loss,	they	become	unhappy	and	start
calling	you	a	scammer,	and	possibly	creating	a	social	media	cascade	leading	to	everyone	else	calling
you	a	scammer.

The	only	way	to	avoid	this	effect	is	to	set	a	sale	price	low	enough	that	the	post-launch	market	price
will	almost	certainly	be	higher.	But,	how	do	you	actually	do	this	without	creating	a	rush-for-the-gates
dynamic	that	leads	to	an	auction	by	other	means?

Some	more	interesting	solutions
The	year	is	2021.	We	have	a	blockchain.	The	blockchain	contains	not	just	a	powerful	decentralized
finance	ecosystem,	but	also	a	rapidly	growing	suite	of	all	kinds	of	non-financial	tools.	The	blockchain
also	presents	us	with	a	unique	opportunity	to	reset	social	norms.	Uber	legitimized	surge	pricing
where	decades	of	economists	yelling	about	"efficiency"	failed;	surely,	blockchains	can	also	be	an
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opportunity	to	legitimize	new	uses	of	mechanism	design.	And	surely,	instead	of	fiddling	around	with
a	coarse-grained	one-dimensional	strategy	space	of	selling	at	market	price	versus	below	market	price
(with	perhaps	a	second	dimension	for	auction	versus	fixed-price	sale),	we	could	use	our	more
advanced	tools	to	create	an	approach	that	more	directly	solves	the	problems,	with	fewer	side	effects?

First,	let	us	list	the	goals.	We'll	try	to	cover	the	cases	of	(i)	ICOs,	(ii)	NFTs	and	(iii)	conference	tickets
(really	a	type	of	NFT)	at	the	same	time;	most	of	the	desired	properties	are	shared	between	the	three
cases.

1.	 Fairness:	don't	completely	lock	low-income	people	out	of	participating,	give	them	at	least	some
chance	to	get	in.	For	token	sales,	there's	the	not	quite	identical	but	related	goal	of	avoiding	high
initial	wealth	concentration	and	having	a	larger	and	more	diverse	initial	token	holder
community.

2.	 Don't	create	races:	avoid	creating	situations	where	lots	of	people	are	rushing	to	take	the	same
action	and	only	the	first	few	get	in	(this	is	the	type	of	situation	that	leads	to	the	horrible
auctions-by-another-name	that	we	saw	above).

3.	 Don't	require	fine-grained	knowledge	of	market	conditions:	the	mechanism	should	work
even	if	the	seller	has	absolutely	no	idea	how	much	demand	there	is.

4.	 Fun:	the	process	of	participating	in	the	sale	should	ideally	be	interesting	and	have	game-like
qualities,	but	without	being	frustrating.

5.	 Give	buyers	positive	expected	returns:	in	the	case	of	a	token	(or,	for	that	matter,	an	NFT),
buyers	should	be	more	likely	to	see	the	item	go	up	in	price	than	go	down.	This	necessarily
implies	selling	to	buyers	at	below	the	market	price.

We	can	start	by	looking	at	(1).	Looking	at	it	from	the	point	of	view	of	Ethereum,	there	is	a	pretty
clear	solution.	Instead	of	creating	race	conditions,	just	use	an	explicitly	designed	tool	for	the	job:
proof	of	personhood	protocols!	Here's	one	quick	proposed	mechanism:

Mechanism	1	Each	participant	(verified	by	proof-of-personhood)	can	buy	up	to	X	units	at
price	P,	and	if	they	want	to	buy	more	they	can	buy	in	an	auction.

It	seems	like	it	satisfies	a	lot	of	the	goals	already:	the	per-person	aspect	provides	fairness,	if	the
auction	price	turns	out	higher	than	P	buyers	can	get	positive	expected	returns	for	the	portion	sold
through	the	per-person	mechanism,	and	the	auction	part	does	not	require	the	seller	to	understand
the	level	of	demand.	Does	it	avoid	creating	races?	If	the	number	of	participants	buying	through	the
per-person	pool	is	not	that	high,	it	seems	like	it	does.	But	what	if	so	many	people	show	up	that	the
per-person	pool	is	not	big	enough	to	provide	an	allocation	for	all	of	them?

Here's	an	idea:	make	the	per-person	allocation	amount	itself	dynamic.

Mechanism	2	Each	participant	(verified	by	proof-of-personhood)	can	make	a	deposit	into	a
smart	contract	to	declare	interest	for	up	to	X	tokens.	At	the	end,	each	buyer	is	given	an
allocation	of	min(X,	N	/	number_of_buyers)	tokens,	where	N	is	the	total	amount	sold	through
the	per-person	pool	(some	other	amount	can	also	be	sold	by	auction).	The	portion	of	the
buyer's	deposit	going	above	the	amount	needed	to	buy	their	allocation	is	refunded	to	them.

Now,	there's	no	race	condition	regardless	of	the	number	of	buyers	going	through	the	per-person
pool.	No	matter	how	high	the	demand,	there's	no	way	in	which	it's	more	beneficial	to	participate
earlier	rather	than	later.

Here's	yet	another	idea,	if	you	like	your	game	mechanics	to	be	more	clever	and	use	fancy	quadratic
formulas.

Mechanism	3	Each	participant	(verified	by	proof-of-personhood)	can	buy	\(X\)	units	at	a
price	\(P	*	X^2\),	up	to	a	maximum	of	\(C\)	tokens	per	buyer.	\(C\)	starts	at	some	low
number,	and	then	increases	over	time	until	enough	units	are	sold.

This	mechanism	has	the	particularly	interesting	property	that	if	you're	making	a	governance	token
(please	don't	do	that;	this	is	purely	harm-reduction	advice),	the	quantity	allocated	to	each	buyer	is
theoretically	optimal,	though	of	course	post-sale	transfers	will	degrade	this	optimality	over	time.
Mechanisms	2	and	3	seem	like	they	both	satisfy	all	of	the	above	goals,	at	least	to	some	extent.
They're	not	necessarily	perfect	and	ideal,	but	they	do	make	good	starting	points.

There	is	one	remaining	issue.	For	fixed	and	limited-supply	NFTs,	you	might	get	the	problem	that	the
equilibrium	purchased	quantity	per	participant	is	fractional	(in	mechanism	2,	perhaps
number_of_buyers	>	N,	and	in	mechanism	3,	perhaps	setting	\(C	=	1\)	already	leads	to	enough	demand
to	over-subscribe	the	sale).	In	this	case,	you	can	sell	fractional	items	by	offering	lottery	tickets:	if
there	are	N	items	to	be	sold,	then	if	you	subscribe	you	have	a	chance	of	N	/	number_of_buyers	that	you
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will	actually	get	the	item,	and	otherwise	you	get	a	refund.	For	a	conference,	groups	that	want	to	go
together	could	be	allowed	to	bundle	their	lottery	tickets	to	guarantee	either	all-win	or	all-lose.	Ability
to	get	the	item	for	certain	can	be	sold	at	auction.

A	fun	mildly-grey-hat	tactic	for	conference	tickets	is	to	disguise	the	pool	being	sold	at	market	rate	as	the	bottom
tier	of	"sponsorships".	You	may	end	up	with	a	bunch	of	people's	faces	on	the	sponsor	board,	but...	maybe	that's

fine?	After	all,	EthCC	had	John	Lilic's	face	on	their	sponsor	board!

In	all	of	these	cases,	the	core	of	the	solution	is	simple:	if	you	want	to	be	reliably	fair	to	people,	then
your	mechanism	should	have	some	input	that	explicitly	measures	people.	Proof	of	personhood
protocols	do	this	(and	if	desired	can	be	combined	with	zero	knowledge	proofs	to	ensure	privacy).
Ergo,	we	should	take	the	efficiency	benefits	of	market	and	auction-based	pricing,	and	the	egalitarian
benefits	of	proof	of	personhood	mechanics,	and	combine	them	together.

Answers	to	possible	questions
Q:	Wouldn't	lots	of	people	who	don't	even	care	about	your	project	buy	the	item	through	the
egalitarian	scheme	and	immediately	resell	it?

A:	Initially,	probably	not.	In	practice,	such	meta-games	take	time	to	show	up.	But	if/when	they	do,
one	possible	mitigation	is	to	make	them	untradeable	for	some	period	of	time.	This	actually	works
because	proof-of-personhood	identities	are	untradeable:	you	can	always	use	your	face	to	claim	that
your	previous	account	got	hacked	and	the	identity	corresponding	to	you,	including	everything	in	it,
should	be	moved	to	a	new	account.

Q:	What	if	I	want	to	make	my	item	accessible	not	just	to	people	in	general,	but	to	a	particular
community?

A:	Instead	of	proof	of	personhood,	use	proof	of	participation	tokens	connected	to	events	in	that
community.	An	additional	alternative,	also	serving	both	egalitarian	and	gamification	value,	is	to	lock
some	items	inside	solutions	to	some	publicly-published	puzzles.

Q:	How	do	we	know	people	will	accept	this?	People	have	been	resistant	to	weird	new	mechanisms	in
the	past.

A:	It's	very	difficult	to	get	people	to	accept	a	new	mechanism	that	they	find	weird	by	having
economists	write	screeds	about	how	they	"should"	accept	it	for	the	sake	of	"efficiency"	(or	even
"equity").	However,	rapid	changes	in	context	do	an	excellent	job	of	resetting	people's	set
expectations.	So	if	there's	any	good	time	at	all	to	try	this,	the	blockchain	space	is	that	time.	You	could
also	wait	for	the	"metaverse",	but	it's	quite	possible	that	the	best	version	of	the	metaverse	will	run	on
Ethereum	anyway,	so	you	might	as	well	just	start	now.
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Moving	beyond	coin	voting	governance

Special	thanks	to	Karl	Floersch,	Dan	Robinson	and	Tina	Zhen	for	feedback	and	review.	See	also	Notes	on	Blockchain
Governance,	Governance,	Part	2:	Plutocracy	Is	Still	Bad,	On	Collusion	and	Coordination,	Good	and	Bad	for	earlier
thinking	on	similar	topics.

One	of	the	important	trends	in	the	blockchain	space	over	the	past	year	is	the	transition	from	focusing	on
decentralized	finance	(DeFi)	to	also	thinking	about	decentralized	governance	(DeGov).	While	the	2020	is	often
widely,	and	with	much	justification,	hailed	as	a	year	of	DeFi,	over	the	year	since	then	the	growing	complexity	and
capability	of	DeFi	projects	that	make	up	this	trend	has	led	to	growing	interest	in	decentralized	governance	to	handle
that	complexity.	There	are	examples	inside	of	Ethereum:	YFI,	Compound,	Synthetix,	UNI,	Gitcoin	and	others	have	all
launched,	or	even	started	with,	some	kind	of	DAO.	But	it's	also	true	outside	of	Ethereum,	with	arguments	over
infrastructure	funding	proposals	in	Bitcoin	Cash,	infrastructure	funding	votes	in	Zcash,	and	much	more.

The	rising	popularity	of	formalized	decentralized	governance	of	some	form	is	undeniable,	and	there	are	important
reasons	why	people	are	interested	in	it.	But	it	is	also	important	to	keep	in	mind	the	risks	of	such	schemes,	as	the
recent	hostile	takeover	of	Steem	and	subsequent	mass	exodus	to	Hive	makes	clear.	I	would	further	argue	that	these
trends	are	unavoidable.	Decentralized	governance	in	some	contexts	is	both	necessary	and	dangerous,	for
reasons	that	I	will	get	into	in	this	post.	How	can	we	get	the	benefits	of	DeGov	while	minimizing	the	risks?	I	will
argue	for	one	key	part	of	the	answer:	we	need	to	move	beyond	coin	voting	as	it	exists	in	its	present	form.

DeGov	is	necessary
Ever	since	the	Declaration	of	Independence	of	Cyberspace	in	1996,	there	has	been	a	key	unresolved	contradiction	in
what	can	be	called	cypherpunk	ideology.	On	the	one	hand,	cypherpunk	values	are	all	about	using	cryptography	to
minimize	coercion,	and	maximize	the	efficiency	and	reach	of	the	main	non-coercive	coordination	mechanism
available	at	the	time:	private	property	and	markets.	On	the	other	hand,	the	economic	logic	of	private	property	and
markets	is	optimized	for	activities	that	can	be	"decomposed"	into	repeated	one-to-one	interactions,	and	the
infosphere,	where	art,	documentation,	science	and	code	are	produced	and	consumed	through	irreducibly	one-to-
many	interactions,	is	the	exact	opposite	of	that.

There	are	two	key	problems	inherent	to	such	an	environment	that	need	to	be	solved:

Funding	public	goods:	how	do	projects	that	are	valuable	to	a	wide	and	unselective	group	of	people	in	the
community,	but	which	often	do	not	have	a	business	model	(eg.	layer-1	and	layer-2	protocol	research,	client
development,	documentation...),	get	funded?
Protocol	maintenance	and	upgrades:	how	are	upgrades	to	the	protocol,	and	regular	maintenance	and
adjustment	operations	on	parts	of	the	protocol	that	are	not	long-term	stable	(eg.	lists	of	safe	assets,	price	oracle
sources,	multi-party	computation	keyholders),	agreed	upon?

Early	blockchain	projects	largely	ignored	both	of	these	challenges,	pretending	that	the	only	public	good	that
mattered	was	network	security,	which	could	be	achieved	with	a	single	algorithm	set	in	stone	forever	and	paid	for
with	fixed	proof	of	work	rewards.	This	state	of	affairs	in	funding	was	possible	at	first	because	of	extreme	Bitcoin
price	rises	from	2010-13,	then	the	one-time	ICO	boom	from	2014-17,	and	again	from	the	simultaneous	second	crypto
bubble	of	2014-17,	all	of	which	made	the	ecosystem	wealthy	enough	to	temporarily	paper	over	the	large	market
inefficiencies.	Long-term	governance	of	public	resources	was	similarly	ignored:	Bitcoin	took	the	path	of	extreme
minimization,	focusing	on	providing	a	fixed-supply	currency	and	ensuring	support	for	layer-2	payment	systems	like
Lightning	and	nothing	else,	Ethereum	continued	developing	mostly	harmoniously	(with	one	major	exception)
because	of	the	strong	legitimacy	of	its	pre-existing	roadmap	(basically:	"proof	of	stake	and	sharding"),	and
sophisticated	application-layer	projects	that	required	anything	more	did	not	yet	exist.

But	now,	increasingly,	that	luck	is	running	out,	and	challenges	of	coordinating	protocol	maintenance	and	upgrades
and	funding	documentation,	research	and	development	while	avoiding	the	risks	of	centralization	are	at	the	forefront.

The	need	for	DeGov	for	funding	public	goods

It	is	worth	stepping	back	and	seeing	the	absurdity	of	the	present	situation.	Daily	mining	issuance	rewards	from
Ethereum	are	about	13500	ETH,	or	about	$40m,	per	day.	Transaction	fees	are	similarly	high;	the	non-EIP-1559-
burned	portion	continues	to	be	around	1,500	ETH	(~$4.5m)	per	day.	So	there	are	many	billions	of	dollars	per	year
going	to	fund	network	security.	Now,	what	is	the	budget	of	the	Ethereum	Foundation?	About	$30-60	million	per
year.	There	are	non-EF	actors	(eg.	Consensys)	contributing	to	development,	but	they	are	not	much	larger.	The
situation	in	Bitcoin	is	similar,	with	perhaps	even	less	funding	going	into	non-security	public	goods.

Here	is	the	situation	in	a	chart:
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Within	the	Ethereum	ecosystem,	one	can	make	a	case	that	this	disparity	does	not	matter	too	much;	tens	of	millions
of	dollars	per	year	is	"enough"	to	do	the	needed	R&D	and	adding	more	funds	does	not	necessarily	improve	things,
and	so	the	risks	to	the	platform's	credible	neutrality	from	instituting	in-protocol	developer	funding	exceed	the
benefits.	But	in	many	smaller	ecosystems,	both	ecosystems	within	Ethereum	and	entirely	separate	blockchains	like
BCH	and	Zcash,	the	same	debate	is	brewing,	and	at	those	smaller	scales	the	imbalance	makes	a	big	difference.

Enter	DAOs.	A	project	that	launches	as	a	"pure"	DAO	from	day	1	can	achieve	a	combination	of	two	properties	that
were	previously	impossible	to	combine:	(i)	sufficiency	of	developer	funding,	and	(ii)	credible	neutrality	of	funding
(the	much-coveted	"fair	launch").	Instead	of	developer	funding	coming	from	a	hardcoded	list	of	receiving	addresses,
the	decisions	can	be	made	by	the	DAO	itself.

Of	course,	it's	difficult	to	make	a	launch	perfectly	fair,	and	unfairness	from	information	asymmetry	can	often	be
worse	than	unfairness	from	explicit	premines	(was	Bitcoin	really	a	fair	launch	considering	how	few	people	had	a
chance	to	even	hear	about	it	by	the	time	1/4	of	the	supply	had	already	been	handed	out	by	the	end	of	2010?).	But
even	still,	in-protocol	compensation	for	non-security	public	goods	from	day	one	seems	like	a	potentially	significant
step	forward	toward	getting	sufficient	and	more	credibly	neutral	developer	funding.

The	need	for	DeGov	for	protocol	maintenance	and	upgrades

In	addition	to	public	goods	funding,	the	other	equally	important	problem	requiring	governance	is	protocol
maintenance	and	upgrades.	While	I	advocate	trying	to	minimize	all	non-automated	parameter	adjustment	(see	the
"limited	governance"	section	below)	and	I	am	a	fan	of	RAI's	"un-governance"	strategy,	there	are	times	where
governance	is	unavoidable.	Price	oracle	inputs	must	come	from	somewhere,	and	occasionally	that	somewhere	needs
to	change.	Until	a	protocol	"ossifies"	into	its	final	form,	improvements	have	to	be	coordinated	somehow.	Sometimes,
a	protocol's	community	might	think	that	they	are	ready	to	ossify,	but	then	the	world	throws	a	curveball	that	requires
a	complete	and	controversial	restructuring.	What	happens	if	the	US	dollar	collapses,	and	RAI	has	to	scramble	to
create	and	maintain	their	own	decentralized	CPI	index	for	their	stablecoin	to	remain	stable	and	relevant?	Here	too,
DeGov	is	necessary,	and	so	avoiding	it	outright	is	not	a	viable	solution.

One	important	distinction	is	whether	or	not	off-chain	governance	is	possible.	I	have	for	a	long	time	been	a	fan	of	off-
chain	governance	wherever	possible.	And	indeed,	for	base-layer	blockchains,	off-chain	governance	absolutely	is
possible.	But	for	application-layer	projects,	and	especially	defi	projects,	we	run	into	the	problem	that
application-layer	smart	contract	systems	often	directly	control	external	assets,	and	that	control	cannot	be
forked	away.	If	Tezos's	on-chain	governance	gets	captured	by	an	attacker,	the	community	can	hard-fork	away
without	any	losses	beyond	(admittedly	high)	coordination	costs.	If	MakerDAO's	on-chain	governance	gets	captured
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by	an	attacker,	the	community	can	absolutely	spin	up	a	new	MakerDAO,	but	they	will	lose	all	the	ETH	and	other
assets	that	are	stuck	in	the	existing	MakerDAO	CDPs.	Hence,	while	off-chain	governance	is	a	good	solution	for
base	layers	and	some	application-layer	projects,	many	application-layer	projects,	particularly	DeFi,	will
inevitably	require	formalized	on-chain	governance	of	some	form.

DeGov	is	dangerous
However,	all	current	instantiations	of	decentralized	governance	come	with	great	risks.	To	followers	of	my	writing,
this	discussion	will	not	be	new;	the	risks	are	much	the	same	as	those	that	I	talked	about	here,	here	and	here.	There
are	two	primary	types	of	issues	with	coin	voting	that	I	worry	about:	(i)	inequalities	and	incentive	misalignments
even	in	the	absence	of	attackers,	and	(ii)	outright	attacks	through	various	forms	of	(often	obfuscated)
vote	buying.	To	the	former,	there	have	already	been	many	proposed	mitigations	(eg.	delegation),	and	there	will	be
more.	But	the	latter	is	a	much	more	dangerous	elephant	in	the	room	to	which	I	see	no	solution	within	the	current
coin	voting	paradigm.

Problems	with	coin	voting	even	in	the	absence	of	attackers

The	problems	with	coin	voting	even	without	explicit	attackers	are	increasingly	well-understood	(eg.	see	this	recent
piece	by	DappRadar	and	Monday	Capital),	and	mostly	fall	into	a	few	buckets:

Small	groups	of	wealthy	participants	("whales")	are	better	at	successfully	executing	decisions	than
large	groups	of	small-holders.	This	is	because	of	the	tragedy	of	the	commons	among	small-holders:	each
small-holder	has	only	an	insignificant	influence	on	the	outcome,	and	so	they	have	little	incentive	to	not	be	lazy
and	actually	vote.	Even	if	there	are	rewards	for	voting,	there	is	little	incentive	to	research	and	think	carefully
about	what	they	are	voting	for.
Coin	voting	governance	empowers	coin	holders	and	coin	holder	interests	at	the	expense	of	other
parts	of	the	community:	protocol	communities	are	made	up	of	diverse	constituencies	that	have	many
different	values,	visions	and	goals.	Coin	voting,	however,	only	gives	power	to	one	constituency	(coin	holders,
and	especially	wealthy	ones),	and	leads	to	over-valuing	the	goal	of	making	the	coin	price	go	up	even	if	that
involves	harmful	rent	extraction.
Conflict	of	interest	issues:	giving	voting	power	to	one	constituency	(coin	holders),	and	especially	over-
empowering	wealthy	actors	in	that	constituency,	risks	over-exposure	to	the	conflicts-of-interest	within	that
particular	elite	(eg.	investment	funds	or	holders	that	also	hold	tokens	of	other	DeFi	platforms	that	interact	with
the	platform	in	question)

There	is	one	major	type	of	strategy	being	attempted	for	solving	the	first	problem	(and	therefore	also	mitigating	the
third	problem):	delegation.	Smallholders	don't	have	to	personally	judge	each	decision;	instead,	they	can	delegate	to
community	members	that	they	trust.	This	is	an	honorable	and	worthy	experiment;	we	shall	see	how	well	delegation
can	mitigate	the	problem.

My	voting	delegation	page	in	the	Gitcoin	DAO

The	problem	of	coin	holder	centrism,	on	the	other	hand,	is	significantly	more	challenging:	coin	holder	centrism	is
inherently	baked	into	a	system	where	coin	holder	votes	are	the	only	input.	The	mis-perception	that	coin	holder
centrism	is	an	intended	goal,	and	not	a	bug,	is	already	causing	confusion	and	harm;	one	(broadly	excellent)	article
discussing	blockchain	public	goods	complains:

Can	crypto	protocols	be	considered	public	goods	if	ownership	is	concentrated	in	the	hands	of	a	few
whales?	Colloquially,	these	market	primitives	are	sometimes	described	as	"public	infrastructure,"	but	if
blockchains	serve	a	"public"	today,	it	is	primarily	one	of	decentralized	finance.	Fundamentally,	these
tokenholders	share	only	one	common	object	of	concern:	price.
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The	complaint	is	false;	blockchains	serve	a	public	much	richer	and	broader	than	DeFi	token	holders.	But	our	coin-
voting-driven	governance	systems	are	completely	failing	to	capture	that,	and	it	seems	difficult	to	make	a	governance
system	that	captures	that	richness	without	a	more	fundamental	change	to	the	paradigm.

Coin	voting's	deep	fundamental	vulnerability	to	attackers:	vote	buying

The	problems	get	much	worse	once	determined	attackers	trying	to	subvert	the	system	enter	the	picture.	The
fundamental	vulnerability	of	coin	voting	is	simple	to	understand.	A	token	in	a	protocol	with	coin	voting	is	a
bundle	of	two	rights	that	are	combined	into	a	single	asset:	(i)	some	kind	of	economic	interest	in	the
protocol's	revenue	and	(ii)	the	right	to	participate	in	governance.	This	combination	is	deliberate:	the	goal
is	to	align	power	and	responsibility.	But	in	fact,	these	two	rights	are	very	easy	to	unbundle	from	each
other.	Imagine	a	simple	wrapper	contract	that	has	these	rules:	if	you	deposit	1	XYZ	into	the	contract,	you	get	back	1
WXYZ.	That	WXYZ	can	be	converted	back	into	an	XYZ	at	any	time,	plus	in	addition	it	accrues	dividends.	Where	do
the	dividends	come	from?	Well,	while	the	XYZ	coins	are	inside	the	wrapper	contract,	it's	the	wrapper	contract	that
has	the	ability	to	use	them	however	it	wants	in	governance	(making	proposals,	voting	on	proposals,	etc).	The
wrapper	contract	simply	auctions	off	this	right	every	day,	and	distributes	the	profits	among	the	original	depositors.

As	an	XYZ	holder,	is	it	in	your	interest	to	deposit	your	coins	into	the	contract?	If	you	are	a	very	large	holder,	it	might
not	be;	you	like	the	dividends,	but	you	are	scared	of	what	a	misaligned	actor	might	do	with	the	governance	power
you	are	selling	them.	But	if	you	are	a	smaller	holder,	then	it	very	much	is.	If	the	governance	power	auctioned	by	the
wrapper	contract	gets	bought	up	by	an	attacker,	you	personally	only	suffer	a	small	fraction	of	the	cost	of	the	bad
governance	decisions	that	your	token	is	contributing	to,	but	you	personally	gain	the	full	benefit	of	the	dividend	from
the	governance	rights	auction.	This	situation	is	a	classic	tragedy	of	the	commons.

Suppose	that	an	attacker	makes	a	decision	that	corrupts	the	DAO	to	the	attacker's	benefit.	The	harm	per	participant
from	the	decision	succeeding	is	\(D\),	and	the	chance	that	a	single	vote	tilts	the	outcome	is	\(p\).	Suppose	an	attacker
makes	a	bribe	of	\(B\).	The	game	chart	looks	like	this:

Decision Benefit	to	you Benefit	to	others
Accept	attacker's	bribe \(B	-	D	*	p\) \(-999	*	D	*	p\)
Reject	bribe,	vote	your	conscience \(0\) \(0\)

If	\(B	>	D	*	p\),	you	are	inclined	to	accept	the	bribe,	but	as	long	as	\(B	<	1000	*	D	*	p\),	accepting	the	bribe	is
collectively	harmful.	So	if	\(p	<	1\)	(usually,	\(p\)	is	far	below	\(1\)),	there	is	an	opportunity	for	an	attacker	to	bribe
users	to	adopt	a	net-negative	decision,	compensating	each	user	far	less	than	the	harm	they	suffer.

One	natural	critique	of	voter	bribing	fears	is:	are	voters	really	going	to	be	so	immoral	as	to	accept	such	obvious
bribes?	The	average	DAO	token	holder	is	an	enthusiast,	and	it	would	be	hard	for	them	to	feel	good	about	so	selfishly
and	blatantly	selling	out	the	project.	But	what	this	misses	is	that	there	are	much	more	obfuscated	ways	to	separate
out	profit	sharing	rights	from	governance	rights,	that	don't	require	anything	remotely	as	explicit	as	a	wrapper
contract.

The	simplest	example	is	borrowing	from	a	defi	lending	platform	(eg.	Compound).	Someone	who	already	holds	ETH
can	lock	up	their	ETH	in	a	CDP	("collateralized	debt	position")	in	one	of	these	platforms,	and	once	they	do	that	the
CDP	contract	allows	them	to	borrow	an	amount	of	XYZ	up	to	eg.	half	the	value	of	the	ETH	that	they	put	in.	They	can
then	do	whatever	they	want	with	this	XYZ.	To	recover	their	ETH,	they	would	eventually	need	to	pay	back	the	XYZ
that	they	borrowed,	plus	interest.
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Note	that	throughout	this	process,	the	borrower	has	no	financial	exposure	to	XYZ.	That	is,	if	they	use	their	XYZ	to
vote	for	a	governance	decision	that	destroys	the	value	of	XYZ,	they	do	not	lose	a	penny	as	a	result.	The	XYZ	they	are
holding	is	XYZ	that	they	have	to	eventually	pay	back	into	the	CDP	regardless,	so	they	do	not	care	if	its	value	goes	up
or	down.	And	so	we	have	achieved	unbundling:	the	borrower	has	governance	power	without	economic
interest,	and	the	lender	has	economic	interest	without	governance	power.

There	are	also	centralized	mechanisms	for	separating	profit	sharing	rights	from	governance	rights.	Most	notably,
when	users	deposit	their	coins	on	a	(centralized)	exchange,	the	exchange	holds	full	custody	of	those	coins,	and	the
exchange	has	the	ability	to	use	those	coins	to	vote.	This	is	not	mere	theory;	there	is	evidence	of	exchanges	using
their	users'	coins	in	several	DPoS	systems.	The	most	notable	recent	example	is	the	attempted	hostile	takeover	of
Steem,	where	exchanges	used	their	customers'	coins	to	vote	for	some	proposals	that	helped	to	cement	a	takeover	of
the	Steem	network	that	the	bulk	of	the	community	strongly	opposed.	The	situation	was	only	resolved	through	an
outright	mass	exodus,	where	a	large	portion	of	the	community	moved	to	a	different	chain	called	Hive.

Some	DAO	protocols	are	using	timelock	techniques	to	limit	these	attacks,	requiring	users	to	lock	their	coins	and
make	them	immovable	for	some	period	of	time	in	order	to	vote.	These	techniques	can	limit	buy-then-vote-then-sell
attacks	in	the	short	term,	but	ultimately	timelock	mechanisms	can	be	bypassed	by	users	holding	and	voting	with
their	coins	through	a	contract	that	issues	a	wrapped	version	of	the	token	(or,	more	trivially,	a	centralized	exchange).
As	far	as	security	mechanisms	go,	timelocks	are	more	like	a	paywall	on	a	newspaper	website	than	they
are	like	a	lock	and	key.

At	present,	many	blockchains	and	DAOs	with	coin	voting	have	so	far	managed	to	avoid	these	attacks	in	their	most
severe	forms.	There	are	occasional	signs	of	attempted	bribes:
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But	despite	all	of	these	important	issues,	there	have	been	much	fewer	examples	of	outright	voter	bribing,	including
obfuscated	forms	such	as	using	financial	markets,	that	simple	economic	reasoning	would	suggest.	The	natural
question	to	ask	is:	why	haven't	more	outright	attacks	happened	yet?

My	answer	is	that	the	"why	not	yet"	relies	on	three	contingent	factors	that	are	true	today,	but	are	likely	to	get	less
true	over	time:

1.	 Community	spirit	from	having	a	tightly-knit	community,	where	everyone	feels	a	sense	of	camaraderie	in	a
common	tribe	and	mission..

2.	 High	wealth	concentration	and	coordination	of	token	holders;	large	holders	have	higher	ability	to	affect
the	outcome	and	have	investments	in	long-term	relationships	with	each	other	(both	the	"old	boys	clubs"	of	VCs,
but	also	many	other	equally	powerful	but	lower-profile	groups	of	wealthy	token	holders),	and	this	makes	them
much	more	difficult	to	bribe.

3.	 Immature	financial	markets	in	governance	tokens:	ready-made	tools	for	making	wrapper	tokens	exist	in
proof-of-concept	forms	but	are	not	widely	used,	bribing	contracts	exist	but	are	similarly	immature,	and	liquidity
in	lending	markets	is	low.

When	a	small	coordinated	group	of	users	holds	over	50%	of	the	coins,	and	both	they	and	the	rest	are	invested	in	a
tightly-knit	community,	and	there	are	few	tokens	being	lent	out	at	reasonable	rates,	all	of	the	above	bribing	attacks
may	perhaps	remain	theoretical.	But	over	time,	(1)	and	(3)	will	inevitably	become	less	true	no	matter	what	we	do,
and	(2)	must	become	less	true	if	we	want	DAOs	to	become	more	fair.	When	those	changes	happen,	will	DAOs	remain
safe?	And	if	coin	voting	cannot	be	sustainably	resistant	against	attacks,	then	what	can?

Solution	1:	limited	governance
One	possible	mitigation	to	the	above	issues,	and	one	that	is	to	varying	extents	being	tried	already,	is	to	put	limits	on
what	coin-driven	governance	can	do.	There	are	a	few	ways	to	do	this:

Use	on-chain	governance	only	for	applications,	not	base	layers:	Ethereum	does	this	already,	as	the
protocol	itself	is	governed	through	off-chain	governance,	while	DAOs	and	other	apps	on	top	of	this	are
sometimes	(but	not	always)	governed	through	on-chain	governance
Limit	governance	to	fixed	parameter	choices:	Uniswap	does	this,	as	it	only	allows	governance	to	affect	(i)
token	distribution	and	(ii)	a	0.05%	fee	in	the	Uniswap	exchange.	Another	great	example	is	RAI's	"un-
governance"	roadmap,	where	governance	has	control	over	fewer	and	fewer	features	over	time.
Add	time	delays:	a	governance	decision	made	at	time	T	only	takes	effect	at	eg.	T	+	90	days.	This	allows	users
and	applications	that	consider	the	decision	unacceptable	to	move	to	another	application	(possibly	a	fork).
Compound	has	a	time	delay	mechanism	in	its	governance,	but	in	principle	the	delay	can	(and	eventually	should)
be	much	longer.
Be	more	fork-friendly:	make	it	easier	for	users	to	quickly	coordinate	on	and	execute	a	fork.	This	makes	the
payoff	of	capturing	governance	smaller.

The	Uniswap	case	is	particularly	interesting:	it's	an	intended	behavior	that	the	on-chain	governance	funds	teams,
which	may	develop	future	versions	of	the	Uniswap	protocol,	but	it's	up	to	users	to	opt-in	to	upgrading	to	those
versions.	This	is	a	hybrid	of	on-chain	and	off-chain	governance	that	leaves	only	a	limited	role	for	the	on-chain	side.

But	limited	governance	is	not	an	acceptable	solution	by	itself;	those	areas	where	governance	is	needed	the	most	(eg.
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funds	distribution	for	public	goods)	are	themselves	among	the	most	vulnerable	to	attack.	Public	goods	funding	is	so
vulnerable	to	attack	because	there	is	a	very	direct	way	for	an	attacker	to	profit	from	bad	decisions:	they	can	try	to
push	through	a	bad	decision	that	sends	funds	to	themselves.	Hence,	we	also	need	techniques	to	improve	governance
itself...

Solution	2:	non-coin-driven	governance
A	second	approach	is	to	use	forms	of	governance	that	are	not	coin-voting-driven.	But	if	coins	do	not	determine	what
weight	an	account	has	in	governance,	what	does?	There	are	two	natural	alternatives:

1.	 Proof	of	personhood	systems:	systems	that	verify	that	accounts	correspond	to	unique	individual	humans,	so
that	governance	can	assign	one	vote	per	human.	See	here	for	a	review	of	some	techniques	being	developed,	and
ProofOfHumanity	and	BrightID	and	Idenanetwork	for	three	attempts	to	implement	this.

2.	 Proof	of	participation:	systems	that	attest	to	the	fact	that	some	account	corresponds	to	a	person	that	has
participated	in	some	event,	passed	some	educational	training,	or	performed	some	useful	work	in	the	ecosystem.
See	POAP	for	one	attempt	to	implement	thus.

There	are	also	hybrid	possibilities:	one	example	is	quadratic	voting,	which	makes	the	power	of	a	single	voter
proportional	to	the	square	root	of	the	economic	resources	that	they	commit	to	a	decision.	Preventing	people	from
gaming	the	system	by	splitting	their	resource	across	many	identities	requires	proof	of	personhood,	and	the	still-
existent	financial	component	allows	participants	to	credibly	signal	how	strongly	they	care	about	an	issue,	as	well	as
how	strongly	they	care	about	the	ecosystem.	Gitcoin	quadratic	funding	is	a	form	of	quadratic	voting,	and	quadratic
voting	DAOs	are	being	built.

Proof	of	participation	is	less	well-understood.	The	key	challenge	is	that	determining	what	counts	as	how	much
participation	itself	requires	a	quite	robust	governance	structure.	It's	possible	that	the	easiest	solution	involves
bootstrapping	the	system	with	a	hand-picked	choice	of	10-100	early	contributors,	and	then	decentralizing	over	time
as	the	selected	participants	of	round	N	determine	participation	criteria	for	round	N+1.	The	possibility	of	a	fork	helps
provide	a	path	to	recovery	from,	and	an	incentive	against,	governance	going	off	the	rails.

Proof	of	personhood	and	proof	of	participation	both	require	some	form	of	anti-collusion	(see	article	explaining	the
issue	here	and	MACI	documentation	here)	to	ensure	that	the	non-money	resource	being	used	to	measure	voting
power	remains	non-financial,	and	does	not	itself	end	up	inside	of	smart	contracts	that	sell	the	governance	power	to
the	highest	bidder.

Solution	3:	skin	in	the	game
The	third	approach	is	to	break	the	tragedy	of	the	commons,	by	changing	the	rules	of	the	vote	itself.	Coin	voting
fails	because	while	voters	are	collectively	accountable	for	their	decisions	(if	everyone	votes	for	a	terrible
decision,	everyone's	coins	drop	to	zero),	each	voter	is	not	individually	accountable	(if	a	terrible	decision
happens,	those	who	supported	it	suffer	no	more	than	those	who	opposed	it).	Can	we	make	a	voting	system
that	changes	this	dynamic,	and	makes	voters	individually,	and	not	just	collectively,	responsible	for	their
decisions?

Fork-friendliness	is	arguably	a	skin-in-the-game	strategy,	if	forks	are	done	in	the	way	that	Hive	forked	from	Steem.
In	the	case	that	a	ruinous	governance	decision	succeeds	and	can	no	longer	be	opposed	inside	the	protocol,	users	can
take	it	upon	themselves	to	make	a	fork.	Furthermore,	in	that	fork,	the	coins	that	voted	for	the	bad	decision	can	be
destroyed.

This	sounds	harsh,	and	perhaps	it	even	feels	like	a	violation	of	an	implicit	norm	that	the	"immutability	of	the	ledger"
should	remain	sacrosanct	when	forking	a	coin.	But	the	idea	seems	much	more	reasonable	when	seen	from	a
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different	perspective.	We	keep	the	idea	of	a	strong	firewall	where	individual	coin	balances	are	expected	to	be
inviolate,	but	only	apply	that	protection	to	coins	that	do	not	participate	in	governance.	If	you	participate	in
governance,	even	indirectly	by	putting	your	coins	into	a	wrapper	mechanism,	then	you	may	be	held	liable	for	the
costs	of	your	actions.

This	creates	individual	responsibility:	if	an	attack	happens,	and	your	coins	vote	for	the	attack,	then	your
coins	are	destroyed.	If	your	coins	do	not	vote	for	the	attack,	your	coins	are	safe.	The	responsibility	propagates
upward:	if	you	put	your	coins	into	a	wrapper	contract	and	the	wrapper	contract	votes	for	an	attack,	the	wrapper
contract's	balance	is	wiped	and	so	you	lose	your	coins.	If	an	attacker	borrows	XYZ	from	a	defi	lending	platform,
when	the	platform	forks	anyone	who	lent	XYZ	loses	out	(note	that	this	makes	lending	the	governance	token	in
general	very	risky;	this	is	an	intended	consequence).

Skin-in-the-game	in	day-to-day	voting

But	the	above	only	works	for	guarding	against	decisions	that	are	truly	extreme.	What	about	smaller-scale	heists,
which	unfairly	favor	attackers	manipulating	the	economics	of	the	governance	but	not	severely	enough	to	be	ruinous?
And	what	about,	in	the	absence	of	any	attackers	at	all,	simple	laziness,	and	the	fact	that	coin-voting	governance	has
no	selection	pressure	in	favor	of	higher-quality	opinions?

The	most	popular	solution	to	these	kinds	of	issues	is	futarchy,	introduced	by	Robin	Hanson	in	the	early	2000s.	Votes
become	bets:	to	vote	in	favor	of	a	proposal,	you	make	a	bet	that	the	proposal	will	lead	to	a	good	outcome,	and	to	vote
against	the	proposal,	you	make	a	bet	that	the	proposal	will	lead	to	a	poor	outcome.	Futarchy	introduces	individual
responsibility	for	obvious	reasons:	if	you	make	good	bets,	you	get	more	coins,	and	if	you	make	bad	bets	you	lose	your
coins.

"Pure"	futarchy	has	proven	difficult	to	introduce,	because	in	practice	objective	functions	are	very	difficult	to	define
(it's	not	just	coin	price	that	people	want!),	but	various	hybrid	forms	of	futarchy	may	well	work.	Examples	of	hybrid
futarchy	include:

Votes	as	buy	orders:	see	ethresear.ch	post.	Voting	in	favor	of	a	proposal	requires	making	an	enforceable	buy
order	to	buy	additional	tokens	at	a	price	somewhat	lower	than	the	token's	current	price.	This	ensures	that	if	a
terrible	decision	succeeds,	those	who	support	it	may	be	forced	to	buy	their	opponents	out,	but	it	also	ensures
that	in	more	"normal"	decisions	coin	holders	have	more	slack	to	decide	according	to	non-price	criteria	if	they	so
wish.
Retroactive	public	goods	funding:	see	post	with	the	Optimism	team.	Public	goods	are	funded	by	some	voting
mechanism	retroactively,	after	they	have	already	achieved	a	result.	Users	can	buy	project	tokens	to	fund	their
project	while	signaling	confidence	in	it;	buyers	of	project	tokens	get	a	share	of	the	reward	if	that	project	is
deemed	to	have	achieved	a	desired	goal.
Escalation	games:	see	Augur	and	Kleros.	Value-alignment	on	lower-level	decisions	is	incentivized	by	the
possibility	to	appeal	to	a	higher-effort	but	higher-accuracy	higher-level	process;	voters	whose	votes	agree	with
the	ultimate	decision	are	rewarded.

In	the	latter	two	cases,	hybrid	futarchy	depends	on	some	form	of	non-futarchy	governance	to	measure	against	the
objective	function	or	serve	as	a	dispute	layer	of	last	resort.	However,	this	non-futarchy	governance	has	several
advantages	that	it	does	not	if	used	directly:	(i)	it	activates	later,	so	it	has	access	to	more	information,	(ii)	it	is	used
less	frequently,	so	it	can	expend	less	effort,	and	(iii)	each	use	of	it	has	greater	consequences,	so	it's	more	acceptable
to	just	rely	on	forking	to	align	incentives	for	this	final	layer.

Hybrid	solutions
There	are	also	solutions	that	combine	elements	of	the	above	techniques.	Some	possible	examples:

Time	delays	plus	elected-specialist	governance:	this	is	one	possible	solution	to	the	ancient	conundrum	of
how	to	make	an	crypto-collateralized	stablecoin	whose	locked	funds	can	exceed	the	value	of	the	profit-taking
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token	without	risking	governance	capture.	The	stable	coin	uses	a	price	oracle	constructed	from	the	median	of
values	submitted	by	N	(eg.	N	=	13)	elected	providers.	Coin	voting	chooses	the	providers,	but	it	can	only	cycle
out	one	provider	each	week.	If	users	notice	that	coin	voting	is	bringing	in	untrustworthy	price	providers,	they
have	N/2	weeks	before	the	stablecoin	breaks	to	switch	to	a	different	one.
Futarchy	+	anti-collusion	=	reputation:	Users	vote	with	"reputation",	a	token	that	cannot	be	transferred.
Users	gain	more	reputation	if	their	decisions	lead	to	desired	results,	and	lose	reputation	if	their	decisions	lead
to	undesired	results.	See	here	for	an	article	advocating	for	a	reputation-based	scheme.
Loosely-coupled	(advisory)	coin	votes:	a	coin	vote	does	not	directly	implement	a	proposed	change,	instead	it
simply	exists	to	make	its	outcome	public,	to	build	legitimacy	for	off-chain	governance	to	implement	that	change.
This	can	provide	the	benefits	of	coin	votes,	with	fewer	risks,	as	the	legitimacy	of	a	coin	vote	drops	off
automatically	if	evidence	emerges	that	the	coin	vote	was	bribed	or	otherwise	manipulated.

But	these	are	all	only	a	few	possible	examples.	There	is	much	more	that	can	be	done	in	researching	and	developing
non-coin-driven	governance	algorithms.	The	most	important	thing	that	can	be	done	today	is	moving	away
from	the	idea	that	coin	voting	is	the	only	legitimate	form	of	governance	decentralization.	Coin	voting	is
attractive	because	it	feels	credibly	neutral:	anyone	can	go	and	get	some	units	of	the	governance	token	on	Uniswap.
In	practice,	however,	coin	voting	may	well	only	appear	secure	today	precisely	because	of	the	imperfections
in	its	neutrality	(namely,	large	portions	of	the	supply	staying	in	the	hands	of	a	tightly-coordinated	clique	of
insiders).

We	should	stay	very	wary	of	the	idea	that	current	forms	of	coin	voting	are	"safe	defaults".	There	is	still	much	that
remains	to	be	seen	about	how	they	function	under	conditions	of	more	economic	stress	and	mature	ecosystems	and
financial	markets,	and	the	time	is	now	to	start	simultaneously	experimenting	with	alternatives.
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Against	overuse	of	the	Gini	coefficient

Special	thanks	to	Barnabe	Monnot	and	Tina	Zhen	for	feedback	and	review

The	Gini	coefficient	(also	called	the	Gini	index)	is	by	far	the	most	popular	and	widely	known	measure	of
inequality,	typically	used	to	measure	inequality	of	income	or	wealth	in	some	country,	territory	or	other
community.	It's	popular	because	it's	easy	to	understand,	with	a	mathematical	definition	that	can	easily	be
visualized	on	a	graph.

However,	as	one	might	expect	from	any	scheme	that	tried	to	reduce	inequality	to	a	single	number,	the	Gini
coefficient	also	has	its	limits.	This	is	true	even	in	its	original	context	of	measuring	income	and	wealth
inequality	in	countries,	but	it	becomes	even	more	true	when	the	Gini	coefficient	is	transplanted	into	other
contexts	(particularly:	cryptocurrency).	In	this	post	I	will	talk	about	some	of	the	limits	of	the	Gini
coefficient,	and	propose	some	alternatives.

What	is	the	Gini	coefficient?
The	Gini	coefficient	is	a	measure	of	inequality	introduced	by	Corrado	Gini	in	1912.	It	is	typically	used	to
measure	inequality	of	income	and	wealth	of	countries,	though	it	is	also	increasingly	being	used	in	other
contexts.

There	are	two	equivalent	definitions	of	the	Gini	coefficient:

Area-above-curve	definition:	draw	the	graph	of	a	function,	where	\(f(p)\)	equals	the	share	of	total	income
earned	by	the	lowest-earning	portion	of	the	population	(eg.	\(f(0.1)\)	is	the	share	of	total	income	earned	by
the	lowest-earning	10%).	The	Gini	coefficient	is	the	area	between	that	curve	and	the	\(y=x\)	line,	as	a
portion	of	the	whole	triangle:

Average-difference	definition:	the	Gini	coefficient	is	half	the	average	difference	of	incomes	between
each	all	possible	pairs	of	individuals,	divided	by	the	mean	income.

For	example,	in	the	above	example	chart,	the	four	incomes	are	[1,	2,	4,	8],	so	the	16	possible	differences
are	[0,	1,	3,	7,	1,	0,	2,	6,	3,	2,	0,	4,	7,	6,	4,	0].	Hence	the	average	difference	is	2.875	and	the	mean
income	is	3.75,	so	Gini	=	\(\frac{2.875}{2	*	3.75}	\approx	0.3833\).

It	turns	out	that	the	two	are	mathematically	equivalent	(proving	this	is	an	exercise	to	the	reader)!

What's	wrong	with	the	Gini	coefficient?
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The	Gini	coefficient	is	attractive	because	it's	a	reasonably	simple	and	easy-to-understand	statistic.	It	might
not	look	simple,	but	trust	me,	pretty	much	everything	in	statistics	that	deals	with	populations	of	arbitrary
size	is	that	bad,	and	often	much	worse.	Here,	stare	at	the	formula	of	something	as	basic	as	the	standard
deviation:

\(\sigma	=	\frac{\sum_{i=1}^n	x_i^2}{n}	-	(\frac{\sum_{i=1}^n	x_i}{n})^2\)

And	here's	the	Gini:

\(G	=	\frac{2	*	\sum_{i=1}^n	i*x_i}{n	*	\sum_{i=1}^n	x_i}	-	\frac{n+1}{n}\)

It's	actually	quite	tame,	I	promise!

So,	what's	wrong	with	it?	Well,	there	are	lots	of	things	wrong	with	it,	and	people	have	written	lots	of
articles	about	various	problems	with	the	Gini	coefficient.	In	this	article,	I	will	focus	on	one	specific	problem
that	I	think	is	under-discussed	about	the	Gini	as	a	whole,	but	that	has	particular	relevance	to	analyzing
inequality	in	internet	communities	such	as	blockchains.	The	Gini	coefficient	combines	together	into	a
single	inequality	index	two	problems	that	actually	look	quite	different:	suffering	due	to	lack	of
resources	and	concentration	of	power.

To	understand	the	difference	between	the	two	problems	more	clearly,	let's	look	at	two	dystopias:

Dystopia	A:	half	the	population	equally	shares	all	the	resources,	everyone	else	has	none
Dystopia	B:	one	person	has	half	of	all	the	resources,	everyone	else	equally	shares	the	remaining	half

Here	are	the	Lorenz	curves	(fancy	charts	like	we	saw	above)	for	both	dystopias:

Clearly,	neither	of	those	two	dystopias	are	good	places	to	live.	But	they	are	not-very-nice	places	to	live
in	very	different	ways.	Dystopia	A	gives	each	resident	a	coin	flip	between	unthinkably	horrific	mass
starvation	if	they	end	up	on	the	left	half	on	the	distribution	and	egalitarian	harmony	if	they	end	up	on	the
right	half.	If	you're	Thanos,	you	might	actually	like	it!	If	you're	not,	it's	worth	avoiding	with	the	strongest
force.	Dystopia	B,	on	the	other	hand,	is	Brave	New	World-like:	everyone	has	decently	good	lives	(at	least	at
the	time	when	that	snapshot	of	everyone's	resources	is	taken),	but	at	the	high	cost	of	an	extremely
undemocratic	power	structure	where	you'd	better	hope	you	have	a	good	overlord.	If	you're	Curtis	Yarvin,
you	might	actually	like	it!	If	you're	not,	it's	very	much	worth	avoiding	too.

These	two	problems	are	different	enough	that	they're	worth	analyzing	and	measuring	separately.	And	this
difference	is	not	just	theoretical.	Here	is	a	chart	showing	share	of	total	income	earned	by	the	bottom	20%
(a	decent	proxy	for	avoiding	dystopia	A)	versus	share	of	total	income	earned	by	the	top	1%	(a	decent	proxy
for	being	near	dystopia	B):
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Sources:	https://data.worldbank.org/indicator/SI.DST.FRST.20	(merging	2015	and	2016	data)	and
http://hdr.undp.org/en/indicators/186106.	

The	two	are	clearly	correlated	(coefficient	-0.62),	but	very	far	from	perfectly	correlated	(the	high	priests	of
statistics	apparently	consider	0.7	to	be	the	lower	threshold	for	being	"highly	correlated",	and	we're	even
under	that).	There's	an	interesting	second	dimension	to	the	chart	that	can	be	analyzed	-	what's	the
difference	between	a	country	where	the	top	1%	earn	20%	of	the	total	income	and	the	bottom	20%	earn	3%
and	a	country	where	the	top	1%	earn	20%	and	the	bottom	20%	earn	7%?	Alas,	such	an	exploration	is	best
left	to	other	enterprising	data	and	culture	explorers	with	more	experience	than	myself.

Why	Gini	is	very	problematic	in	non-geographic	communities
(eg.	internet/crypto	communities)
Wealth	concentration	within	the	blockchain	space	in	particular	is	an	important	problem,	and	it's	a	problem
worth	measuring	and	understanding.	It's	important	for	the	blockchain	space	as	a	whole,	as	many	people
(and	US	senate	hearings)	are	trying	to	figure	out	to	what	extent	crypto	is	truly	anti-elitist	and	to	what
extent	it's	just	replacing	old	elites	with	new	ones.	It's	also	important	when	comparing	different
cryptocurrencies	with	each	other.

https://data.worldbank.org/indicator/SI.DST.FRST.20
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Share	of	coins	explicitly	allocated	to	specific	insiders	in	a	cryptocurrency's	initial	supply	is	one	type	of
inequality.	Note	that	the	Ethereum	data	is	slightly	wrong:	the	insider	and	foundation	shares	should	be

12.3%	and	4.2%,	not	15%	and	5%.	

Given	the	level	of	concern	about	these	issues,	it	should	be	not	at	all	surprising	that	many	people	have	tried
computing	Gini	indices	of	cryptocurrencies:

The	observed	Gini	index	for	staked	EOS	tokens	(2018)
Gini	coefficients	of	cryptocurrencies	(2018)
Measuring	decentralization	in	Bitcoin	and	Ethereum	using	Multiple	Metrics	and	Granularities	(2021,
includes	Gini	and	2	other	metrics)
Nouriel	Roubini	comparing	Bitcoin's	Gini	to	North	Korea	(2018)
On-chain	Insights	in	the	Cryptocurrency	Markets	(2021,	uses	Gini	to	measure	concentration)

And	even	earlier	than	that,	we	had	to	deal	with	this	sensationalist	article	from	2014:

In	addition	to	common	plain	methodological	mistakes	(often	either	mixing	up	income	vs	wealth	inequality,
mixing	up	users	vs	accounts,	or	both)	that	such	analyses	make	quite	frequently,	there	is	a	deep	and	subtle
problem	with	using	the	Gini	coefficient	to	make	these	kinds	of	comparisons.	The	problem	lies	in	key
distinction	between	typical	geographic	communities	(eg.	cities,	countries)	and	typical	internet	communities
(eg.	blockchains):
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A	typical	resident	of	a	geographic	community	spends	most	of	their	time	and	resources	in	that	community,
and	so	measured	inequality	in	a	geographic	community	reflects	inequality	in	total	resources	available	to
people.	But	in	an	internet	community,	measured	inequality	can	come	from	two	sources:	(i)
inequality	in	total	resources	available	to	different	participants,	and	(ii)	inequality	in	level	of
interest	in	participating	in	the	community.

The	average	person	with	$15	in	fiat	currency	is	poor	and	is	missing	out	on	the	ability	to	have	a	good	life.
The	average	person	with	$15	in	cryptocurrency	is	a	dabbler	who	opened	up	a	wallet	once	for	fun.	Inequality
in	level	of	interest	is	a	healthy	thing;	every	community	has	its	dabblers	and	its	full-time	hardcore	fans	with
no	life.	So	if	a	cryptocurrency	has	a	very	high	Gini	coefficient,	but	it	turns	out	that	much	of	this	inequality
comes	from	inequality	in	level	of	interest,	then	the	number	points	to	a	much	less	scary	reality	than	the
headlines	imply.

Cryptocurrencies,	even	those	that	turn	out	to	be	highly	plutocratic,	will	not	turn	any	part	of	the	world	into
anything	close	to	dystopia	A.	But	badly-distributed	cryptocurrencies	may	well	look	like	dystopia	B,	a
problem	compounded	if	coin	voting	governance	is	used	to	make	protocol	decisions.	Hence,	to	detect	the
problems	that	cryptocurrency	communities	worry	about	most,	we	want	a	metric	that	captures	proximity	to
dystopia	B	more	specifically.

An	alternative:	measuring	dystopia	A	problems	and	dystopia	B
problems	separately
An	alternative	approach	to	measuring	inequality	involves	directly	estimating	suffering	from	resources	being
unequally	distributed	(that	is,	"dystopia	A"	problems).	First,	start	with	some	utility	function	representing
the	value	of	having	a	certain	amount	of	money.	\(log(x)\)	is	popular,	because	it	captures	the	intuitively
appealing	approximation	that	doubling	one's	income	is	about	as	useful	at	any	level:	going	from	$10,000	to
$20,000	adds	the	same	utility	as	going	from	$5,000	to	$10,000	or	from	$40,000	to	$80,000).	The	score	is
then	a	matter	of	measuring	how	much	utility	is	lost	compared	to	if	everyone	just	got	the	average	income:

\(log(\frac{\sum_{i=1}^n	x_i}{n})	-	\frac{\sum_{i=1}^n	log(x_i)}{n}\)

The	first	term	(log-of-average)	is	the	utility	that	everyone	would	have	if	money	were	perfectly	redistributed,
so	everyone	earned	the	average	income.	The	second	term	(average-of-log)	is	the	average	utility	in	that
economy	today.	The	difference	represents	lost	utility	from	inequality,	if	you	look	narrowly	at	resources	as
something	used	for	personal	consumption.	There	are	other	ways	to	define	this	formula,	but	they	end	up
being	close	to	equivalent	(eg.	the	1969	paper	by	Anthony	Atkinson	suggested	an	"equally	distributed
equivalent	level	of	income"	metric	which,	in	the	\(U(x)	=	log(x)\)	case,	is	just	a	monotonic	function	of	the
above,	and	the	Theil	L	index	is	perfectly	mathematically	equivalent	to	the	above	formula).

To	measure	concentration	(or	"dystopia	B"	problems),	the	Herfindahl-Hirschman	index	is	an	excellent	place
to	start,	and	is	already	used	to	measure	economic	concentration	in	industries:

\(\frac{\sum_{i=1}^n	x_i^2}{(\sum_{i=1}^n	x_i)^2}\)

Or	for	you	visual	learners	out	there:
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Herfindahl-Hirschman	index:	green	area	divided	by	total	area.	

There	are	other	alternatives	to	this;	the	Theil	T	index	has	some	similar	properties	though	also	some
differences.	A	simpler-and-dumber	alternative	is	the	Nakamoto	coefficient:	the	minimum	number	of
participants	needed	to	add	up	to	more	than	50%	of	the	total.	Note	that	all	three	of	these	concentration
indices	focus	heavily	on	what	happens	near	the	top	(and	deliberately	so):	a	large	number	of	dabblers	with	a
small	quantity	of	resources	contributes	little	or	nothing	to	the	index,	while	the	act	of	two	top	participants
merging	can	make	a	very	big	change	to	the	index.

For	cryptocurrency	communities,	where	concentration	of	resources	is	one	of	the	biggest	risks	to	the	system
but	where	someone	only	having	0.00013	coins	is	not	any	kind	of	evidence	that	they're	actually	starving,
adopting	indices	like	this	is	the	obvious	approach.	But	even	for	countries,	it's	probably	worth	talking	about,
and	measuring,	concentration	of	power	and	suffering	from	lack	of	resources	more	separately.

That	said,	at	some	point	we	have	to	move	beyond	even	these	indices.	The	harms	from	concentration
are	not	just	a	function	of	the	size	of	the	actors;	they	are	also	heavily	dependent	on	the	relationships
between	the	actors	and	their	ability	to	collude	with	each	other.	Similarly,	resource	allocation	is	network-
dependent:	lack	of	formal	resources	may	not	be	that	harmful	if	the	person	lacking	resources	has	an
informal	network	to	tap	into.	But	dealing	with	these	issues	is	a	much	harder	challenge,	and	so	we	do	also
need	the	simpler	tools	while	we	still	have	less	data	to	work	with.

https://en.wikipedia.org/wiki/Theil_index
https://vitalik.ca/general/2019/04/03/collusion.html
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Verkle	trees

Special	thanks	to	Dankrad	Feist	and	Justin	Drake	for	feedback	and	review.

Verkle	trees	are	shaping	up	to	be	an	important	part	of	Ethereum's	upcoming	scaling	upgrades.	They
serve	the	same	function	as	Merkle	trees:	you	can	put	a	large	amount	of	data	into	a	Verkle	tree,	and
make	a	short	proof	("witness")	of	any	single	piece,	or	set	of	pieces,	of	that	data	that	can	be	verified	by
someone	who	only	has	the	root	of	the	tree.	The	key	property	that	Verkle	trees	provide,	however,	is	that
they	are	much	more	efficient	in	proof	size.	If	a	tree	contains	a	billion	pieces	of	data,	making	a	proof	in	a
traditional	binary	Merkle	tree	would	require	about	1	kilobyte,	but	in	a	Verkle	tree	the	proof	would	be
less	than	150	bytes	-	a	reduction	sufficient	to	make	stateless	clients	finally	viable	in	practice.

Verkle	trees	are	still	a	new	idea;	they	were	first	introduced	by	John	Kuszmaul	in	this	paper	from	2018,
and	they	are	still	not	as	widely	known	as	many	other	important	new	cryptographic	constructions.	This
post	will	explain	what	Verkle	trees	are	and	how	the	cryptographic	magic	behind	them	works.	The	price
of	their	short	proof	size	is	a	higher	level	of	dependence	on	more	complicated	cryptography.	That	said,
the	cryptography	still	much	simpler,	in	my	opinion,	than	the	advanced	cryptography	found	in	modern	ZK
SNARK	schemes.	In	this	post	I'll	do	the	best	job	that	I	can	at	explaining	it.

Merkle	Patricia	vs	Verkle	Tree	node	structure
In	terms	of	the	structure	of	the	tree	(how	the	nodes	in	the	tree	are	arranged	and	what	they	contain),	a
Verkle	tree	is	very	similar	to	the	Merkle	Patricia	tree	currently	used	in	Ethereum.	Every	node	is	either
(i)	empty,	(ii)	a	leaf	node	containing	a	key	and	value,	or	(iii)	an	intermediate	node	that	has	some	fixed
number	of	children	(the	"width"	of	the	tree).	The	value	of	an	intermediate	node	is	computed	as	a	hash	of
the	values	of	its	children.

The	location	of	a	value	in	the	tree	is	based	on	its	key:	in	the	diagram	below,	to	get	to	the	node	with	key
4cc,	you	start	at	the	root,	then	go	down	to	the	child	at	position	4,	then	go	down	to	the	child	at	position	c
(remember:	c	=	12	in	hexadecimal),	and	then	go	down	again	to	the	child	at	position	c.	To	get	to	the	node
with	key	baaa,	you	go	to	the	position-b	child	of	the	root,	and	then	the	position-a	child	of	that	node.	The
node	at	path	(b,a)	directly	contains	the	node	with	key	baaa,	because	there	are	no	other	keys	in	the	tree
starting	with	ba.

The	structure	of	nodes	in	a	hexary	(16	children	per	parent)	Verkle	tree,	here	filled	with	six	(key,	value)	pairs.
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The	only	real	difference	in	the	structure	of	Verkle	trees	and	Merkle	Patricia	trees	is	that	Verkle	trees
are	wider	in	practice.	Much	wider.	Patricia	trees	are	at	their	most	efficient	when	width	=	2	(so
Ethereum's	hexary	Patricia	tree	is	actually	quite	suboptimal).	Verkle	trees,	on	the	other	hand,	get
shorter	and	shorter	proofs	the	higher	the	width;	the	only	limit	is	that	if	width	gets	too	high,	proofs	start
to	take	too	long	to	create.	The	Verkle	tree	proposed	for	Ethereum	has	a	width	of	256,	and	some	even
favor	raising	it	to	1024	(!!).

Commitments	and	proofs
In	a	Merkle	tree	(including	Merkle	Patricia	trees),	the	proof	of	a	value	consists	of	the	entire	set	of	sister
nodes:	the	proof	must	contain	all	nodes	in	the	tree	that	share	a	parent	with	any	of	the	nodes	in	the	path
going	down	to	the	node	you	are	trying	to	prove.	That	may	be	a	little	complicated	to	understand,	so
here's	a	picture	of	a	proof	for	the	value	in	the	4ce	position.	Sister	nodes	that	must	be	included	in	the
proof	are	highlighted	in	red.

That's	a	lot	of	nodes!	You	need	to	provide	the	sister	nodes	at	each	level,	because	you	need	the	entire	set
of	children	of	a	node	to	compute	the	value	of	that	node,	and	you	need	to	keep	doing	this	until	you	get	to
the	root.	You	might	think	that	this	is	not	that	bad	because	most	of	the	nodes	are	zeroes,	but	that's	only
because	this	tree	has	very	few	nodes.	If	this	tree	had	256	randomly-allocated	nodes,	the	top	layer	would
almost	certainly	have	all	16	nodes	full,	and	the	second	layer	would	on	average	be	~63.3%	full.

In	a	Verkle	tree,	on	the	other	hand,	you	do	not	need	to	provide	sister	nodes;	instead,	you	just
provide	the	path,	with	a	little	bit	extra	as	a	proof.	This	is	why	Verkle	trees	benefit	from	greater
width	and	Merkle	Patricia	trees	do	not:	a	tree	with	greater	width	leads	to	shorter	paths	in	both	cases,
but	in	a	Merkle	Patricia	tree	this	effect	is	overwhelmed	by	the	higher	cost	of	needing	to	provide	all	the
width	-	1	sister	nodes	per	level	in	a	proof.	In	a	Verkle	tree,	that	cost	does	not	exist.

So	what	is	this	little	extra	that	we	need	as	a	proof?	To	understand	that,	we	first	need	to	circle	back	to
one	key	detail:	the	hash	function	used	to	compute	an	inner	node	from	its	children	is	not	a	regular	hash.
Instead,	it's	a	vector	commitment.

A	vector	commitment	scheme	is	a	special	type	of	hash	function,	hashing	a	list	\(h(z_1,	z_2	...	z_n)
\rightarrow	C\).	But	vector	commitments	have	the	special	property	that	for	a	commitment	\(C\)	and	a
value	\(z_i\),	it's	possible	to	make	a	short	proof	that	\(C\)	is	the	commitment	to	some	list	where	the	value
at	the	i'th	position	is	\(z_i\).	In	a	Verkle	proof,	this	short	proof	replaces	the	function	of	the	sister	nodes	in
a	Merkle	Patricia	proof,	giving	the	verifier	confidence	that	a	child	node	really	is	the	child	at	the	given

https://notes.ethereum.org/@vbuterin/verkle_tree_eip


position	of	its	parent	node.

No	sister	nodes	required	in	a	proof	of	a	value	in	the	tree;	just	the	path	itself	plus	a	few	short	proofs	to	link	each
commitment	in	the	path	to	the	next.

In	practice,	we	use	a	primitive	even	more	powerful	than	a	vector	commitment,	called	a	polynomial
commitment.	Polynomial	commitments	let	you	hash	a	polynomial,	and	make	a	proof	for	the	evaluation
of	the	hashed	polynomial	at	any	point.	You	can	use	polynomial	commitments	as	vector	commitments:	if
we	agree	on	a	set	of	standardized	coordinates	\((c_1,	c_2	...	c_n)\),	given	a	list	\((y_1,	y_2	...	y_n)\)	you
can	commit	to	the	polynomial	\(P\)	where	\(P(c_i)	=	y_i\)	for	all	\(i	\in	[1..n]\)	(you	can	find	this
polynomial	with	Lagrange	interpolation).	I	talk	about	polynomial	commitments	at	length	in	my	article	on
ZK-SNARKs.	The	two	polynomial	commitment	schemes	that	are	the	easiest	to	use	are	KZG	commitments
and	bulletproof-style	commitments	(in	both	cases,	a	commitment	is	a	single	32-48	byte	elliptic	curve
point).	Polynomial	commitments	give	us	more	flexibility	that	lets	us	improve	efficiency,	and	it	just	so
happens	that	the	simplest	and	most	efficient	vector	commitments	available	are	the	polynomial
commitments.

This	scheme	is	already	very	powerful	as	it	is:	if	you	use	a	KZG	commitment	and	proof,	the	proof
size	is	96	bytes	per	intermediate	node,	nearly	3x	more	space-efficient	than	a	simple	Merkle
proof	if	we	set	width	=	256.	However,	it	turns	out	that	we	can	increase	space-efficiency	even	further.
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Merging	the	proofs
Instead	of	requiring	one	proof	for	each	commitment	along	the	path,	by	using	the	extra	properties	of
polynomial	commitments	we	can	make	a	single	fixed-size	proof	that	proves	all	parent-child
links	between	commitments	along	the	paths	for	an	unlimited	number	of	keys.	We	do	this	using	a
scheme	that	implements	multiproofs	through	random	evaluation.

But	to	use	this	scheme,	we	first	need	to	convert	the	problem	into	a	more	structured	one.	We	have	a
proof	of	one	or	more	values	in	a	Verkle	tree.	The	main	part	of	this	proof	consists	of	the	intermediary
nodes	along	the	path	to	each	node.	For	each	node	that	we	provide,	we	also	have	to	prove	that	it	actually
is	the	child	of	the	node	above	it	(and	in	the	correct	position).	In	our	single-value-proof	example	above,
we	needed	proofs	to	prove:

That	the	key:	4ce	node	actually	is	the	position-e	child	of	the	prefix:	4c	intermediate	node.
That	the	prefix:	4c	intermediate	node	actually	is	the	position-c	child	of	the	prefix:	4	intermediate
node.
That	the	prefix:	4	intermediate	node	actually	is	the	position-4	child	of	the	root

If	we	had	a	proof	proving	multiple	values	(eg.	both	4ce	and	420),	we	would	have	even	more	nodes	and
even	more	linkages.	But	in	any	case,	what	we	are	proving	is	a	sequence	of	statements	of	the	form
"node	A	actually	is	the	position-i	child	of	node	B".	If	we	are	using	polynomial	commitments,	this
turns	into	equations:	\(A(x_i)	=	y\),	where	\(y\)	is	the	hash	of	the	commitment	to	\(B\).

The	details	of	this	proof	are	technical	and	better	explained	by	Dankrad	Feist	than	myself.	By	far	the
bulkiest	and	time-consuming	step	in	the	proof	generation	involves	computing	a	polynomial	\(g\)	of	the
form:

\(g(X)	=	r^0\frac{A_0(X)	-	y_0}{X	-	x_0}	+	r^1\frac{A_1(X)	-	y_1}{X	-	x_1}	+	...	+	r^n\frac{A_n(X)	-
y_n}{X	-	x_n}\)

It	is	only	possible	to	compute	each	term	\(r^i\frac{A_i(X)	-	y_i}{X	-	x_i}\)	if	that	expression	is	a
polynomial	(and	not	a	fraction).	And	that	requires	\(A_i(X)\)	to	equal	\(y_i\)	at	the	point	\(x_i\).

We	can	see	this	with	an	example.	Suppose:

\(A_i(X)	=	X^2	+	X	+	3\)
We	are	proving	for	\((x_i	=	2,	y_i	=	9)\).	\(A_i(2)\)	does	equal	\(9\)	so	this	will	work.

\(A_i(X)	-	9	=	X^2	+	X	-	6\),	and	\(\frac{X^2	+	X	-	6}{X	-	2}\)	gives	a	clean	\(X	-	3\).	But	if	we	tried	to	fit
in	\((x_i	=	2,	y_i	=	10)\),	this	would	not	work;	\(X^2	+	X	-	7\)	cannot	be	cleanly	divided	by	\(X	-	2\)

https://dankradfeist.de/ethereum/2021/06/18/pcs-multiproofs.html
https://dankradfeist.de/ethereum/2021/06/18/pcs-multiproofs.html


without	a	fractional	remainder.

The	rest	of	the	proof	involves	providing	a	polynomial	commitment	to	\(g(X)\)	and	then	proving	that	the
commitment	is	actually	correct.	Once	again,	see	Dankrad's	more	technical	description	for	the	rest	of	the
proof.

One	single	proof	proves	an	unlimited	number	of	parent-child	relationships.

And	there	we	have	it,	that's	what	a	maximally	efficient	Verkle	proof	looks	like.

Key	properties	of	proof	sizes	using	this	scheme

Dankrad's	multi-random-evaluation	proof	allows	the	prover	to	prove	an	arbitrary	number	of
evaluations	\(A_i(x_i)	=	y_i\),	given	commitments	to	each	\(A_i\)	and	the	values	that	are	being
proven.	This	proof	is	constant	size	(one	polynomial	commitment,	one	number,	and	two	proofs;
128-1000	bytes	depending	on	what	scheme	is	being	used).
The	\(y_i\)	values	do	not	need	to	be	provided	explicitly,	as	they	can	be	directly	computed	from
the	other	values	in	the	Verkle	proof:	each	\(y_i\)	is	itself	the	hash	of	the	next	value	in	the	path
(either	a	commitment	or	a	leaf).
The	\(x_i\)	values	also	do	not	need	to	be	provided	explicitly,	since	the	paths	(and	hence	the	\
(x_i\)	values)	can	be	computed	from	the	keys	and	the	coordinates	derived	from	the	paths.
Hence,	all	we	need	is	the	leaves	(keys	and	values)	that	we	are	proving,	as	well	as	the
commitments	along	the	path	from	each	leaf	to	the	root.
Assuming	a	width-256	tree,	and	\(2^{32}\)	nodes,	a	proof	would	require	the	keys	and	values	that
are	being	proven,	plus	(on	average)	three	commitments	for	each	value	along	the	path	from	that
value	to	the	root.
If	we	are	proving	many	values,	there	are	further	savings:	no	matter	how	many	values	you	are
proving,	you	will	not	need	to	provide	more	than	the	256	values	at	the	top	level.

Proof	sizes	(bytes).	Rows:	tree	size,	cols:	key/value	pairs	proven

1 10 100 1,000 10,000
256 176 176 176 176 176
65,536 224 608 4,112 12,176 12,464
16,777,216 272 1,040 8,864 59,792 457,616
4,294,967,296 320 1,472 13,616 107,744 937,472

Assuming	width	256,	and	48-byte	KZG	commitments/proofs.	Note	also	that	this	assumes	a	maximally
even	tree;	for	a	realistic	randomized	tree,	add	a	depth	of	~0.6	(so	~30	bytes	per	element).	If	bulletproof-
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style	commitments	are	used	instead	of	KZG,	it's	safe	to	go	down	to	32	bytes,	so	these	sizes	can	be
reduced	by	1/3.

Prover	and	verifier	computation	load
The	bulk	of	the	cost	of	generating	a	proof	is	computing	each	\(r^i\frac{A_i(X)	-	y_i}{X	-	x_i}\)
expression.	This	requires	roughly	four	field	operations	(ie.	256	bit	modular	arithmetic	operations)	times
the	width	of	the	tree.	This	is	the	main	constraint	limiting	Verkle	tree	widths.	Fortunately,	four	field
operations	is	a	small	cost:	a	single	elliptic	curve	multiplication	typically	takes	hundreds	of	field
operations.	Hence,	Verkle	tree	widths	can	go	quite	high;	width	256-1024	seems	like	an	optimal	range.

To	edit	the	tree,	we	need	to	"walk	up	the	tree"	from	the	leaf	to	the	root,	changing	the	intermediate
commitment	at	each	step	to	reflect	the	change	that	happened	lower	down.	Fortunately,	we	don't	have	to
re-compute	each	commitment	from	scratch.	Instead,	we	take	advantage	of	the	homomorphic	property:
given	a	polynomial	commitment	\(C	=	com(F)\),	we	can	compute	\(C'	=	com(F	+	G)\)	by	taking	\(C'	=	C	+
com(G)\).	In	our	case,	\(G	=	L_i	*	(v_{new}	-	v_{old})\),	where	\(L_i\)	is	a	pre-computed	commitment	for
the	polynomial	that	equals	1	at	the	position	we're	trying	to	change	and	0	everywhere	else.

Hence,	a	single	edit	requires	~4	elliptic	curve	multiplications	(one	per	commitment	between	the	leaf
and	the	root,	this	time	including	the	root),	though	these	can	be	sped	up	considerably	by	pre-computing
and	storing	many	multiples	of	each	\(L_i\).

Proof	verification	is	quite	efficient.	For	a	proof	of	N	values,	the	verifier	needs	to	do	the	following
steps,	all	of	which	can	be	done	within	a	hundred	milliseconds	for	even	thousands	of	values:

One	size-\(N\)	elliptic	curve	fast	linear	combination
About	\(4N\)	field	operations	(ie.	256	bit	modular	arithmetic	operations)
A	small	constant	amount	of	work	that	does	not	depend	on	the	size	of	the	proof

Note	also	that,	like	Merkle	Patricia	proofs,	a	Verkle	proof	gives	the	verifier	enough	information	to
modify	the	values	in	the	tree	that	are	being	proven	and	compute	the	new	root	hash	after	the	changes
are	applied.	This	is	critical	for	verifying	that	eg.	state	changes	in	a	block	were	processed	correctly.

Conclusions
Verkle	trees	are	a	powerful	upgrade	to	Merkle	proofs	that	allow	for	much	smaller	proof	sizes.	Instead	of
needing	to	provide	all	"sister	nodes"	at	each	level,	the	prover	need	only	provide	a	single	proof	that
proves	all	parent-child	relationships	between	all	commitments	along	the	paths	from	each	leaf	node	to
the	root.	This	allows	proof	sizes	to	decrease	by	a	factor	of	~6-8	compared	to	ideal	Merkle	trees,	and	by	a
factor	of	over	20-30	compared	to	the	hexary	Patricia	trees	that	Ethereum	uses	today	(!!).

They	do	require	more	complex	cryptography	to	implement,	but	they	present	the	opportunity	for	large
gains	to	scalability.	In	the	medium	term,	SNARKs	can	improve	things	further:	we	can	either	SNARK	the
already-efficient	Verkle	proof	verifier	to	reduce	witness	size	to	near-zero,	or	switch	back	to	SNARKed
Merkle	proofs	if/when	SNARKs	get	much	better	(eg.	through	GKR,	or	very-SNARK-friendly	hash
functions,	or	ASICs).	Further	down	the	line,	the	rise	of	quantum	computing	will	force	a	change	to
STARKed	Merkle	proofs	with	hashes	as	it	makes	the	linear	homomorphisms	that	Verkle	trees	depend	on
insecure.	But	for	now,	they	give	us	the	same	scaling	gains	that	we	would	get	with	such	more	advanced
technologies,	and	we	already	have	all	the	tools	that	we	need	to	implement	them	efficiently.
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Blockchain	voting	is	overrated	among
uninformed	people	but	underrated	among
informed	people

Special	thanks	to	Karl	Floersch,	Albert	Ni,	Mr	Silly	and	others	for	feedback	and	discussion

Voting	is	a	procedure	that	has	a	very	important	need	for	process	integrity.	The	result	of	the	vote
must	be	correct,	and	this	must	be	guaranteed	by	a	transparent	process	so	that	everyone	can	be
convinced	that	the	result	is	correct.	It	should	not	be	possible	to	successfully	interfere	with	anyone's
attempt	to	vote	or	prevent	their	vote	from	being	counted.

Blockchains	are	a	technology	which	is	all	about	providing	guarantees	about	process	integrity.	If	a
process	is	run	on	a	blockchain,	the	process	is	guaranteed	to	run	according	to	some	pre-agreed	code
and	provide	the	correct	output.	No	one	can	prevent	the	execution,	no	one	can	tamper	with	the
execution,	and	no	one	can	censor	and	block	any	users'	inputs	from	being	processed.

So	at	first	glance,	it	seems	that	blockchains	provide	exactly	what	voting	needs.	And	I'm	far	from	the
only	person	to	have	had	that	thought;	plenty	of	major	prospective	users	are	interested.	But	as	it	turns
out,	some	people	have	a	very	different	opinion....

Despite	the	seeming	perfect	match	between	the	needs	of	voting	and	the	technological	benefits	that
blockchains	provide,	we	regularly	see	scary	articles	arguing	against	the	combination	of	the	two.	And
it's	not	just	a	single	article:	here's	an	anti-blockchain-voting	piece	from	Scientific	American,	here's
another	from	CNet,	and	here's	another	from	ArsTechnica.	And	it's	not	just	random	tech	journalists:
Bruce	Schneier	is	against	blockchain	voting,	and	researchers	at	MIT	wrote	a	whole	paper	arguing
that	it's	a	bad	idea.	So	what's	going	on?

Outline
There	are	two	key	lines	of	criticism	that	are	most	commonly	levied	by	critics	of	blockchain	voting
protocols:
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1.	 Blockchains	are	the	wrong	software	tool	to	run	an	election.	The	trust	properties	they
provide	are	not	a	good	match	for	the	properties	that	voting	needs,	and	other	kinds	of	software
tools	with	different	information	flow	and	trust	properties	would	work	better.

2.	 Software	in	general	cannot	be	trusted	to	run	elections,	no	matter	what	software	it	is.	The
risk	of	undetectable	software	and	hardware	bugs	is	too	high,	no	matter	how	the	platform	is
organized.

This	article	will	discuss	both	of	these	claims	in	turn	("refute"	is	too	strong	a	word,	but	I
definitely	disagree	more	than	I	agree	with	both	claims).	First,	I	will	discuss	the	security	issues
with	existing	attempts	to	use	blockchains	for	voting,	and	how	the	correct	solution	is	not	to
abandon	blockchains,	but	to	combine	them	with	other	cryptographic	technologies.	Second,	I
will	address	the	concern	about	whether	or	not	software	(and	hardware)	can	be	trusted.	The	answer:
computer	security	is	actually	getting	quite	a	bit	better,	and	we	can	work	hard	to	continue	that
trend.

Over	the	long	term,	insisting	on	paper	permanently	would	be	a	huge	handicap	to	our	ability
to	make	voting	better.	One	vote	per	N	years	is	a	250-year-old	form	of	democracy,	and	we	can	have
much	better	democracy	if	voting	were	much	more	convenient	and	simpler,	so	that	we	could	do	it
much	more	often.

Needless	to	say,	this	entire	post	is	predicated	on	good	blockchain	scaling	technology	(eg.
sharding)	being	available.	Of	course,	if	blockchains	cannot	scale,	none	of	this	can	happen.	But	so
far,	development	of	this	technology	is	proceeding	quickly,	and	there's	no	reason	to	believe	that	it
can't	happen.

Bad	blockchain	voting	protocols
Blockchain	voting	protocols	get	hacked	all	the	time.	Two	years	ago,	a	blockchain	voting	tech
company	called	Voatz	was	all	the	rage,	and	many	people	were	very	excited	about	it.	But	last	year,
some	MIT	researchers	discovered	a	string	of	critical	security	vulnerabilities	in	their	platform.
Meanwhile,	in	Moscow,	a	blockchain	voting	system	that	was	going	to	be	used	for	an	upcoming
election	was	hacked,	fortunately	a	month	before	the	election	took	place.

The	hacks	were	pretty	serious.	Here	is	a	table	of	the	attack	capabilities	that	researchers	analyzing
Voatz	managed	to	uncover:

This	by	itself	is	not	an	argument	against	ever	using	blockchain	voting.	But	it	is	an	argument	that
blockchain	voting	software	should	be	designed	more	carefully,	and	scaled	up	slowly	and
incrementally	over	time.

Privacy	and	coercion	resistance
But	even	the	blockchain	voting	protocols	that	are	not	technically	broken	often	suck.	To	understand
why,	we	need	to	delve	deeper	into	what	specific	security	properties	blockchains	provide,	and	what
specific	security	properties	voting	needs	-	when	we	do,	we'll	see	that	there	is	a	mismatch.

Blockchains	provide	two	key	properties:	correct	execution	and	censorship	resistance.	Correct
execution	just	means	that	the	blockchain	accepts	inputs	("transactions")	from	users,	correctly
processes	them	according	to	some	pre-defined	rules,	and	returns	the	correct	output	(or	adjusts	the
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blockchain's	"state"	in	the	correct	way).	Censorship	resistance	is	also	simple	to	understand:	any	user
that	wants	to	send	a	transaction,	and	is	willing	to	pay	a	high	enough	fee,	can	send	the	transaction
and	expect	to	see	it	quickly	included	on-chain.

Both	of	these	properties	are	very	important	for	voting:	you	want	the	output	of	the	vote	to	actually	be
the	result	of	counting	up	the	number	of	votes	for	each	candidate	and	selecting	the	candidate	with	the
most	votes,	and	you	definitely	want	anyone	who	is	eligible	to	vote	to	be	able	to	vote,	even	if	some
powerful	actor	is	trying	to	block	them.	But	voting	also	requires	some	crucial	properties	that
blockchains	do	not	provide:

Privacy:	you	should	not	be	able	to	tell	which	candidate	someone	specific	voted	for,	or	even	if
they	voted	at	all
Coercion	resistance:	you	should	not	be	able	to	prove	to	someone	else	how	you	voted,	even	if
you	want	to

The	need	for	the	first	requirement	is	obvious:	you	want	people	to	vote	based	on	their	personal
feelings,	and	not	how	people	around	them	or	their	employer	or	the	police	or	random	thugs	on	the
street	will	feel	about	their	choice.	The	second	requirement	is	needed	to	prevent	vote	selling:	if	you
can	prove	how	you	voted,	selling	your	vote	becomes	very	easy.	Provability	of	votes	would	also	enable
forms	of	coercion	where	the	coercer	demands	to	see	some	kind	of	proof	of	voting	for	their	preferred
candidate.	Most	people,	even	those	aware	of	the	first	requirement,	do	not	think	about	the	second
requirement.	But	the	second	requirement	is	also	necessary,	and	it's	quite	technically	nontrivial	to
provide	it.	Needless	to	say,	the	average	"blockchain	voting	system"	that	you	see	in	the	wild
does	not	even	try	to	provide	the	second	property,	and	usually	fails	at	providing	the	first.

Secure	electronic	voting	without	blockchains
The	concept	of	cryptographically	secured	execution	of	social	mechanisms	was	not	invented	by
blockchain	geeks,	and	indeed	existed	far	before	us.	Outside	the	blockchain	space,	there	is	a	20-year-
old	tradition	of	cryptographers	working	on	the	secure	electronic	voting	problem,	and	the	good	news
is	that	there	have	been	solutions.	An	important	paper	that	is	cited	by	much	of	the	literature	of	the
last	two	decades	is	Juels,	Catalano	and	Jakobsson's	2002	paper	titled	"Coercion-Resistant	Electronic
Elections":

Since	then,	there	have	been	many	iterations	on	the	concept;	Civitas	is	one	prominent	example,
though	there	are	also	many	others.	These	protocols	all	use	a	similar	set	of	core	techniques.	There	is
an	agreed-upon	set	of	"talliers"	and	there	is	a	trust	assumption	that	the	majority	of	the	talliers	is
honest.	The	talliers	each	have	"shares"	of	a	private	key	secret-shared	among	themselves,	and	the
corresponding	public	key	is	published.	Voters	publish	votes	encrypted	to	the	talliers'	public	key,	and
talliers	use	a	secure	multi-party	computation	(MPC)	protocol	to	decrypt	and	verify	the	votes	and
compute	the	tally.	The	tallying	computation	is	done	"inside	the	MPC":	the	talliers	never	learn	their
private	key,	and	they	compute	the	final	result	without	learning	anything	about	any	individual	vote
beyond	what	can	be	learned	from	looking	at	the	final	result	itself.
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Encrypting	votes	provides	privacy,	and	some	additional	infrastructure	such	as	mix-nets	is	added	on
top	to	make	the	privacy	stronger.	To	provide	coercion	resistance,	one	of	two	techniques	is	used.	One
option	is	that	during	the	registration	phase	(the	phase	in	which	the	talliers	learn	each	registered
voter's	public	key),	the	voter	generates	or	receives	a	secret	key.	The	corresponding	public	key	is
secret	shared	among	the	talliers,	and	the	talliers'	MPC	only	counts	a	vote	if	it	is	signed	with	the
secret	key.	A	voter	has	no	way	to	prove	to	a	third	party	what	their	secret	key	is,	so	if	they	are	bribed
or	coerced	they	can	simply	show	and	cast	a	vote	signed	with	the	wrong	secret	key.	Alternatively,	a
voter	could	have	the	ability	to	send	a	message	to	change	their	secret	key.	A	voter	has	no	way	of
proving	to	a	third	party	that	they	did	not	send	such	a	message,	leading	to	the	same	result.

The	second	option	is	a	technique	where	voters	can	make	multiple	votes	where	the	second	overrides
the	first.	If	a	voter	is	bribed	or	coerced,	they	can	make	a	vote	for	the	briber/coercer's	preferred
candidate,	but	later	send	another	vote	to	override	the	first.

Giving	voters	the	ability	to	make	a	later	vote	that	can	override	an	earlier	vote	is	the	key	coercion-resistance
mechanism	of	this	protocol	from	2015.

Now,	we	get	to	a	key	important	nuance	in	all	of	these	protocols.	They	all	rely	on	an	outside	primitive
to	complete	their	security	guarantees:	the	bulletin	board	(this	is	the	"BB"	in	the	figure	above).	The
bulletin	board	is	a	place	where	any	voter	can	send	a	message,	with	a	guarantee	that	(i)	anyone	can
read	the	bulletin	board,	and	(ii)	anyone	can	send	a	message	to	the	bulletin	board	that	gets	accepted.
Most	of	the	coercion-resistant	voting	papers	that	you	can	find	will	casually	reference	the	existence	of
a	bulletin	board	(eg.	"as	is	common	for	electronic	voting	schemes,	we	assume	a	publicly	accessible
append-only	bulletin	board"),	but	far	fewer	papers	talk	about	how	this	bulletin	board	can	actually	be
implemented.	And	here,	you	can	hopefully	see	where	I	am	going	with	this:	the	most	secure	way	to
implement	a	bulletin	board	is	to	just	use	an	existing	blockchain!

Secure	electronic	voting	with	blockchains
Of	course,	there	have	been	plenty	of	pre-blockchain	attempts	at	making	a	bulletin	board.	This	paper
from	2008	is	such	an	attempt;	its	trust	model	is	a	standard	requirement	that	"k	of	n	servers	must	be
honest"	(k	=	n/2	is	common).	This	literature	review	from	2021	covers	some	pre-blockchain	attempts
at	bulletin	boards	as	well	as	exploring	the	use	of	blockchains	for	the	job;	the	pre-blockchain	solutions
reviewed	similarly	rely	on	a	k-of-n	trust	model.

A	blockchain	is	also	a	k-of-n	trust	model;	it	requires	at	least	half	of	miners	or	proof	of	stake	validators
to	be	following	the	protocol,	and	if	that	assumption	fails	that	often	results	in	a	"51%	attack".	So	why
is	a	blockchain	better	than	a	special	purpose	bulletin	board?	The	answer	is:	setting	up	a	k-of-n
system	that's	actually	trusted	is	hard,	and	blockchains	are	the	only	system	that	has	already	solved	it,
and	at	scale.	Suppose	that	some	government	announced	that	it	was	making	a	voting	system,	and
provided	a	list	of	15	local	organizations	and	universities	that	would	be	running	a	special-purpose
bulletin	board.	How	would	you,	as	an	outside	observer,	know	that	the	government	didn't	just	choose
those	15	organizations	from	a	list	of	1000	based	on	their	willingness	to	secretly	collude	with	an
intelligence	agency?

Public	blockchains,	on	the	other	hand,	have	permissionless	economic	consensus
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mechanisms	(proof	of	work	or	proof	of	stake)	that	anyone	can	participate	in,	and	they	have
an	existing	diverse	and	highly	incentivized	infrastructure	of	block	explorers,	exchanges	and
other	watching	nodes	to	constantly	verify	in	real	time	that	nothing	bad	is	going	on.

These	more	sophisticated	voting	systems	are	not	just	using	blockchains;	they	rely	on	cryptography
such	as	zero	knowledge	proofs	to	guarantee	correctness,	and	on	multi-party	computation	to
guarantee	coercion	resistance.	Hence,	they	avoid	the	weaknesses	of	more	naive	systems	that	simply
just	"put	votes	directly	on	the	blockchain"	and	ignore	the	resulting	privacy	and	coercion	resistance
issues.	However,	the	blockchain	bulletin	board	is	nevertheless	a	key	part	of	the	security	model	of	the
whole	design:	if	the	committee	is	broken	but	the	blockchain	is	not,	coercion	resistance	is	lost	but	all
the	other	guarantees	around	the	voting	process	still	remain.

MACI:	coercion-resistant	blockchain	voting	in	Ethereum

The	Ethereum	ecosystem	is	currently	experimenting	with	a	system	called	MACI	that	combines
together	a	blockchain,	ZK-SNARKs	and	a	single	central	actor	that	guarantees	coercion	resistance
(but	has	no	power	to	compromise	any	properties	other	than	coercion	resistance).	MACI	is	not	very
technically	difficult.	Users	participate	by	signing	a	message	with	their	private	key,	encrypting	the
signed	message	to	a	public	key	published	by	a	central	server,	and	publishing	the	encrypted	signed
message	to	the	blockchain.	The	server	downloads	the	messages	from	the	blockchain,	decrypts	them,
processes	them,	and	outputs	the	result	along	with	a	ZK-SNARK	to	ensure	that	they	did	the
computation	correctly.

Users	cannot	prove	how	they	participated,	because	they	have	the	ability	to	send	a	"key	change"
message	to	trick	anyone	trying	to	audit	them:	they	can	first	send	a	key	change	message	to	change
their	key	from	A	to	B,	and	then	send	a	"fake	message"	signed	with	A.	The	server	would	reject	the
message,	but	no	one	else	would	have	any	way	of	knowing	that	the	key	change	message	had	ever
been	sent.	There	is	a	trust	requirement	on	the	server,	though	only	for	privacy	and	coercion
resistance;	the	server	cannot	publish	an	incorrect	result	either	by	computing	incorrectly	or	by
censoring	messages.	In	the	long	term,	multi-party	computation	can	be	used	to	decentralize	the	server
somewhat,	strengthening	the	privacy	and	coercion	resistance	guarantees.

There	is	a	working	demo	of	this	scheme	at	clr.fund	being	used	for	quadratic	funding.	The	use	of	the
Ethereum	blockchain	to	ensure	censorship	resistance	of	votes	ensures	a	much	higher	degree	of
censorship	resistance	than	would	be	possible	if	a	committee	was	relied	on	for	this	instead.

Recap

The	voting	process	has	four	important	security	requirements	that	must	be	met	for	a	vote	to	be
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secure:	correctness,	censorship	resistance,	privacy	and	coercion	resistance.
Blockchains	are	good	at	the	first	two.	They	are	bad	at	the	last	two.
Encryption	of	votes	put	on	a	blockchain	can	add	privacy.	Zero	knowledge	proofs	can	bring
back	correctness	despite	observers	being	unable	to	add	up	votes	directly	because	they	are
encrypted.
Multi-party	computation	decrypting	and	checking	votes	can	provide	coercion	resistance,	if
combined	with	a	mechanic	where	users	can	interact	with	the	system	multiple	times;	either	the
first	interaction	invalidates	the	second,	or	vice	versa
Using	a	blockchain	ensures	that	you	have	very	high-security	censorship	resistance,	and	you
keep	this	censorship	resistance	even	if	the	committee	colludes	and	breaks	coercion	resistance.
Introducing	a	blockchain	can	significantly	increase	the	level	of	security	of	the	system.

But	can	technology	be	trusted?
But	now	we	get	back	to	the	second,	deeper,	critique	of	electronic	voting	of	any	kind,	blockchain	or
not:	that	technology	itself	is	too	insecure	to	be	trusted.

The	recent	MIT	paper	criticizing	blockchain	voting	includes	this	helpful	table,	depicting	any	form	of
paperless	voting	as	being	fundamentally	too	difficult	to	secure:

The	key	property	that	the	authors	focus	on	is	software-independence,	which	they	define	as	"the
property	that	an	undetected	change	or	error	in	a	system's	software	cannot	cause	an	undetectable
change	in	the	election	outcome".	Basically,	a	bug	in	the	code	should	not	be	able	to	accidentally	make
Prezzy	McPresidentface	the	new	president	of	the	country	(or,	more	realistically,	a	deliberately
inserted	bug	should	not	be	able	to	increase	some	candidate's	share	from	42%	to	52%).

But	there	are	other	ways	to	deal	with	bugs.	For	example,	any	blockchain-based	voting	system	that
uses	publicly	verifiable	zero-knowledge	proofs	can	be	independently	verified.	Someone	can	write
their	own	implementation	of	the	proof	verifier	and	verify	the	Zk-SNARK	themselves.	They	could	even
write	their	own	software	to	vote.	Of	course,	the	technical	complexity	of	actually	doing	this	is	beyond
99.99%	of	any	realistic	voter	base,	but	if	thousands	of	independent	experts	have	the	ability	to	do	this
and	verify	that	it	works,	that	is	more	than	good	enough	in	practice.

To	the	MIT	authors,	however,	that	is	not	enough:

Thus,	any	system	that	is	electronic	only,	even	if	end-to-end	verifiable,	seems	unsuitable	for
political	elections	in	the	foreseeable	future.	The	U.S.	Vote	Foundation	has	noted	the	promise
of	E2E-V	methods	for	improving	online	voting	security,	but	has	issued	a	detailed	report
recommending	avoiding	their	use	for	online	voting	unless	and	until	the	technology	is	far
more	mature	and	fully	tested	in	pollsite	voting	[38].

Others	have	proposed	extensions	of	these	ideas.	For	example,	the	proposal	of	Juels	et
al.	[55]	emphasizes	the	use	of	cryptography	to	provide	a	number	of	forms	of	"coercion
resistance."	The	Civitas	proposal	of	Clarkson	et	al.	[24]	implements	additional	mechanisms
for	coercion	resistance,	which	Iovino	et	al.	[53]	further	incorporate	and	elaborate	into	their
Selene	system.	From	our	perspective,	these	proposals	are	innovative	but	unrealistic:	they
are	quite	complex,	and	most	seriously,	their	security	relies	upon	voters'	devices	being
uncompromised	and	functioning	as	intended,	an	unrealistic	assumption.
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The	problem	that	the	authors	focus	on	is	not	the	voting	system's	hardware	being	secure;	risks	on	that
side	actually	can	be	mitigated	with	zero	knowledge	proofs.	Rather,	the	authors	focus	on	a	different
security	problem:	can	users'	devices	even	in	principle	be	made	secure?

Given	the	long	history	of	all	kinds	of	exploits	and	hacks	of	consumer	devices,	one	would	be	very
justified	in	thinking	the	answer	is	"no".	Quoting	my	own	article	on	Bitcoin	wallet	security	from	2013:

Last	night	around	9PM	PDT,	I	clicked	a	link	to	go	to	CoinChat[.]freetzi[.]com	–	and	I	was
prompted	to	run	java.	I	did	(thinking	this	was	a	legitimate	chatoom),	and	nothing
happened.	I	closed	the	window	and	thought	nothing	of	it.	I	opened	my	bitcoin-qt	wallet
approx	14	minutes	later,	and	saw	a	transaction	that	I	did	NOT	approve	go	to	wallet
1Es3QVvKN1qA2p6me7jLCVMZpQXVXWPNTC	for	almost	my	entire	wallet...

And:

In	June	2011,	the	Bitcointalk	member	"allinvain"	lost	25,000	BTC	(worth	$500,000	at	the
time)	after	an	unknown	intruder	somehow	gained	direct	access	to	his	computer.	The
attacker	was	able	to	access	allinvain's	wallet.dat	file,	and	quickly	empty	out	the	wallet	–
either	by	sending	a	transaction	from	allinvain's	computer	itself,	or	by	simply	uploading	the
wallet.dat	file	and	emptying	it	on	his	own	machine.

But	these	disasters	obscure	a	greater	truth:	over	the	past	twenty	years,	computer	security	has
actually	been	slowly	and	steadily	improving.	Attacks	are	much	harder	to	find,	often	requiring	the
attacker	to	find	bugs	in	multiple	sub-systems	instead	of	finding	a	single	hole	in	a	large	complex	piece
of	code.	High-profile	incidents	are	larger	than	ever,	but	this	is	not	a	sign	that	anything	is	getting	less
secure;	rather,	it's	simply	a	sign	that	we	are	becoming	much	more	dependent	on	the	internet.

Trusted	hardware	is	a	very	important	recent	source	of	improvements.	Some	of	the	new	"blockchain
phones"	(eg.	this	one	from	HTC)	go	quite	far	with	this	technology	and	put	a	minimalistic	security-
focused	operating	system	on	the	trusted	hardware	chip,	allowing	high-security-demanding
applications	(eg.	cryptocurrency	wallets)	to	stay	separate	from	the	other	applications.	Samsung	has
started	making	phones	using	similar	technology.	And	even	devices	that	are	never	advertised	as
"blockchain	devices"	(eg.	iPhones)	frequently	have	trusted	hardware	of	some	kind.	Cryptocurrency
hardware	wallets	are	effectively	the	same	thing,	except	the	trusted	hardware	module	is	physically
located	outside	the	computer	instead	of	inside	it.	Trusted	hardware	(deservedly!)	often	gets	a	bad
rap	in	security	circles	and	especially	the	blockchain	community,	because	it	just	keeps	getting	broken
again	and	again.	And	indeed,	you	definitely	don't	want	to	use	it	to	replace	your	security	protection.
But	as	an	augmentation,	it's	a	huge	improvement.

Finally,	single	applications,	like	cryptocurrency	wallets	and	voting	systems,	are	much	simpler	and
have	less	room	for	error	than	an	entire	consumer	operating	system	-	even	if	you	have	to	incorporate
support	for	quadratic	voting,	sortition,	quadratic	sortition	and	whatever	horrors	the	next	generation's
Glen	Weyl	invents	in	2040.	The	benefit	of	tools	like	trusted	hardware	is	their	ability	to	isolate	the
simple	thing	from	the	complex	and	possibly	broken	thing,	and	these	tools	are	having	some	success.

So	the	risks	might	decrease	over	time.	But	what	are	the
benefits?
These	improvements	in	security	technology	point	to	a	future	where	consumer	hardware	might	be
more	trusted	in	the	future	than	it	is	today.	Investments	made	in	this	area	in	the	last	few	years	are
likely	to	keep	paying	off	over	the	next	decade,	and	we	could	expect	further	significant	improvements.
But	what	are	the	benefits	of	making	voting	electronic	(blockchain	based	or	otherwise)	that	justify
exploring	this	whole	space?

My	answer	is	simple:	voting	would	become	much	more	efficient,	allowing	us	to	do	it	much
more	often.	Currently,	formal	democratic	input	into	organizations	(governmental	or	corporate)
tends	to	be	limited	to	a	single	vote	once	every	1-6	years.	This	effectively	means	that	each	voter	is
only	putting	less	than	one	bit	of	input	into	the	system	each	year.	Perhaps	in	large	part	as	a	result	of
this,	decentralized	decision-making	in	our	society	is	heavily	bifurcated	into	two	extremes:	pure
democracy	and	pure	markets.	Democracy	is	either	very	inefficient	(corporate	and	government	votes)
or	very	insecure	(social	media	likes/retweets).	Markets	are	far	more	technologically	efficient	and	are
much	more	secure	than	social	media,	but	their	fundamental	economic	logic	makes	them	a	poor	fit	for
many	kinds	of	decision	problems,	particularly	having	to	do	with	public	goods.
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Yes,	I	know	it's	yet	another	triangle,	and	I	really	really	apologize	for	having	to	use	it.	But	please	bear	with	me	just
this	once....	(ok	fine,	I'm	sure	I'll	make	even	more	triangles	in	the	future;	just	suck	it	up	and	deal	with	it)

There	is	a	lot	that	we	could	do	if	we	could	build	more	systems	that	are	somewhere	in	between
democracy	and	markets,	benefiting	from	the	egalitarianism	of	the	former,	the	technical	efficiency	of
the	latter	and	economic	properties	all	along	the	spectrum	in	between	the	two	extremes.	Quadratic
funding	is	an	excellent	example	of	this.	Liquid	democracy	is	another	excellent	example.	Even	if	we
don't	introduce	fancy	new	delegation	mechanisms	or	quadratic	math,	there's	a	lot	that	we	could	do
by	doing	voting	much	more	and	at	smaller	scales	more	adapted	to	the	information	available	to	each
individual	voter.	But	the	challenge	with	all	of	these	ideas	is	that	in	order	to	have	a	scheme	that
durably	maintains	any	level	of	democraticness	at	all,	you	need	some	form	of	sybil	resistance	and
vote-buying	mitigation:	exactly	the	problems	that	these	fancy	ZK-SNARK	+	MPC	+	blockchain	voting
schemes	are	trying	to	solve.

The	crypto	space	can	help
One	of	the	underrated	benefits	of	the	crypto	space	is	that	it's	an	excellent	"virtual	special	economic
zone"	for	testing	out	economic	and	cryptographic	ideas	in	a	highly	adversarial	environment.
Whatever	you	build	and	release,	once	the	economic	power	that	it	controls	gets	above	a	certain	size,	a
whole	host	of	diverse,	sometimes	altruistic,	sometimes	profit-motivated,	and	sometimes	malicious
actors,	many	of	whom	are	completely	anonymous,	will	descend	upon	the	system	and	try	to	twist	that
economic	power	toward	their	own	various	objectives.

The	incentives	for	attackers	are	high:	if	an	attacker	steals	$100	from	your	cryptoeconomic	gadget,
they	can	often	get	the	full	$100	in	reward,	and	they	can	often	get	away	with	it.	But	the	incentives	for
defenders	are	also	high:	if	you	develop	a	tool	that	helps	users	not	lose	their	funds,	you	could	(at	least
sometimes)	turn	that	into	a	tool	and	earn	millions.	Crypto	is	the	ultimate	training	zone:	if	you	can
build	something	that	can	survive	in	this	environment	at	scale,	it	can	probably	also	survive	in	the
bigger	world	as	well.

This	applies	to	quadratic	funding,	it	applies	to	multisig	and	social	recovery	wallets,	and	it	can	apply
to	voting	systems	too.	The	blockchain	space	has	already	helped	to	motivate	the	rise	of	important
security	technologies:

Hardware	wallets
Efficient	general-purpose	zero	knowledge	proofs
Formal	verification	tools
"Blockchain	phones"	with	trusted	hardware	chips
Anti-sybil	schemes	like	Proof	of	Humanity

In	all	of	these	cases,	some	version	of	the	technology	existed	before	blockchains	came	onto	the	scene.
But	it's	hard	to	deny	that	blockchains	have	had	a	significant	impact	in	pushing	these	efforts	forward,
and	the	large	role	of	incentives	inherent	to	the	space	plays	a	key	role	in	raising	the	stakes	enough	for
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the	development	of	the	tech	to	actually	happen.

Conclusion

In	the	short	term,	any	form	of	blockchain	voting	should	certainly	remain	confined	to	small
experiments,	whether	in	small	trials	for	more	mainstream	applications	or	for	the	blockchain	space
itself.	Security	is	at	present	definitely	not	good	enough	to	rely	on	computers	for	everything.	But	it's
improving,	and	if	I	am	wrong	and	security	fails	to	improve	then	not	only	blockchain	voting,	but	also
cryptocurrency	as	a	whole,	will	have	a	hard	time	being	successful.	Hence,	there	is	a	large	incentive
for	the	technology	to	continue	to	improve.

We	should	all	continue	watching	the	technology	and	the	efforts	being	made	everywhere	to	try	and
increase	security,	and	slowly	become	more	comfortable	using	technology	in	very	important	social
processes.	Technology	is	already	key	in	our	financial	markets,	and	a	crypto-ization	of	a	large	part	of
the	economy	(or	even	just	replacing	gold)	will	put	an	even	greater	portion	of	the	economy	into	the
hands	of	our	cryptographic	algorithms	and	the	hardware	that	is	running	them.	We	should	watch	and
support	this	process	carefully,	and	over	time	take	advantage	of	its	benefits	to	bring	our	governance
technologies	into	the	21st	century.
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The	Limits	to	Blockchain	Scalability
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Just	how	far	can	you	push	the	scalability	of	a	blockchain?	Can	you	really,	as	Elon	Musk	wishes,	"speed	up	block	time	10X,	increase	block	size	10X	&	drop	fee	100X"
without	leading	to	extreme	centralization	and	compromising	the	fundamental	properties	that	make	a	blockchain	what	it	is?	If	not,	how	far	can	you	go?	What	if	you
change	the	consensus	algorithm?	Even	more	importantly,	what	if	you	change	the	technology	to	introduce	features	such	as	ZK-SNARKs	or	sharding?	A	sharded
blockchain	can	theoretically	just	keep	adding	more	shards;	is	there	such	a	thing	as	adding	too	many?

As	it	turns	out,	there	are	important	and	quite	subtle	technical	factors	that	limit	blockchain	scaling,	both	with	sharding	and	without.	In	many	cases	there	are
solutions,	but	even	with	the	solutions	there	are	limits.	This	post	will	go	through	what	many	of	these	issues	are.

Just	increase	the	parameters,	and	all	problems	are	solved.	But	at	what	cost?

It's	crucial	for	blockchain	decentralization	for	regular	users	to	be	able	to	run	a	node
At	2:35	AM,	you	receive	an	emergency	call	from	your	partner	on	the	opposite	side	of	the	world	who	helps	run	your	mining	pool	(or	it	could	be	a	staking	pool).	Since
about	14	minutes	ago,	your	partner	tells	you,	your	pool	and	a	few	others	split	off	from	the	chain	which	still	carries	79%	of	the	network.	According	to	your	node,	the
majority	chain's	blocks	are	invalid.	There's	a	balance	error:	the	key	block	appeared	to	erroneously	assign	4.5	million	extra	coins	to	an	unknown	address.

An	hour	later,	you're	in	a	telegram	chat	with	the	other	two	small	pools	who	were	caught	blindsided	just	as	you	were,	as	well	as	some	block	explorers	and
exchanges.	You	finally	see	someone	paste	a	link	to	a	tweet,	containing	a	published	message.	"Announcing	new	on-chain	sustainable	protocol	development	fund",
the	tweet	begins.

By	the	morning,	arguments	on	Twitter,	and	on	the	one	community	forum	that	was	not	censoring	the	discussion,	discussions	are	everywhere.	But	by	then	a
significant	part	of	the	4.5	million	coins	had	been	converted	on-chain	to	other	assets,	and	billions	of	dollars	of	defi	transactions	had	taken	place.	79%	of	the
consensus	nodes,	and	all	the	major	block	explorers	and	endpoints	for	light	wallets,	were	following	this	new	chain.	Perhaps	the	new	dev	fund	will	fund	some
development,	or	perhaps	it	will	just	all	be	embezzled	by	the	leading	pools	and	exchanges	and	their	cronies.	But	regardless	of	how	it	turns	out,	the	fund	is	for	all
intents	and	purposes	a	fait	accompli,	and	regular	users	have	no	way	to	fight	back.

Movie	coming	soon.	Maybe	it	can	be	funded	by	MolochDAO	or	something.

Can	this	happen	on	your	blockchain?	The	elites	of	your	blockchain	community,	including	pools,	block	explorers	and	hosted	nodes,	are	probably	quite	well-
coordinated;	quite	likely	they're	all	in	the	same	telegram	channels	and	wechat	groups.	If	they	really	want	to	organize	a	sudden	change	to	the	protocol	rules	to
further	their	own	interests,	then	they	probably	can.	The	Ethereum	blockchain	has	fully	resolved	consensus	failures	in	ten	hours;	if	your	blockchain	has	only	one
client	implementation,	and	you	only	need	to	deploy	a	code	change	to	a	few	dozen	nodes,	coordinating	a	change	to	client	code	can	be	done	much	faster.	The	only
reliable	way	to	make	this	kind	of	coordinated	social	attack	not	effective	is	through	passive	defense	from	the	one	constituency	that	actually	is	decentralized:	the
users.

Imagine	how	the	story	would	have	played	out	if	the	users	were	running	nodes	that	verify	the	chain	(whether	directly	or	through	more	advanced	indirect
techniques),	and	automatically	reject	blocks	that	break	the	protocol	rules	even	if	over	90%	of	the	miners	or	stakers	support	those	blocks.	If	every	user	ran	a
verifying	node,	then	the	attack	would	have	quickly	failed:	a	few	mining	pools	and	exchanges	would	have	forked	off	and	looked	quite	foolish	in	the	process.	But	even
if	some	users	ran	verifying	nodes,	the	attack	would	not	have	led	to	a	clean	victory	for	the	attacker;	rather,	it	would	have	led	to	chaos,	with	different	users	seeing
different	views	of	the	chain.	At	the	very	least,	the	ensuing	market	panic	and	likely	persistent	chain	split	would	greatly	reduce	the	attackers'	profits.	The	thought	of
navigating	such	a	protracted	conflict	would	itself	deter	most	attacks.
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Listen	to	Hasu	on	this	one.

If	you	have	a	community	of	37	node	runners	and	80000	passive	listeners	that	check	signatures	and	block	headers,	the	attacker	wins.	If	you	have	a	community
where	everyone	runs	a	node,	the	attacker	loses.	We	don't	know	what	the	exact	threshold	is	at	which	herd	immunity	against	coordinated	attacks	kicks	in,	but	there
is	one	thing	that's	absolutely	clear:	more	nodes	good,	fewer	nodes	bad,	and	we	definitely	need	more	than	a	few	dozen	or	few	hundred.

So,	what	are	the	limits	to	how	much	work	we	can	require	full	nodes	to	do?
To	maximize	the	number	of	users	who	can	run	a	node,	we'll	focus	on	regular	consumer	hardware.	There	are	some	increases	to	capacity	that	can	be	achieved	by
demanding	some	specialized	hardware	purchases	that	are	easy	to	obtain	(eg.	from	Amazon),	but	they	actually	don't	increase	scalability	by	that	much.

There	are	three	key	limitations	to	a	full	node's	ability	to	process	a	large	number	of	transactions:

Computing	power:	what	%	of	the	CPU	can	we	safely	demand	to	run	a	node?
Bandwidth:	given	the	realities	of	current	internet	connections,	how	many	bytes	can	a	block	contain?
Storage:	how	many	gigabytes	on	disk	can	we	require	users	to	store?	Also,	how	quickly	must	it	be	readable?	(ie.	is	HDD	okay	or	do	we	need	SSD)

Many	erroneous	takes	on	how	far	a	blockchain	can	scale	using	"simple"	techniques	stem	from	overly	optimistic	estimates	for	each	of	these
numbers.	We	can	go	through	these	three	factors	one	by	one:

Computing	power

Bad	answer:	100%	of	CPU	power	can	be	spent	on	block	verification
Correct	answer:	~5-10%	of	CPU	power	can	be	spent	on	block	verification

There	are	four	key	reasons	why	the	limit	is	so	low:

We	need	a	safety	margin	to	cover	the	possibility	of	DoS	attacks	(transactions	crafted	by	an	attacker	to	take	advantage	of	weaknesses	in	code	to	take	longer	to
process	than	regular	transactions)
Nodes	need	to	be	able	to	sync	the	chain	after	being	offline.	If	I	drop	off	the	network	for	a	minute,	I	should	be	able	to	catch	up	in	a	few	seconds
Running	a	node	should	not	drain	your	battery	very	quickly	and	make	all	your	other	apps	very	slow
There	are	other	non-block-production	tasks	that	nodes	need	to	do	as	well,	mostly	around	verifying	and	responding	to	incoming	transactions	and	requests	on
the	p2p	network

Note	that	up	until	recently,	most	explanations	for	"why	only	5-10%?"	focused	on	a	different	problem:	that	because	PoW	blocks	come	at	random	times,	it	taking	a
long	time	to	verify	blocks	increases	the	risk	that	multiple	blocks	get	created	at	the	same	time.	There	are	many	fixes	to	this	problem	(eg.	Bitcoin	NG,	or	just	using
proof	of	stake).	But	these	fixes	do	NOT	solve	the	other	four	problems,	and	so	they	don't	enable	large	gains	in	scalability	as	many	had	initially	thought.

Parallelism	is	also	not	a	magic	bullet.	Often,	even	clients	of	seemingly	single-threaded	blockchains	are	parallelized	already:	signatures	can	be	verified	by	one
thread	while	execution	is	done	by	other	threads,	and	there's	a	separate	thread	that's	handling	transaction	pool	logic	in	the	background.	And	the	closer	you	get	to
100%	usage	across	all	threads,	the	more	energy-draining	running	a	node	becomes	and	the	lower	your	safety	margin	against	DoS.

Bandwidth

Bad	answer:	if	we	have	10	MB	blocks	every	2-3	seconds,	then	most	users	have	a	>10	MB/sec	network,	so	of	course	they	can	handle	it
Correct	answer:	maybe	we	can	handle	1-5	MB	blocks	every	12	seconds.	It's	hard	though.

Nowadays	we	frequently	hear	very	high	advertised	statistics	for	how	much	bandwidth	internet	connections	can	offer:	numbers	of	100	Mbps	and	even	1	Gbps	are
common	to	hear.	However,	there	is	a	large	difference	between	advertised	bandwidth	and	the	expected	actual	bandwidth	of	a	connection	for	several	reasons:

1.	 "Mbps"	refers	to	"millions	of	bits	per	second";	a	bit	is	1/8	of	a	byte,	so	you	need	to	divide	advertised	bit	numbers	by	8	to	get	the	advertised	byte	numbers.
2.	 Internet	providers,	just	like	all	companies,	often	lie.
3.	 There's	always	multiple	applications	using	the	same	internet	connection,	so	a	node	can't	hog	the	entire	bandwidth.
4.	 p2p	networks	inevitably	introduce	their	own	overhead:	nodes	often	end	up	downloading	and	re-uploading	the	same	block	multiple	times	(not	to	mention

transactions	being	broadcasted	through	the	mempool	before	being	included	in	a	block).

When	Starkware	did	an	experiment	in	2019	where	they	published	500	kB	blocks	after	the	transaction	data	gas	cost	decrease	made	that	possible	for	the	first	time,	a
few	nodes	were	actually	unable	to	handle	blocks	of	that	size.	Ability	to	handle	large	blocks	has	since	been	improved	and	will	continue	to	be	improved.	But	no
matter	what	we	do,	we'll	still	be	very	far	from	being	able	to	naively	take	the	average	bandwidth	in	MB/sec,	convince	ourselves	that	we're	okay	with	1s	latency,	and
be	able	to	have	blocks	that	are	that	size.

Storage

Bad	answer:	10	terabytes
Correct	answer:	512	gigabytes

The	main	argument	here	is,	as	you	might	guess,	the	same	as	elsewhere:	the	difference	between	theory	and	practice.	In	theory,	there	are	8	TB	solid	state	drives
that	you	can	buy	on	Amazon	(you	do	need	SSDs	or	NVME;	HDDs	are	too	slow	for	storing	the	blockchain	state).	In	practice,	the	laptop	that	was	used	to	write	this
blog	post	has	512	GB,	and	if	you	make	people	go	buy	their	own	hardware,	many	of	them	will	just	get	lazy	(or	they	can't	afford	$800	for	an	8	TB	SSD)	and	use	a
centralized	provider.	And	even	if	you	can	fit	a	blockchain	onto	some	storage,	a	high	level	of	activity	can	easily	quickly	burn	through	the	disk	and	force	you	to	keep
getting	a	new	one.
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A	poll	in	a	group	of	blockchain	protocol	researchers	of	how	much	disk	space	everyone	has.	Small	sample	size,	I	know,	but	still...

Additionally,	storage	size	determines	the	time	needed	for	a	new	node	to	be	able	to	come	online	and	start	participating	in	the	network.	Any	data	that	existing	nodes
have	to	store	is	data	that	a	new	node	has	to	download.	This	initial	sync	time	(and	bandwidth)	is	also	a	major	barrier	to	users	being	able	to	run	nodes.	While	writing
this	blog	post,	syncing	a	new	geth	node	took	me	~15	hours.	If	Ethereum	had	10x	more	usage,	syncing	a	new	geth	node	would	take	at	least	a	week,	and	it	would	be
much	more	likely	to	just	lead	to	your	internet	connection	getting	throttled.	This	is	all	even	more	important	during	an	attack,	when	a	successful	response	to	the
attack	will	likely	involve	many	users	spinning	up	new	nodes	when	they	were	not	running	nodes	before.

Interaction	effects

Additionally,	there	are	interaction	effects	between	these	three	types	of	costs.	Because	databases	use	tree	structures	internally	to	store	and	retrieve	data,	the	cost
of	fetching	data	from	a	database	increases	with	the	logarithm	of	the	size	of	the	database.	In	fact,	because	the	top	level	(or	top	few	levels)	can	be	cached	in	RAM,
the	disk	access	cost	is	proportional	to	the	size	of	the	database	as	a	multiple	of	the	size	of	the	data	cached	in	RAM.

Don't	take	this	diagram	too	literally;	different	databases	work	in	different	ways,	and	often	the	part	in	memory	is	just	a	single	(but	big)	layer	(see	LSM	trees	as	used	in	leveldb).	But	the
basic	principles	are	the	same.

For	example,	if	the	cache	is	4	GB,	and	we	assume	that	each	layer	of	the	database	is	4x	bigger	than	the	previous,	then	Ethereum's	current	~64	GB	state	would
require	~2	accesses.	But	if	the	state	size	increases	by	4x	to	~256	GB,	then	this	would	increase	to	~3	accesses	(so	1.5x	more	accesses	per	read).	Hence,	a	4x
increase	in	the	gas	limit,	which	would	increase	both	the	state	size	and	the	number	of	reads,	could	actually	translate	into	a	~6x	increase	in	block	verification	time.
The	effect	may	be	even	stronger:	hard	disks	often	take	longer	to	read	and	write	when	they	are	full	than	when	they	are	near-empty.

So	what	does	this	mean	for	Ethereum?

Today	in	the	Ethereum	blockchain,	running	a	node	already	is	challenging	for	many	users,	though	it	is	still	at	least	possible	on	regular	hardware	(I	just	synced	a
node	on	my	laptop	while	writing	this	post!).	Hence,	we	are	close	to	hitting	bottlenecks.	The	issue	that	core	developers	are	most	concerned	with	is	storage
size.	Thus,	at	present,	valiant	efforts	at	solving	bottlenecks	in	computation	and	data,	and	even	changes	to	the	consensus	algorithm,	are	unlikely	to	lead	to	large	gas
limit	increases	being	accepted.	Even	solving	Ethereum's	largest	outstanding	DoS	vulnerability	only	led	to	a	gas	limit	increase	of	20%.

The	only	solution	to	storage	size	problems	is	statelessness	and	state	expiry.	Statelessness	allows	for	a	class	of	nodes	that	verify	the	chain	without	maintaining
permanent	storage.	State	expiry	pushes	out	state	that	has	not	been	recently	accessed,	forcing	users	to	manually	provide	proofs	to	renew	it.	Both	of	these	paths
have	been	worked	at	for	a	long	time,	and	proof-of-concept	implementation	on	statelessness	has	already	started.	These	two	improvements	combined	can	greatly
alleviate	these	concerns	and	open	up	room	for	a	significant	gas	limit	increase.	But	even	after	statelessness	and	state	expiry	are	implemented,	gas	limits
may	only	increase	safely	by	perhaps	~3x	until	the	other	limitations	start	to	dominate.

Another	possible	medium-term	solution	is	using	ZK-SNARKs	to	verify	transactions.	ZK-SNARKs	would	ensure	that	regular	users	do	not	have	to	personally	store	the
state	or	verify	blocks,	though	they	still	would	need	to	download	all	the	data	in	blocks	to	protect	against	data	unavailability	attacks.	Additionally,	even	if	attackers
cannot	force	invalid	blocks	through,	if	capacity	is	increased	to	the	point	where	running	a	consensus	node	is	too	difficult,	there	is	still	the	risk	of	coordinated
censorship	attacks.	Hence,	ZK-SNARKs	cannot	increase	capacity	infinitely,	but	they	still	can	increase	capacity	by	a	significant	margin	(perhaps	1-2	orders	of
magnitude).	Some	chains	are	exploring	this	approach	at	layer	1;	Ethereum	is	getting	the	benefits	of	this	approach	through	layer-2	protocols	(called	ZK	rollups)
such	as	zksync,	Loopring	and	Starknet.

What	happens	after	sharding?
Sharding	fundamentally	gets	around	the	above	limitations,	because	it	decouples	the	data	contained	on	a	blockchain	from	the	data	that	a	single
node	needs	to	process	and	store.	Instead	of	nodes	verifying	blocks	by	personally	downloading	and	executing	them,	they	use	advanced	mathematical	and
cryptographic	techniques	to	verify	blocks	indirectly.

As	a	result,	sharded	blockchains	can	safely	have	very	high	levels	of	transaction	throughput	that	non-sharded	blockchains	cannot.	This	does	require	a	lot	of
cryptographic	cleverness	in	creating	efficient	substitutes	for	naive	full	validation	that	successfully	reject	invalid	blocks,	but	it	can	be	done:	the	theory	is	well-
established	and	proof-of-concepts	based	on	draft	specifications	are	already	being	worked	on.
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Ethereum	is	planning	to	use	quadratic	sharding,	where	total	scalability	is	limited	by	the	fact	that	a	node	has	to	be	able	to	process	both	a	single	shard	and	the
beacon	chain	which	has	to	perform	some	fixed	amount	of	management	work	for	each	shard.	If	shards	are	too	big,	nodes	can	no	longer	process	individual	shards,
and	if	there	are	too	many	shards,	nodes	can	no	longer	process	the	beacon	chain.	The	product	of	these	two	constraints	forms	the	upper	bound.

Conceivably,	one	could	go	further	by	doing	cubic	sharding,	or	even	exponential	sharding.	Data	availability	sampling	would	certainly	become	much	more	complex	in
such	a	design,	but	it	can	be	done.	But	Ethereum	is	not	going	further	than	quadratic.	The	reason	is	that	the	extra	scalability	gains	that	you	get	by	going	from
shards-of-transactions	to	shards-of-shards-of-transactions	actually	cannot	be	realized	without	other	risks	becoming	unacceptably	high.

So	what	are	these	risks?

Minimum	user	count

A	non-sharded	blockchain	can	conceivably	run	as	long	as	there	is	even	one	user	that	cares	to	participate	in	it.	Sharded	blockchains	are	not	like	this:	no	single	node
can	process	the	whole	chain,	and	so	you	need	enough	nodes	so	that	they	can	at	least	process	the	chain	together.	If	each	node	can	process	50	TPS,	and	the	chain
can	process	10000	TPS,	then	the	chain	needs	at	least	200	nodes	to	survive.	If	the	chain	at	any	point	gets	to	less	than	200	nodes,	then	either	nodes	stop	being	able
to	keep	up	with	the	chain,	or	nodes	stop	being	able	to	detect	invalid	blocks,	or	a	number	of	other	bad	things	may	happen,	depending	on	how	the	node	software	is
set	up.

In	practice,	the	safe	minimum	count	is	several	times	higher	than	the	naive	"chain	TPS	divided	by	node	TPS"	heuristic	due	to	the	need	for	redundancy	(including	for
data	availability	sampling);	for	our	above	example,	let's	call	it	1000	nodes.

If	a	sharded	blockchain's	capacity	increases	by	10x,	the	minimum	user	count	also	increases	by	10x.	Now,	you	might	ask:	why	don't	we	start	with	a	little	bit	of
capacity,	and	increase	it	only	when	we	see	lots	of	users	so	we	actually	need	it,	and	decrease	it	if	the	user	count	goes	back	down?

There	are	a	few	problems	with	this:

1.	 A	blockchain	itself	cannot	reliably	detect	how	many	unique	users	are	on	it,	and	so	this	would	require	some	kind	of	governance	to	detect	and	set	the	shard
count.	Governance	over	capacity	limits	can	easily	become	a	locus	of	division	and	conflict.

2.	 What	if	many	users	suddenly	and	unexpectedly	drop	out	at	the	same	time?
3.	 Increasing	the	minimum	number	of	users	needed	for	a	fork	to	start	makes	it	harder	to	defend	against	hostile	takeovers.

A	minimum	user	count	of	under	1,000	is	almost	certainly	fine.	A	minimum	user	count	of	1	million,	on	the	other	hand,	is	certainly	not.	Even	a	minimum	user	count	of
10,000	is	arguably	starting	to	get	risky.	Hence,	it	seems	difficult	to	justify	a	sharded	blockchain	having	more	than	a	few	hundred	shards.

History	retrievability

An	important	property	of	a	blockchain	that	users	really	value	is	permanence.	A	digital	asset	stored	on	a	server	will	stop	existing	in	10	years	when	the	company
goes	bankrupt	or	loses	interest	in	maintaining	that	ecosystem.	An	NFT	on	Ethereum,	on	the	other	hand,	is	forever.

Yes,	people	will	still	be	downloading	and	examining	your	cryptokitties	in	the	year	2371.	Deal	with	it.

But	once	a	blockchain's	capacity	gets	too	high,	it	becomes	harder	to	store	all	that	data,	until	at	some	point	there's	a	large	risk	that	some	part	of	history	will	just
end	up	being	stored	by...	nobody.

Quantifying	this	risk	is	easy.	Take	the	blockchain's	data	capacity	in	MB/sec,	and	multiply	by	~30	to	get	the	amount	of	data	stored	in	terabytes	per	year.	The
current	sharding	plan	has	a	data	capacity	of	~1.3	MB/sec,	so	about	40	TB/year.	If	that	is	increased	by	10x,	this	becomes	400	TB/year.	If	we	want	the	data	to	be	not
just	accessible,	but	accessible	conveniently,	we	would	also	need	metadata	(eg.	decompressing	rollup	transactions),	so	make	that	4	petabytes	per	year,	or	40
petabytes	after	a	decade.	The	Internet	Archive	uses	50	petabytes.	So	that's	a	reasonable	upper	bound	for	how	large	a	sharded	blockchain	can	safely	get.

Hence,	it	looks	like	on	both	of	these	dimensions,	the	Ethereum	sharding	design	is	actually	already	roughly	targeted	fairly	close	to	reasonable	maximum
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safe	values.	The	constants	can	be	increased	a	little	bit,	but	not	too	much.

Summary
There	are	two	ways	to	try	to	scale	a	blockchain:	fundamental	technical	improvements,	and	simply	increasing	the	parameters.	Increasing	the	parameters
sounds	very	attractive	at	first:	if	you	do	the	math	on	a	napkin,	it	is	easy	to	convince	yourself	that	a	consumer	laptop	can	process	thousands	of	transactions	per
second,	no	ZK-SNARKs	or	rollups	or	sharding	required.	Unfortunately,	there	are	many	subtle	reasons	why	this	approach	is	fundamentally	flawed.

Computers	running	blockchain	nodes	cannot	spend	100%	of	CPU	power	validating	the	chain;	they	need	a	large	safety	margin	to	resist	unexpected	DoS	attacks,
they	need	spare	capacity	for	tasks	like	processing	transactions	in	the	mempool,	and	you	don't	want	running	a	node	on	a	computer	to	make	that	computer	unusable
for	any	other	applications	at	the	same	time.	Bandwidth	similarly	has	overhead:	a	10	MB/s	connection	does	NOT	mean	you	can	have	a	10	megabyte	block	every
second!	A	1-5	megabyte	block	every	12	seconds,	maybe.	And	it	is	the	same	with	storage.	Increasing	hardware	requirements	for	running	a	node	and	limiting	node-
running	to	specialized	actors	is	not	a	solution.	For	a	blockchain	to	be	decentralized,	it's	crucially	important	for	regular	users	to	be	able	to	run	a	node,
and	to	have	a	culture	where	running	nodes	is	a	common	activity.

Fundamental	technical	improvements,	on	the	other	hand,	can	work.	Currently,	the	main	bottleneck	in	Ethereum	is	storage	size,	and	statelessness	and	state
expiry	can	fix	this	and	allow	an	increase	of	perhaps	up	to	~3x	-	but	not	more,	as	we	want	running	a	node	to	become	easier	than	it	is	today.	Sharded	blockchains
can	scale	much	further,	because	no	single	node	in	a	sharded	blockchain	needs	to	process	every	transaction.	But	even	there,	there	are	limits	to	capacity:	as
capacity	goes	up,	the	minimum	safe	user	count	goes	up,	and	the	cost	of	archiving	the	chain	(and	the	risk	that	data	is	lost	if	no	one	bothers	to	archive	the	chain)
goes	up.	But	we	don't	have	to	worry	too	much:	those	limits	are	high	enough	that	we	can	probably	process	over	a	million	transactions	per	second	with	the	full
security	of	a	blockchain.	But	it's	going	to	take	work	to	do	this	without	sacrificing	the	decentralization	that	makes	blockchains	so	valuable.
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Why	sharding	is	great:	demystifying	the	technical	properties

Special	thanks	to	Dankrad	Feist	and	Aditya	Asgaonkar	for	review

Sharding	is	the	future	of	Ethereum	scalability,	and	it	will	be	key	to	helping	the	ecosystem	support	many	thousands	of	transactions	per	second	and	allowing	large
portions	of	the	world	to	regularly	use	the	platform	at	an	affordable	cost.	However,	it	is	also	one	of	the	more	misunderstood	concepts	in	the	Ethereum	ecosystem
and	in	blockchain	ecosystems	more	broadly.	It	refers	to	a	very	specific	set	of	ideas	with	very	specific	properties,	but	it	often	gets	conflated	with	techniques	that
have	very	different	and	often	much	weaker	security	properties.	The	purpose	of	this	post	will	be	to	explain	exactly	what	specific	properties	sharding	provides,	how	it
differs	from	other	technologies	that	are	not	sharding,	and	what	sacrifices	a	sharded	system	has	to	make	to	achieve	these	properties.

One	of	the	many	depictions	of	a	sharded	version	of	Ethereum.	Original	diagram	by	Hsiao-wei	Wang,	design	by	Quantstamp.

The	Scalability	Trilemma
The	best	way	to	describe	sharding	starts	from	the	problem	statement	that	shaped	and	inspired	the	solution:	the	Scalability	Trilemma.

The	scalability	trilemma	says	that	there	are	three	properties	that	a	blockchain	try	to	have,	and	that,	if	you	stick	to	"simple"	techniques,	you	can	only	get	two
of	those	three.	The	three	properties	are:

Scalability:	the	chain	can	process	more	transactions	than	a	single	regular	node	(think:	a	consumer	laptop)	can	verify.
Decentralization:	the	chain	can	run	without	any	trust	dependencies	on	a	small	group	of	large	centralized	actors.	This	is	typically	interpreted	to	mean	that
there	should	not	be	any	trust	(or	even	honest-majority	assumption)	of	a	set	of	nodes	that	you	cannot	join	with	just	a	consumer	laptop.
Security:	the	chain	can	resist	a	large	percentage	of	participating	nodes	trying	to	attack	it	(ideally	50%;	anything	above	25%	is	fine,	5%	is	definitely	not	fine).

Now	we	can	look	at	the	three	classes	of	"easy	solutions"	that	only	get	two	of	the	three:

Traditional	blockchains	-	including	Bitcoin,	pre-PoS/sharding	Ethereum,	Litecoin,	and	other	similar	chains.	These	rely	on	every	participant	running	a	full
node	that	verifies	every	transaction,	and	so	they	have	decentralization	and	security,	but	not	scalability.
High-TPS	chains	-	including	the	DPoS	family	but	also	many	others.	These	rely	on	a	small	number	of	nodes	(often	10-100)	maintaining	consensus	among
themselves,	with	users	having	to	trust	a	majority	of	these	nodes.	This	is	scalable	and	secure	(using	the	definitions	above),	but	it	is	not	decentralized.
Multi-chain	ecosystems	-	this	refers	to	the	general	concept	of	"scaling	out"	by	having	different	applications	live	on	different	chains	and	using	cross-chain-
communication	protocols	to	talk	between	them.	This	is	decentralized	and	scalable,	but	it	is	not	secure,	because	an	attacker	need	only	get	a	consensus	node
majority	in	one	of	the	many	chains	(so	often	<1%	of	the	whole	ecosystem)	to	break	that	chain	and	possibly	cause	ripple	effects	that	cause	great	damage	to
applications	in	other	chains.

Sharding	is	a	technique	that	gets	you	all	three.	A	sharded	blockchain	is:

Scalable:	it	can	process	far	more	transactions	than	a	single	node
Decentralized:	it	can	survive	entirely	on	consumer	laptops,	with	no	dependency	on	"supernodes"	whatsoever
Secure:	an	attacker	can't	target	a	small	part	of	the	system	with	a	small	amount	of	resources;	they	can	only	try	to	dominate	and	attack	the	whole	thing
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The	rest	of	the	post	will	be	describing	how	sharded	blockchains	manage	to	do	this.

Sharding	through	Random	Sampling
The	easiest	version	of	sharding	to	understand	is	sharding	through	random	sampling.	Sharding	through	random	sampling	has	weaker	trust	properties	than	the
forms	of	sharding	that	we	are	building	towards	in	the	Ethereum	ecosystem,	but	it	uses	simpler	technology.

The	core	idea	is	as	follows.	Suppose	that	you	have	a	proof	of	stake	chain	with	a	large	number	(eg.	10000)	validators,	and	you	have	a	large	number	(eg.	100)	blocks
that	need	to	be	verified.	No	single	computer	is	powerful	enough	to	validate	all	of	these	blocks	before	the	next	set	of	blocks	comes	in.

Hence,	what	we	do	is	we	randomly	split	up	the	work	of	doing	the	verification.	We	randomly	shuffle	the	validator	list,	and	we	assign	the	first	100	validators	in
the	shuffled	list	to	verify	the	first	block,	the	second	100	validators	in	the	shuffled	list	to	verify	the	second	block,	etc.	A	randomly	selected	group	of	validators	that
gets	assigned	to	verify	a	block	(or	perform	some	other	task)	is	called	a	committee.

When	a	validator	verifies	a	block,	they	publish	a	signature	attesting	to	the	fact	that	they	did	so.	Everyone	else,	instead	of	verifying	100	entire	blocks,	now	only
verifies	10000	signatures	-	a	much	smaller	amount	of	work,	especially	with	BLS	signature	aggregation.	Instead	of	every	block	being	broadcasted	through	the	same
P2P	network,	each	block	is	broadcasted	on	a	different	sub-network,	and	nodes	need	only	join	the	subnets	corresponding	to	the	blocks	that	they	are	responsible	for
(or	are	interested	in	for	other	reasons).

Consider	what	happens	if	each	node's	computing	power	increases	by	2x.	Because	each	node	can	now	safely	validate	2x	more	signatures,	you	could	cut	the
minimum	staking	deposit	size	to	support	2x	more	validators,	and	so	hence	you	can	make	200	committees	instead	of	100.	Hence,	you	can	verify	200	blocks	per	slot
instead	of	100.	Furthermore,	each	individual	block	could	be	2x	bigger.	Hence,	you	have	2x	more	blocks	of	2x	the	size,	or	4x	more	chain	capacity	altogether.

We	can	introduce	some	math	lingo	to	talk	about	what's	going	on.	Using	Big	O	notation,	we	use	"O(C)"	to	refer	to	the	computational	capacity	of	a	single	node.	A
traditional	blockchain	can	process	blocks	of	size	O(C).	A	sharded	chain	as	described	above	can	process	O(C)	blocks	in	parallel	(remember,	the	cost	to	each	node	to
verify	each	block	indirectly	is	O(1)	because	each	node	only	needs	to	verify	a	fixed	number	of	signatures),	and	each	block	has	O(C)	capacity,	and	so	the	sharded
chain's	total	capacity	is	O(C2).	This	is	why	we	call	this	type	of	sharding	quadratic	sharding,	and	this	effect	is	a	key	reason	why	we	think	that	in	the	long	run,
sharding	is	the	best	way	to	scale	a	blockchain.

Frequently	asked	question:	how	is	splitting	into	100	committees	different	from	splitting	into	100	separate	chains?

There	are	two	key	differences:

1.	 The	random	sampling	prevents	the	attacker	from	concentrating	their	power	on	one	shard.	In	a	100-chain	multichain	ecosystem,	the	attacker	only
needs	~0.5%	of	the	total	stake	to	wreak	havoc:	they	can	focus	on	51%	attacking	a	single	chain.	In	a	sharded	blockchain,	the	attacker	must	have	close	to	~30-
40%	of	the	entire	stake	to	do	the	same	(in	other	words,	the	chain	has	shared	security).	Certainly,	they	can	wait	until	they	get	lucky	and	get	51%	in	a	single
shard	by	random	chance	despite	having	less	than	50%	of	the	total	stake,	but	this	gets	exponentially	harder	for	attackers	that	have	much	less	than	51%.	If	an
attacker	has	less	than	~30%,	it's	virtually	impossible.

2.	 Tight	coupling:	if	even	one	shard	gets	a	bad	block,	the	entire	chain	reorgs	to	avoid	it.	There	is	a	social	contract	(and	in	later	sections	of	this
document	we	describe	some	ways	to	enforce	this	technologically)	that	a	chain	with	even	one	bad	block	in	even	one	shard	is	not	acceptable	and	should	get
thrown	out	as	soon	as	it	is	discovered.	This	ensures	that	from	the	point	of	view	of	an	application	within	the	chain,	there	is	perfect	security:	contract	A	can	rely
on	contract	B,	because	if	contract	B	misbehaves	due	to	an	attack	on	the	chain,	that	entire	history	reverts,	including	the	transactions	in	contract	A	that
misbehaved	as	a	result	of	the	malfunction	in	contract	B.

Both	of	these	differences	ensure	that	sharding	creates	an	environment	for	applications	that	preserves	the	key	safety	properties	of	a	single-chain	environment,	in	a
way	that	multichain	ecosystems	fundamentally	do	not.

Improving	sharding	with	better	security	models
One	common	refrain	in	Bitcoin	circles,	and	one	that	I	completely	agree	with,	is	that	blockchains	like	Bitcoin	(or	Ethereum)	do	NOT	completely	rely	on	an
honest	majority	assumption.	If	there	is	a	51%	attack	on	such	a	blockchain,	then	the	attacker	can	do	some	nasty	things,	like	reverting	or	censoring	transactions,
but	they	cannot	insert	invalid	transactions.	And	even	if	they	do	revert	or	censor	transactions,	users	running	regular	nodes	could	easily	detect	that	behavior,	so	if
the	community	wishes	to	coordinate	to	resolve	the	attack	with	a	fork	that	takes	away	the	attacker's	power	they	could	do	so	quickly.

The	lack	of	this	extra	security	is	a	key	weakness	of	the	more	centralized	high-TPS	chains.	Such	chains	do	not,	and	cannot,	have	a	culture	of	regular	users
running	nodes,	and	so	the	major	nodes	and	ecosystem	players	can	much	more	easily	get	together	and	impose	a	protocol	change	that	the	community	heavily
dislikes.	Even	worse,	the	users'	nodes	would	by	default	accept	it.	After	some	time,	users	would	notice,	but	by	then	the	forced	protocol	change	would	be	a	fait
accompli:	the	coordination	burden	would	be	on	users	to	reject	the	change,	and	they	would	have	to	make	the	painful	decision	to	revert	a	day's	worth	or	more	of
activity	that	everyone	had	thought	was	already	finalized.

Ideally,	we	want	to	have	a	form	of	sharding	that	avoids	51%	trust	assumptions	for	validity,	and	preserves	the	powerful	bulwark	of	security	that
traditional	blockchains	get	from	full	verification.	And	this	is	exactly	what	much	of	our	research	over	the	last	few	years	has	been	about.

Scalable	verification	of	computation

We	can	break	up	the	51%-attack-proof	scalable	validation	problem	into	two	cases:

Validating	computation:	checking	that	some	computation	was	done	correctly,	assuming	you	have	possession	of	all	the	inputs	to	the	computation
Validating	data	availability:	checking	that	the	inputs	to	the	computation	themselves	are	stored	in	some	form	where	you	can	download	them	if	you	really
need	to;	this	checking	should	be	performed	without	actually	downloading	the	entire	inputs	themselves	(because	the	data	could	be	too	large	to	download	for
every	block)

Validating	a	block	in	a	blockchain	involves	both	computation	and	data	availability	checking:	you	need	to	be	convinced	that	the	transactions	in	the	block	are	valid
and	that	the	new	state	root	hash	claimed	in	the	block	is	the	correct	result	of	executing	those	transactions,	but	you	also	need	to	be	convinced	that	enough	data	from
the	block	was	actually	published	so	that	users	who	download	that	data	can	compute	the	state	and	continue	processing	the	blockchain.	This	second	part	is	a	very
subtle	but	important	concept	called	the	data	availability	problem;	more	on	this	later.

Scalably	validating	computation	is	relatively	easy;	there	are	two	families	of	techniques:	fraud	proofs	and	ZK-SNARKs.
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Fraud	proofs	are	one	way	to	verify	computation	scalably.

The	two	technologies	can	be	described	simply	as	follows:

Fraud	proofs	are	a	system	where	to	accept	the	result	of	a	computation,	you	require	someone	with	a	staked	deposit	to	sign	a	message	of	the	form	"I	certify
that	if	you	make	computation	C	with	input	X,	you	get	output	Y".	You	trust	these	messages	by	default,	but	you	leave	open	the	opportunity	for	someone	else	with
a	staked	deposit	to	make	a	challenge	(a	signed	message	saying	"I	disagree,	the	output	is	Z").	Only	when	there	is	a	challenge,	all	nodes	run	the	computation.
Whichever	of	the	two	parties	was	wrong	loses	their	deposit,	and	all	computations	that	depend	on	the	result	of	that	computation	are	recomputed.
ZK-SNARKs	are	a	form	of	cryptographic	proof	that	directly	proves	the	claim	"performing	computation	C	on	input	X	gives	output	Y".	The	proof	is
cryptographically	"sound":	if	C(x)	does	not	equal	Y,	it's	computationally	infeasible	to	make	a	valid	proof.	The	proof	is	also	quick	to	verify,	even	if	running	C
itself	takes	a	huge	amount	of	time.	See	this	post	for	more	mathematical	details	on	ZK-SNARKs.

Computation	based	on	fraud	proofs	is	scalable	because	"in	the	normal	case"	you	replace	running	a	complex	computation	with	verifying	a	single	signature.	There	is
the	exceptional	case,	where	you	do	have	to	verify	the	computation	on-chain	because	there	is	a	challenge,	but	the	exceptional	case	is	very	rare	because	triggering	it
is	very	expensive	(either	the	original	claimer	or	the	challenger	loses	a	large	deposit).	ZK-SNARKs	are	conceptually	simpler	-	they	just	replace	a	computation	with	a
much	cheaper	proof	verification	-	but	the	math	behind	how	they	work	is	considerably	more	complex.

There	is	a	class	of	semi-scalable	system	which	only	scalably	verifies	computation,	while	still	requiring	every	node	to	verify	all	the	data.	This	can	be	made	quite
effective	by	using	a	set	of	compression	tricks	to	replace	most	data	with	computation.	This	is	the	realm	of	rollups.

Scalable	verification	of	data	availability	is	harder

A	fraud	proof	cannot	be	used	to	verify	availability	of	data.	Fraud	proofs	for	computation	rely	on	the	fact	that	the	inputs	to	the	computation	are	published	on-chain
the	moment	the	original	claim	is	submitted,	and	so	if	someone	challenges,	the	challenge	execution	is	happening	in	the	exact	same	"environment"	that	the	original
execution	was	happening.	In	the	case	of	checking	data	availability,	you	cannot	do	this,	because	the	problem	is	precisely	the	fact	that	there	is	too	much	data	to
check	to	publish	it	on	chain.	Hence,	a	fraud	proof	scheme	for	data	availability	runs	into	a	key	problem:	someone	could	claim	"data	X	is	available"	without
publishing	it,	wait	to	get	challenged,	and	only	then	publish	data	X	and	make	the	challenger	appear	to	the	rest	of	the	network	to	be	incorrect.

This	is	expanded	on	in	the	fisherman's	dilemma:

The	core	idea	is	that	the	two	"worlds",	one	where	V1	is	an	evil	publisher	and	V2	is	an	honest	challenger	and	the	other	where	V1	is	an	honest	publisher	and	V2	is	an
evil	challenger,	are	indistinguishable	to	anyone	who	was	not	trying	to	download	that	particular	piece	of	data	at	the	time.	And	of	course,	in	a	scalable	decentralized
blockchain,	each	individual	node	can	only	hope	to	download	a	small	portion	of	the	data,	so	only	a	small	portion	of	nodes	would	see	anything	about	what	went	on
except	for	the	mere	fact	that	there	was	a	disagreement.

The	fact	that	it	is	impossible	to	distinguish	who	was	right	and	who	was	wrong	makes	it	impossible	to	have	a	working	fraud	proof	scheme	for	data	availability.

Frequently	asked	question:	so	what	if	some	data	is	unavailable?	With	a	ZK-SNARK	you	can	be	sure	everything	is	valid,	and
isn't	that	enough?

Unfortunately,	mere	validity	is	not	sufficient	to	ensure	a	correctly	running	blockchain.	This	is	because	if	the	blockchain	is	valid	but	all	the	data	is	not	available,
then	users	have	no	way	of	updating	the	data	that	they	need	to	generate	proofs	that	any	future	block	is	valid.	An	attacker	that	generates	a	valid-but-unavailable
block	but	then	disappears	can	effectively	stall	the	chain.	Someone	could	also	withhold	a	specific	user's	account	data	until	the	user	pays	a	ransom,	so	the	problem	is
not	purely	a	liveness	issue.

There	are	some	strong	information-theoretic	arguments	that	this	problem	is	fundamental,	and	there	is	no	clever	trick	(eg.	involving	cryptographic	accumulators)
that	can	get	around	it.	See	this	paper	for	details.

So,	how	do	you	check	that	1	MB	of	data	is	available	without	actually	trying	to	download	it?	That	sounds	impossible!

The	key	is	a	technology	called	data	availability	sampling.	Data	availability	sampling	works	as	follows:

1.	 Use	a	tool	called	erasure	coding	to	expand	a	piece	of	data	with	N	chunks	into	a	piece	of	data	with	2N	chunks	such	that	any	N	of	those	chunks	can	recover
the	entire	data.

2.	 To	check	for	availability,	instead	of	trying	to	download	the	entire	data,	users	simply	randomly	select	a	constant	number	of	positions	in	the	block	(eg.	30
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positions),	and	accept	the	block	only	when	they	have	successfully	found	the	chunks	in	the	block	at	all	of	their	selected	positions.

Erasure	codes	transform	a	"check	for	100%	availability"	(every	single	piece	of	data	is	available)	problem	into	a	"check	for	50%	availability"	(at	least	half	of	the
pieces	are	available)	problem.	Random	sampling	solves	the	50%	availability	problem.	If	less	than	50%	of	the	data	is	available,	then	at	least	one	of	the	checks	will
almost	certainly	fail,	and	if	at	least	50%	of	the	data	is	available	then,	while	some	nodes	may	fail	to	recognize	a	block	as	available,	it	takes	only	one	honest	node	to
run	the	erasure	code	reconstruction	procedure	to	bring	back	the	remaining	50%	of	the	block.	And	so,	instead	of	needing	to	download	1	MB	to	check	the	availability
of	a	1	MB	block,	you	need	only	download	a	few	kilobytes.	This	makes	it	feasible	to	run	data	availability	checking	on	every	block.	See	this	post	for	how	this	checking
can	be	efficiently	implemented	with	peer-to-peer	subnets.

A	ZK-SNARK	can	be	used	to	verify	that	the	erasure	coding	on	a	piece	of	data	was	done	correctly,	and	then	Merkle	branches	can	be	used	to	verify	individual	chunks.
Alternatively,	you	can	use	polynomial	commitments	(eg.	Kate	(aka	KZG)	commitments),	which	essentially	do	erasure	coding	and	proving	individual	elements	and
correctness	verification	all	in	one	simple	component	-	and	that's	what	Ethereum	sharding	is	using.

Recap:	how	are	we	ensuring	everything	is	correct	again?

Suppose	that	you	have	100	blocks	and	you	want	to	efficiently	verify	correctness	for	all	of	them	without	relying	on	committees.	We	need	to	do	the	following:

Each	client	performs	data	availability	sampling	on	each	block,	verifying	that	the	data	in	each	block	is	available,	while	downloading	only	a	few	kilobytes	per
block	even	if	the	block	as	a	whole	is	a	megabyte	or	larger	in	size.	A	client	only	accepts	a	block	when	all	data	of	their	availability	challenges	have	been
correctly	responded	to.
Now	that	we	have	verified	data	availability,	it	becomes	easier	to	verify	correctness.	There	are	two	techniques:

We	can	use	fraud	proofs:	a	few	participants	with	staked	deposits	can	sign	off	on	each	block's	correctness.	Other	nodes,	called	challengers	(or
fishermen)	randomly	check	and	attempt	to	fully	process	blocks.	Because	we	already	checked	data	availability,	it	will	always	be	possible	to	download	the
data	and	fully	process	any	particular	block.	If	they	find	an	invalid	block,	they	post	a	challenge	that	everyone	verifies.	If	the	block	turns	out	to	be	bad,
then	that	block	and	all	future	blocks	that	depend	on	that	need	to	be	re-computed.
We	can	use	ZK-SNARKs.	Each	block	would	come	with	a	ZK-SNARK	proving	correctness.

In	either	of	the	above	cases,	each	client	only	needs	to	do	a	small	amount	of	verification	work	per	block,	no	matter	how	big	the	block	is.	In	the	case	of	fraud
proofs,	occasionally	blocks	will	need	to	be	fully	verified	on-chain,	but	this	should	be	extremely	rare	because	triggering	even	one	challenge	is	very	expensive.

And	that's	all	there	is	to	it!	In	the	case	of	Ethereum	sharding,	the	near-term	plan	is	to	make	sharded	blocks	data-only;	that	is,	the	shards	are	purely	a	"data
availability	engine",	and	it's	the	job	of	layer-2	rollups	to	use	that	secure	data	space,	plus	either	fraud	proofs	or	ZK-SNARKs,	to	implement	high-throughput	secure
transaction	processing	capabilities.	However,	it's	completely	possible	to	create	such	a	built-in	system	to	add	"native"	high-throughput	execution.

What	are	the	key	properties	of	sharded	systems	and	what	are	the	tradeoffs?
The	key	goal	of	sharding	is	to	come	as	close	as	possible	to	replicating	the	most	important	security	properties	of	traditional	(non-sharded)	blockchains	but	without
the	need	for	each	node	to	personally	verify	each	transaction.

Sharding	comes	quite	close.	In	a	traditional	blockchain:

Invalid	blocks	cannot	get	through	because	validating	nodes	notice	that	they	are	invalid	and	ignore	them.
Unavailable	blocks	cannot	get	through	because	validating	nodes	fail	to	download	them	and	ignore	them.

In	a	sharded	blockchain	with	advanced	security	features:

Invalid	blocks	cannot	get	through	because	either:
A	fraud	proof	quickly	catches	them	and	informs	the	entire	network	of	the	block's	incorrectness,	and	heavily	penalizes	the	creator,	or
A	ZK-SNARK	proves	correctness,	and	you	cannot	make	a	valid	ZK-SNARK	for	an	invalid	block.

Unavailable	blocks	cannot	get	through	because:
If	less	than	50%	of	a	block's	data	is	available,	at	least	one	data	availability	sample	check	will	almost	certainly	fail	for	each	client,	causing	the	client	to
reject	the	block,
If	at	least	50%	of	a	block's	data	is	available,	then	actually	the	entire	block	is	available,	because	it	takes	only	a	single	honest	node	to	reconstruct	the	rest
of	the	block.

Traditional	high-TPS	chains	without	sharding	do	not	have	a	way	of	providing	these	guarantees.	Multichain	ecosystems	do	not	have	a	way	of	avoiding	the	problem	of
an	attacker	selecting	one	chain	for	attack	and	easily	taking	it	over	(the	chains	could	share	security,	but	if	this	was	done	poorly	it	would	turn	into	a	de-facto
traditional	high-TPS	chain	with	all	its	disadvantages,	and	if	it	was	done	well,	it	would	just	be	a	more	complicated	implementation	of	the	above	sharding
techniques).

Sidechains	are	highly	implementation-dependent,	but	they	are	typically	vulnerable	to	either	the	weaknesses	of	traditional	high-TPS	chains	(this	is	if	they	share
miners/validators),	or	the	weaknesses	of	multichain	ecosystems	(this	is	if	they	do	not	share	miners/validators).	Sharded	chains	avoid	these	issues.

However,	there	are	some	chinks	in	the	sharded	system's	armor.	Notably:

Sharded	chains	that	rely	only	on	committees	are	vulnerable	to	adaptive	adversaries,	and	have	weaker	accountability.	That	is,	if	the	adversary	has
the	ability	to	hack	into	(or	just	shut	down)	any	set	of	nodes	of	their	choosing	in	real	time,	then	they	only	need	to	attack	a	small	number	of	nodes	to	break	a
single	committee.	Furthermore,	if	an	adversary	(whether	an	adaptive	adversary	or	just	an	attacker	with	50%	of	the	total	stake)	does	break	a	single	committee,
only	a	few	of	their	nodes	(the	ones	in	that	committee)	can	be	publicly	confirmed	to	be	participating	in	that	attack,	and	so	only	a	small	amount	of	stake	can	be
penalized.	This	is	another	key	reason	why	data	availability	sampling	together	with	either	fraud	proofs	or	ZK-SNARKs	are	an	important	complement	to	random
sampling	techniques.
Data	availability	sampling	is	only	secure	if	there	is	a	sufficient	number	of	online	clients	that	they	collectively	make	enough	data	availability	sampling
requests	that	the	responses	almost	always	overlap	to	comprise	at	least	50%	of	the	block.	In	practice,	this	means	that	there	must	be	a	few	hundred	clients
online	(and	this	number	increases	the	higher	the	ratio	of	the	capacity	of	the	system	to	the	capacity	of	a	single	node).	This	is	a	few-of-N	trust	model	-	generally
quite	trustworthy,	but	certainly	not	as	robust	as	the	0-of-N	trust	that	nodes	in	non-sharded	chains	have	for	availability.
If	the	sharded	chain	relies	on	fraud	proofs,	then	it	relies	on	timing	assumptions;	if	the	network	is	too	slow,	nodes	could	accept	a	block	as	finalized
before	the	fraud	proof	comes	in	showing	that	it	is	wrong.	Fortunately,	if	you	follow	a	strict	rule	of	reverting	all	invalid	blocks	once	the	invalidity	is	discovered,
this	threshold	is	a	user-set	parameter:	each	individual	user	chooses	how	long	they	wait	until	finality	and	if	they	didn't	want	long	enough	then	suffer,	but	more
careful	users	are	safe.	Even	still,	this	is	a	weakening	of	the	user	experience.	Using	ZK-SNARKs	to	verify	validity	solves	this.
There	is	a	much	larger	amount	of	raw	data	that	needs	to	be	passed	around,	increasing	the	risk	of	failures	under	extreme	networking	conditions.	Small
amounts	of	data	are	easier	to	send	(and	easier	to	safely	hide,	if	a	powerful	government	attempts	to	censor	the	chain)	than	larger	amounts	of	data.	Block
explorers	need	to	store	more	data	if	they	want	to	hold	the	entire	chain.
Sharded	blockchains	depend	on	sharded	peer-to-peer	networks,	and	each	individual	p2p	"subnet"	is	easier	to	attack	because	it	has	fewer	nodes.	The
subnet	model	used	for	data	availability	sampling	mitigates	this	because	there	is	some	redundancy	between	subnets,	but	even	still	there	is	a	risk.

These	are	valid	concerns,	though	in	our	view	they	are	far	outweighed	by	the	reduction	in	user-level	centralization	enabled	by	allowing	more	applications	to	run	on-
chain	instead	of	through	centralized	layer-2	services.	That	said,	these	concerns,	especially	the	last	two,	are	in	practice	the	real	constraint	on	increasing	a	sharded
chain's	throughput	beyond	a	certain	point.	There	is	a	limit	to	the	quadraticness	of	quadratic	sharding.

Incidentally,	the	growing	safety	risks	of	sharded	blockchains	if	their	throughput	becomes	too	high	are	also	the	key	reason	why	the	effort	to	extend	to	super-
quadratic	sharding	has	been	largely	abandoned;	it	looks	like	keeping	quadratic	sharding	just	quadratic	really	is	the	happy	medium.
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Why	not	centralized	production	and	sharded	verification?
One	alternative	to	sharding	that	gets	often	proposed	is	to	have	a	chain	that	is	structured	like	a	centralized	high-TPS	chain,	except	it	uses	data	availability	sampling
and	sharding	on	top	to	allow	verification	of	validity	and	availability.

This	improves	on	centralized	high-TPS	chains	as	they	exist	today,	but	it's	still	considerably	weaker	than	a	sharded	system.	This	is	for	a	few	reasons:

1.	 It's	much	harder	to	detect	censorship	by	block	producers	in	a	high-TPS	chain.	Censorship	detection	requires	either	(i)	being	able	to	see	every
transaction	and	verify	that	there	are	no	transactions	that	clearly	deserve	to	get	in	that	inexplicably	fail	to	get	in,	or	(ii)	having	a	1-of-N	trust	model	in	block
producers	and	verifying	that	no	blocks	fail	to	get	in.	In	a	centralized	high-TPS	chain,	(i)	is	impossible,	and	(ii)	is	harder	because	the	small	node	count	makes
even	a	1-of-N	trust	model	more	likely	to	break,	and	if	the	chain	has	a	block	time	that	is	too	fast	for	DAS	(as	most	centralized	high-TPS	chains	do),	it's	very	hard
to	prove	that	a	node's	blocks	are	not	being	rejected	simply	because	they	are	all	being	published	too	slowly.

2.	 If	a	majority	of	block	producers	and	ecosystem	members	tries	to	force	through	an	unpopular	protocol	change,	users'	clients	will	certainly	detect	it,	but	it's
much	harder	for	the	community	to	rebel	and	fork	away	because	they	would	need	to	spin	up	a	new	set	of	very	expensive	high-throughput	nodes	to
maintain	a	chain	that	keeps	the	old	rules.

3.	 Centralized	infrastructure	is	more	vulnerable	to	censorship	imposed	by	external	actors.	The	high	throughput	of	the	block	producing	nodes	makes
them	very	detectable	and	easier	to	shut	down.	It's	also	politically	and	logistically	easier	to	censor	dedicated	high-performance	computation	than	it	is	to	go
after	individual	users'	laptops.

4.	 There's	a	stronger	pressure	for	high-performance	computation	to	move	to	centralized	cloud	services,	increasing	the	risk	that	the	entire	chain	will
be	run	within	1-3	companies'	cloud	services,	and	hence	risk	of	the	chain	going	down	because	of	many	block	producers	failing	simultaneously.	A	sharded	chain
with	a	culture	of	running	validators	on	one's	own	hardware	is	again	much	less	vulnerable	to	this.

Properly	sharded	systems	are	better	as	a	base	layer.	Given	a	sharded	base	layer,	you	can	always	create	a	centralized-production	system	(eg.	because	you	want	a
high-throughput	domain	with	synchronous	composability	for	defi)	layered	on	top	by	building	it	as	a	rollup.	But	if	you	have	a	base	layer	with	a	dependency	on
centralized	block	production,	you	cannot	build	a	more-decentralized	layer	2	on	top.
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Gitcoin	Grants	Round	9:	The	Next	Phase	of
Growth

Special	thanks	to	the	Gitcoin	team	for	feedback	and	diagrams.

Special	note:	Any	criticism	in	these	review	posts	of	actions	taken	by	people	or	organizations,
especially	using	terms	like	"collusion",	"bribe"	and	"cabal",	is	only	in	the	spirit	of	analysis	and
mechanism	design,	and	should	not	be	taken	as	(especially	moral)	criticism	of	the	people	and
organizations	themselves.	You're	all	well-intentioned	and	wonderful	people	and	I	love	you.

Gitcoin	Grants	Round	9	has	just	finished,	and	as	usual	the	round	has	been	a	success.	Along	with
500,000	in	matching	funds,	$1.38	million	was	donated	by	over	12,000	contributors	to	812	different
projects,	making	this	the	largest	round	so	far.	Not	only	old	projects,	but	also	new	ones,	received	a
large	amount	of	funding,	proving	the	mechanism's	ability	to	avoid	entrenchment	and	adapt	to
changing	circumstances.	The	new	East	Asia-specific	category	in	the	latest	two	rounds	has	also	been	a
success,	helping	to	catapult	multiple	East	Asian	Ethereum	projects	to	the	forefront.
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However,	with	growing	scale,	round	9	has	also	brought	out	unique	and	unprecedented	challenges.
The	most	important	among	them	is	collusion	and	fraud:	in	round	9,	over	15%	of	contributions	were
detected	as	being	probably	fraudulent.	This	was,	of	course,	inevitable	and	expected	from	the	start;	I
have	actually	been	surprised	at	how	long	it	has	taken	for	people	to	start	to	make	serious	attempts	to
exploit	the	mechanism.	The	Gitcoin	team	has	responded	in	force,	and	has	published	a	blog	post
detailing	their	strategies	for	detecting	and	responding	to	adversarial	behavior	along	with	a	general
governance	overview.	However,	it	is	my	opinion	that	to	successfully	limit	adversarial	behavior
in	the	long	run	more	serious	reforms,	with	serious	sacrifices,	are	going	to	be	required.

Many	new,	and	bigger,	funders

Gitcoin	continues	to	be	successful	in	attracting	many	matching	funders	this	round.	BadgerDAO,	a
project	that	describes	itself	as	a	"DAO	dedicated	to	building	products	and	infrastructure	to	bring
Bitcoin	to	DeFi",	has	donated	$300,000	to	the	matching	pool	-	the	largest	single	donation	so	far.

Other	new	funders	include	Uniswap,	Stakefish,	Maskbook,	FireEyes,	Polygon,	SushiSwap	and
TheGraph.	As	Gitcoin	Grants	continues	to	establish	itself	as	a	successful	home	for	Ethereum	public
goods	funding,	it	is	also	continuing	to	attract	legitimacy	as	a	focal	point	for	donations	from	projects
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wishing	to	support	the	ecosystem.	This	is	a	sign	of	success,	and	hopefully	it	will	continue	and	grow
further.	The	next	goal	should	be	to	get	not	just	one-time	contributions	to	the	matching	pool,	but	long-
term	commitments	to	repeated	contributions	(or	even	newly	launched	tokens	donating	a	percentage
of	their	holdings	to	the	matching	pool)!

Churn	continues	to	be	healthy

One	long-time	concern	with	Gitcoin	Grants	is	the	balance	between	stability	and	entrenchment:	if	each
project's	match	award	changes	too	much	from	round	to	round,	then	it's	hard	for	teams	to	rely	on
Gitcoin	Grants	for	funding,	and	if	the	match	awards	change	too	little,	it's	hard	for	new	projects	to	get
included.

We	can	measure	this!	To	start	off,	let's	compare	the	top-10	projects	in	this	round	to	the	top-10
projects	in	the	previous	round.

In	all	cases,	about	half	of	the	top-10	carries	over	from	the	previous	round	and	about	half	is	new	(the
flipside,	of	course	is	that	half	the	top-10	drops	out).	The	charts	are	a	slight	understatement:	the
Gitcoin	Grants	dev	fund	and	POAP	appear	to	have	dropped	out	but	actually	merely	changed
categories,	so	something	like	40%	churn	may	be	a	more	accurate	number.



If	you	check	the	results	from	round	8	against	round	7,	you	also	get	about	50%	churn,	and	comparing
round	7	to	round	6	gives	similar	values.	Hence,	it	is	looking	like	the	degree	of	churn	is	stable.	To	me,
it	seems	like	roughly	40-50%	churn	is	a	healthy	level,	balancing	long-time	projects'	need	for	stability
with	the	need	to	avoid	new	projects	getting	locked	out,	but	this	is	of	course	only	my	subjective
judgement.

Adversarial	behavior

The	challenging	new	phenomenon	this	round	was	the	sheer	scale	of	the	adversarial	behavior	that	was
attempted.	In	this	round,	there	were	two	major	issues.	First,	there	were	large	clusters	of	contributors
discovered	that	were	probably	a	few	individual	or	small	closely	coordinated	groups	with	many
accounts	trying	to	cheat	the	mechanism.	This	was	discovered	by	proprietary	analysis	algorithms	used
by	the	Gitcoin	team.

For	this	round,	the	Gitcoin	team,	in	consultation	with	the	community,	decided	to	eat	the	cost	of	the
fraud.	Each	project	received	the	maximum	of	the	match	award	it	would	receive	if	fraudulent
transactions	were	accepted	and	the	match	award	it	would	receive	if	they	were	not;	the	difference,
about	$33,000	in	total,	was	paid	out	of	Gitcoin's	treasury.	For	future	rounds,	however,	the	team	aims
to	be	significantly	stricter	about	security.

A	diagram	from	the	Gitcoin	team's	post	describin	their	process	for	finding	and	dealing	with	adversarial	behavior.	
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In	the	short	term,	simply	ignoring	fraud	and	accepting	its	costs	has	so	far	worked	okay.	In	the	long
term,	however,	fraud	must	be	dealt	with,	and	this	raises	a	challenging	political	concern.	The
algorithms	that	the	Gitcoin	team	used	to	detect	the	adversarial	behavior	are	proprietary	and	closed-
source,	and	they	have	to	be	closed-source	because	otherwise	the	attackers	could	adapt	and	get
around	them.	Hence,	the	output	of	the	quadratic	funding	round	is	not	just	decided	by	a	clear
mathematical	formula	of	the	inputs.	Rather,	if	fraudulent	transactions	were	to	be	removed,	it	would
also	be	fudged	by	what	risks	becoming	a	closed	group	twiddling	with	the	outputs	according	to	their
arbitrary	subjective	judgements.

It	is	worth	stressing	that	this	is	not	Gitcoin's	fault.	Rather,	what	is	happening	is	that	Gitcoin
has	gotten	big	enough	that	it	has	finally	bumped	into	the	exact	same	problem	that	every
social	media	site,	no	matter	how	well-meaning	its	team,	has	been	bumping	into	for	the	past
twenty	years.	Reddit,	despite	its	well-meaning	and	open-source-oriented	team,	employs	many
secretive	tricks	to	detect	and	clamp	down	on	vote	manipulation,	as	does	every	other	social	media	site.

This	is	because	making	algorithms	that	prevent	undesired	manipulation,	but	continue	to	do	so	despite
the	attackers	themselves	knowing	what	these	algorithms	are,	is	really	hard.	In	fact,	the	entire
science	of	mechanism	design	is	a	half-century-long	effort	to	try	to	solve	this	problem.
Sometimes,	there	are	successes.	But	often,	they	keep	running	into	the	same	challenge:	collusion.	It
turns	out	that	it's	not	that	hard	to	make	mechanisms	that	give	the	outcomes	you	want	if	all	of	the
participants	are	acting	independently,	but	once	you	admit	the	possibility	of	one	individual	controlling
many	accounts,	the	problem	quickly	becomes	much	harder	(or	even	intractable).

But	the	fact	that	we	can't	achieve	perfection	doesn't	mean	that	we	can't	try	to	come	closer,	and
benefit	from	coming	closer.	Good	mechanisms	and	opaque	centralized	intervention	are	substitutes:
the	better	the	mechanism,	the	closer	to	a	good	result	the	mechanism	gets	all	by	itself,	and	the	more
the	secretive	moderation	cabal	can	go	on	vacation	(an	outcome	that	the	actually-quite-friendly-and-
cuddly	and	decentralization-loving	Gitcoin	moderation	cabal	very	much	wants!).	In	the	short	term,	the
Gitcoin	team	is	also	proactively	taking	a	third	approach:	making	fraud	detection	and	response
accountable	by	inviting	third-party	analysis	and	community	oversight.

Picture	courtesy	of	the	Gitcoin	team's	excellent	blog	post.

Inviting	community	oversight	is	an	excellent	step	in	preserving	the	mechanism's	legitimacy,	and	in
paving	the	way	for	an	eventual	decentralization	of	the	Gitcoin	grants	institution.	However,	it's	not	a
100%	solution:	as	we've	seen	with	technocratic	organizations	inside	national	governments,	it's
actually	quite	easy	for	them	to	retain	a	large	amount	of	power	despite	formal	democratic	oversight
and	control.	The	long-term	solution	is	shoring	up	Gitcoin's	passive	security,	so	that	active
security	of	this	type	becomes	less	necessary.

One	important	form	of	passive	security	is	making	some	form	of	unique-human	verification	no	longer
optional,	but	instead	mandatory.	Gitcoin	already	adds	the	option	to	use	phone	number	verification,
BrightID	and	several	other	techniques	to	"improve	an	account's	trust	score"	and	get	greater
matching.	But	what	Gitcoin	will	likely	be	forced	to	do	is	make	it	so	that	some	verification	is	required
to	get	any	matching	at	all.	This	will	be	a	reduction	in	convenience,	but	the	effects	can	be	mitigated	by
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the	Gitcoin	team's	work	on	enabling	more	diverse	and	decentralized	verification	options,	and	the
long-term	benefit	in	enabling	security	without	heavy	reliance	on	centralized	moderation,	and	hence
getting	longer-lasting	legitimacy,	is	very	much	worth	it.

Retroactive	airdrops

A	second	major	issue	this	round	had	to	do	with	Maskbook.	In	February,	Maskbook	announced	a	token
and	the	token	distribution	included	a	retroactive	airdrop	to	anyone	who	had	donated	to	Maskbook	in
previous	rounds.

The	table	from	Maskbook's	announcement	post	showing	who	is	eligible	for	the	airdrops.

The	controversy	was	that	Maskbook	was	continuing	to	maintain	a	Gitcoin	grant	this	round,	despite
now	being	wealthy	and	having	set	a	precedent	that	donors	to	their	grant	might	be	rewarded	in	the
future.	The	latter	issue	was	particularly	problematic	as	it	could	be	construed	as	a	form	of	obfuscated
vote	buying.	Fortunately,	the	situation	was	defused	quickly;	it	turned	out	that	the	Maskbook
team	had	simply	forgotten	to	consider	shutting	down	the	grant	after	they	released	their
token,	and	they	agreed	to	shut	it	down.	They	are	now	even	part	of	the	funders'	league,
helping	to	provide	matching	funds	for	future	rounds!

Another	project	attempted	what	some	construed	as	a	"wink	wink	nudge	nudge"	strategy	of	obfuscated
vote	buying:	they	hinted	in	chat	rooms	that	they	have	a	Gitcoin	grant	and	they	are	going	to	have	a
token.	No	explicit	promise	to	reward	contributors	was	made,	but	there's	a	case	that	the	people
reading	those	messages	could	have	interpreted	it	as	such.

In	both	cases,	what	we	are	seeing	is	that	collusion	is	a	spectrum,	not	a	binary.	In	fact,	there's	a	pretty
wide	part	of	the	spectrum	that	even	completely	well-meaning	and	legitimate	projects	and	their
contributors	could	easily	engage	in.

Note	that	this	is	a	somewhat	unusual	"moral	hierarchy".	Normally,	the	more	acceptable	motivations
would	be	the	altruistic	ones,	and	the	less	acceptable	motivations	would	be	the	selfish	ones.	Here,
though,	the	motivations	closest	to	the	left	and	the	right	are	selfish;	the	altruistic	motivation	is	close	to
the	left,	but	it's	not	the	only	motivation	close	to	the	left.	The	key	differentiator	is	something	more
subtle:	are	you	contributing	because	you	like	the	consequences	of	the	project	getting	funded
(inside-the-mechanism),	or	are	you	contributing	because	you	like	some	(outside-the-
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mechanism)	consequences	of	you	personally	funding	the	project?

The	latter	motivation	is	problematic	because	it	subverts	the	workings	of	quadratic	funding.	Quadratic
funding	is	all	about	assuming	that	people	contribute	because	they	like	the	consequences	of	the
project	getting	funded,	recognizing	that	the	amounts	that	people	contribute	will	be	much	less	than
they	ideally	"should	be"	due	to	the	tragedy	of	the	commons,	and	mathematically	compensating	for
that.	But	if	there	are	large	side-incentives	for	people	to	contribute,	and	these	side-incentives	are
attached	to	that	person	specifically	and	so	they	are	not	reduced	by	the	tragedy	of	the	commons	at	all,
then	the	quadratic	matching	magnifies	those	incentives	into	a	very	large	distortion.

In	both	cases	(Maskbook,	and	the	other	project),	we	saw	something	in	the	middle.	The	case	of	the
other	project	is	clear:	there	was	an	accusation	that	they	made	hints	at	the	possibility	of	formal
compensation,	though	it	was	not	explicitly	promised.	In	the	case	of	Maskbook,	it	seems	as	though
Maskbook	did	nothing	wrong:	the	airdrop	was	retroactive,	and	so	none	of	the	contributions	to
Maskbook	were	"tainted"	with	impute	motives.	But	the	problem	is	more	long-term	and	subtle:	if
there's	a	long-term	pattern	of	projects	making	retroactive	airdrops	to	Gitcoin	contributors,
then	users	will	feel	a	pressure	to	contribute	primarily	not	to	projects	that	they	think	are
public	goods,	but	rather	to	projects	that	they	think	are	likely	to	later	have	tokens.	This
subverts	the	dream	of	using	Gitcoin	quadratic	funding	to	provide	alternatives	to	token	issuance	as	a
monetization	strategy.

The	solution:	making	bribes	(and	retroactive	airdrops)	cryptographically
impossible

The	simplest	approach	would	be	to	delist	projects	whose	behavior	comes	too	close	to	collusion	from
Gitcoin.	In	this	case,	though,	this	solution	cannot	work:	the	problem	is	not	projects	doing	airdrops
while	soliciting	contributions,	the	problem	is	projects	doing	airdrops	after	soliciting	contributions.
While	such	a	project	is	still	soliciting	contributions	and	hence	vulnerable	to	being	delisted,	there	is	no
indication	that	they	are	planning	to	do	an	airdrop.	More	generally,	we	can	see	from	the	examples
above	that	policing	motivations	is	a	tough	challenge	with	many	gray	areas,	and	is	generally	not	a
good	fit	for	the	spirit	of	mechanism	design.	But	if	delisting	and	policing	motivations	is	not	the
solution,	then	what	is?

The	solution	comes	in	the	form	of	a	technology	called	MACI.

MACI	is	a	toolkit	that	allows	you	to	run	collusion-resistant	applications,	which	simultaneously
guarantee	several	key	properties:

Correctness:	invalid	messages	do	not	get	processed,	and	the	result	that	the	mechanism	outputs
actually	is	the	result	of	processing	all	valid	messages	and	correctly	computing	the	result.
Censorship	resistance:	if	someone	participates,	the	mechanism	cannot	cheat	and	pretend	they
did	not	participate	by	selectively	ignoring	their	messages.
Privacy:	no	one	else	can	see	how	each	individual	participated.
Collusion	resistance:	a	participant	cannot	prove	to	others	how	they	participated,	even	if	they
wanted	to	prove	this.

Collusion	resistance	is	the	key	property:	it	makes	bribes	(or	retroactive	airdrops)	impossible,	because
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users	would	have	no	way	to	prove	that	they	actually	contributed	to	someone's	grant	or	voted	for
someone	or	performed	whatever	other	action.	This	is	a	realization	of	the	secret	ballot	concept	which
makes	vote	buying	impractical	today,	but	with	cryptography.

The	technical	description	of	how	this	works	is	not	that	difficult.	Users	participate	by	signing	a
message	with	their	private	key,	encrypting	the	signed	message	to	a	public	key	published	by	a	central
server,	and	publishing	the	encrypted	signed	message	to	the	blockchain.	The	server	downloads	the
messages	from	the	blockchain,	decrypts	them,	processes	them,	and	outputs	the	result	along	with	a
ZK-SNARK	to	ensure	that	they	did	the	computation	correctly.

Users	cannot	prove	how	they	participated,	because	they	have	the	ability	to	send	a	"key	change"
message	to	trick	anyone	trying	to	audit	them:	they	can	first	send	a	key	change	message	to	change
their	key	from	A	to	B,	and	then	send	a	"fake	message"	signed	with	A.	The	server	would	reject	the
message,	but	no	one	else	would	have	any	way	of	knowing	that	the	key	change	message	had	ever	been
sent.	There	is	a	trust	requirement	on	the	server,	though	only	for	privacy	and	coercion	resistance;	the
server	cannot	publish	an	incorrect	result	either	by	computing	incorrectly	or	by	censoring	messages.
In	the	long	term,	multi-party	computation	can	be	used	to	decentralize	the	server	somewhat,
strengthening	the	privacy	and	coercion	resistance	guarantees.

There	is	already	a	quadratic	funding	system	using	MACI:	clr.fund.	It	works,	though	at	the	moment
proof	generation	is	still	quite	expensive;	ongoing	work	on	the	project	will	hopefully	decrease	these
costs	soon.

Practical	concerns

Note	that	adopting	MACI	does	come	with	necessary	sacrifices.	In	particular,	there	would	no
longer	be	the	ability	to	see	who	contributed	to	what,	weakening	Gitcoin's	"social"	aspects.	However,
the	social	aspects	could	be	redesigned	and	changed	by	taking	insights	from	elections:	elections,
despite	their	secret	ballot,	frequently	give	out	"I	voted"	stickers.	They	are	not	"secure"	(in	that	a	non-
voter	can	easily	get	one),	but	they	still	serve	the	social	function.	One	could	go	further	while	still
preserving	the	secret	ballot	property:	one	could	make	a	quadratic	funding	setup	where	MACI
outputs	the	value	of	how	much	each	participant	contributed,	but	not	who	they	contributed
to.	This	would	make	it	impossible	for	specific	projects	to	pay	people	to	contribute	to	them,	but	would
still	leave	lots	of	space	for	users	to	express	their	pride	in	contributing.	Projects	could	airdrop	to	all
Gitcoin	contributors	without	discriminating	by	project,	and	announce	that	they're	doing	this	together
with	a	link	to	their	Gitcoin	profile.	However,	users	would	still	be	able	to	contribute	to	someone	else
and	collect	the	airdrop;	hence,	this	would	arguably	be	within	bounds	of	fair	play.

However,	this	is	still	a	longer-term	concern;	MACI	is	likely	not	ready	to	be	integrated	for	round	10.
For	the	next	few	rounds,	focusing	on	stepping	up	unique-human	verification	is	still	the	best	priority.
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Some	ongoing	reliance	on	centralized	moderation	will	be	required,	though	hopefully	this	can	be
simultaneously	reduced	and	made	more	accountable	to	the	community.	The	Gitcoin	team	has	already
been	taking	excellent	steps	in	this	direction.	And	if	the	Gitcoin	team	does	successfully	play	their	role
as	pioneers	in	being	the	first	to	brave	and	overcome	these	challenges,	then	we	will	end	up	with	a
secure	and	scalable	quadratic	funding	system	that	is	ready	for	much	broader	mainstream
applications!
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The	Most	Important	Scarce	Resource	is	Legitimacy

Special	thanks	to	Karl	Floersch,	Aya	Miyaguchi	and	Mr	Silly	for	ideas,	feedback	and	review.

The	Bitcoin	and	Ethereum	blockchain	ecosystems	both	spend	far	more	on	network	security	-	the	goal	of	proof	of	work	mining	-	than	they	do	on	everything	else
combined.	The	Bitcoin	blockchain	has	paid	an	average	of	about	$38	million	per	day	in	block	rewards	to	miners	since	the	start	of	the	year,	plus	about	$5m/day	in
transaction	fees.	The	Ethereum	blockchain	comes	in	second,	at	$19.5m/day	in	block	rewards	plus	$18m/day	in	tx	fees.	Meanwhile,	the	Ethereum	Foundation's
annual	budget,	paying	for	research,	protocol	development,	grants	and	all	sorts	of	other	expenses,	is	a	mere	$30	million	per	year.	Non-EF-sourced	funding	exists
too,	but	it	is	at	most	only	a	few	times	larger.	Bitcoin	ecosystem	expenditures	on	R&D	are	likely	even	lower.	Bitcoin	ecosystem	R&D	is	largely	funded	by	companies
(with	$250m	total	raised	so	far	according	to	this	page),	and	this	report	suggests	about	57	employees;	assuming	fairly	high	salaries	and	many	paid	developers	not
being	counted,	that	works	out	to	about	$20m	per	year.

Clearly,	this	expenditure	pattern	is	a	massive	misallocation	of	resources.	The	last	20%	of	network	hashpower	provides	vastly	less	value	to	the	ecosystem	than	those
same	resources	would	if	they	had	gone	into	research	and	core	protocol	development.	So	why	not	just....	cut	the	PoW	budget	by	20%	and	redirect	the	funds	to	those
other	things	instead?

The	standard	answer	to	this	puzzle	has	to	do	with	concepts	like	"public	choice	theory"	and	"Schelling	fences":	even	though	we	could	easily	identify	some	valuable
public	goods	to	redirect	some	funding	to	as	a	one-off,	making	a	regular	institutionalized	pattern	of	such	decisions	carries	risks	of	political	chaos	and	capture	that
are	in	the	long	run	not	worth	it.	But	regardless	of	the	reasons	why,	we	are	faced	with	this	interesting	fact	that	the	organisms	that	are	the	Bitcoin	and
Ethereum	ecosystems	are	capable	of	summoning	up	billions	of	dollars	of	capital,	but	have	strange	and	hard-to-understand	restrictions	on	where
that	capital	can	go.

The	powerful	social	force	that	is	creating	this	effect	is	worth	understanding.	As	we	are	going	to	see,	it's	also	the	same	social	force	behind	why	the	Ethereum
ecosystem	is	capable	of	summoning	up	these	resources	in	the	first	place	(and	the	technologically	near-identical	Ethereum	Classic	is	not).	It's	also	a	social	force	that
is	key	to	helping	a	chain	recover	from	a	51%	attack.	And	it's	a	social	force	that	underlies	all	sorts	of	extremely	powerful	mechanisms	far	beyond	the	blockchain
space.	For	reasons	that	will	be	clear	in	the	upcoming	sections,	I	will	give	this	powerful	social	force	a	name:	legitimacy.

Coins	can	be	owned	by	social	contracts

To	better	understand	the	force	that	we	are	getting	at,	another	important	example	is	the	epic	saga	of	Steem	and	Hive.	In	early	2020,	Justin	Sun	bought	Steem-the-
company,	which	is	not	the	same	thing	as	Steem-the-blockchain	but	did	hold	about	20%	of	the	STEEM	token	supply.	The	community,	naturally,	did	not	trust	Justin
Sun.	So	they	made	an	on-chain	vote	to	formalize	what	they	considered	to	be	a	longstanding	"gentleman's	agreement"	that	Steem-the-company's	coins	were	held	in
trust	for	the	common	good	of	Steem-the-blockchain	and	should	not	be	used	to	vote.	With	the	help	of	coins	held	by	exchanges,	Justin	Sun	made	a	counterattack,	and
won	control	of	enough	delegates	to	unilaterally	control	the	chain.	The	community	saw	no	further	in-protocol	options.	So	instead	they	made	a	fork	of	Steem-the-
blockchain,	called	Hive,	and	copied	over	all	of	the	STEEM	token	balances	-	except	those,	including	Justin	Sun's,	which	participated	in	the	attack.

And	they	got	plenty	of	applications	on	board.	If	they	had	not	managed	this,	far	more	users	would	have	either	stayed	on	Steem	or	moved	to	some	different	project	entirely.	

The	lesson	that	we	can	learn	from	this	situation	is	this:	Steem-the-company	never	actually	"owned"	the	coins.	If	they	did,	they	would	have	had	the	practical	ability
to	use,	enjoy	and	abuse	the	coins	in	whatever	way	they	wanted.	But	in	reality,	when	the	company	tried	to	enjoy	and	abuse	the	coins	in	a	way	that	the	community
did	not	like,	they	were	successfully	stopped.	What's	going	on	here	is	a	pattern	of	a	similar	type	to	what	we	saw	with	the	not-yet-issued	Bitcoin	and	Ethereum	coin
rewards:	the	coins	were	ultimately	owned	not	by	a	cryptographic	key,	but	by	some	kind	of	social	contract.

We	can	apply	the	same	reasoning	to	many	other	structures	in	the	blockchain	space.	Consider,	for	example,	the	ENS	root	multisig.	The	root	multisig	is	controlled	by
seven	prominent	ENS	and	Ethereum	community	members.	But	what	would	happen	if	four	of	them	were	to	come	together	and	"upgrade"	the	registrar	to	one	that
transfers	all	the	best	domains	to	themselves?	Within	the	context	of	ENS-the-smart-contract-system,	they	have	the	complete	and	unchallengeable	ability	to	do	this.
But	if	they	actually	tried	to	abuse	their	technical	ability	in	this	way,	what	would	happen	is	clear	to	anyone:	they	would	be	ostracized	from	the	community,	the
remaining	ENS	community	members	would	make	a	new	ENS	contract	that	restores	the	original	domain	owners,	and	every	Ethereum	application	that	uses	ENS
would	repoint	their	UI	to	use	the	new	one.

This	goes	well	beyond	smart	contract	structures.	Why	is	it	that	Elon	Musk	can	sell	an	NFT	of	Elon	Musk's	tweet,	but	Jeff	Bezos	would	have	a	much	harder	time
doing	the	same?	Elon	and	Jeff	have	the	same	level	of	ability	to	screenshot	Elon's	tweet	and	stick	it	into	an	NFT	dapp,	so	what's	the	difference?	To	anyone	who	has
even	a	basic	intuitive	understanding	of	human	social	psychology	(or	the	fake	art	scene),	the	answer	is	obvious:	Elon	selling	Elon's	tweet	is	the	real	thing,	and	Jeff
doing	the	same	is	not.	Once	again,	millions	of	dollars	of	value	are	being	controlled	and	allocated,	not	by	individuals	or	cryptographic	keys,	but	by	social
conceptions	of	legitimacy.
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And,	going	even	further	out,	legitimacy	governs	all	sorts	of	social	status	games,	intellectual	discourse,	language,	property	rights,	political	systems	and	national
borders.	Even	blockchain	consensus	works	the	same	way:	the	only	difference	between	a	soft	fork	that	gets	accepted	by	the	community	and	a	51%	censorship	attack
after	which	the	community	coordinates	an	extra-protocol	recovery	fork	to	take	out	the	attacker	is	legitimacy.

So	what	is	legitimacy?
See	also:	my	earlier	post	on	blockchain	governance.

To	understand	the	workings	of	legitimacy,	we	need	to	dig	down	into	some	game	theory.	There	are	many	situations	in	life	that	demand	coordinated	behavior:	if
you	act	in	a	certain	way	alone,	you	are	likely	to	get	nowhere	(or	worse),	but	if	everyone	acts	together	a	desired	result	can	be	achieved.

An	abstract	coordination	game.	You	benefit	heavily	from	making	the	same	move	as	everyone	else.	

One	natural	example	is	driving	on	the	left	vs	right	side	of	the	road:	it	doesn't	really	matter	what	side	of	the	road	people	drive	on,	as	long	as	they	drive	on	the	same
side.	If	you	switch	sides	at	the	same	time	as	everyone	else,	and	most	people	prefer	the	new	arrangement,	there	can	be	a	net	benefit.	But	if	you	switch	sides	alone,
no	matter	how	much	you	prefer	driving	on	the	other	side,	the	net	result	for	you	will	be	quite	negative.

Now,	we	are	ready	to	define	legitimacy.

Legitimacy	is	a	pattern	of	higher-order	acceptance.	An	outcome	in	some	social	context	is	legitimate	if	the	people	in	that	social	context
broadly	accept	and	play	their	part	in	enacting	that	outcome,	and	each	individual	person	does	so	because	they	expect	everyone	else	to	do
the	same.

Legitimacy	is	a	phenomenon	that	arises	naturally	in	coordination	games.	If	you're	not	in	a	coordination	game,	there's	no	reason	to	act	according	to	your
expectation	of	how	other	people	will	act,	and	so	legitimacy	is	not	important.	But	as	we	have	seen,	coordination	games	are	everywhere	in	society,	and	so	legitimacy
turns	out	to	be	quite	important	indeed.	In	almost	any	environment	with	coordination	games	that	exists	for	long	enough,	there	inevitably	emerge	some	mechanisms
that	can	choose	which	decision	to	take.	These	mechanisms	are	powered	by	an	established	culture	that	everyone	pays	attention	to	these	mechanisms	and	(usually)
does	what	they	say.	Each	person	reasons	that	because	everyone	else	follows	these	mechanisms,	if	they	do	something	different	they	will	only	create	conflict	and
suffer,	or	at	least	be	left	in	a	lonely	forked	ecosystem	all	by	themselves.	If	a	mechanism	successfully	has	the	ability	to	make	these	choices,	then	that	mechanism	has
legitimacy.

A	Byzantine	general	rallying	his	troops	forward.	The	purpose	of	this	isn't	just	to	make	the	soldiers	feel	brave	and	excited,	but	also	to	reassure	them	that	everyone	else	feels	brave	and
excited	and	will	charge	forward	as	well,	so	an	individual	soldier	is	not	just	committing	suicide	by	charging	forward	alone.	

In	any	context	where	there's	a	coordination	game	that	has	existed	for	long	enough,	there's	likely	a	conception	of	legitimacy.	And	blockchains	are	full	of
coordination	games.	Which	client	software	do	you	run?	Which	decentralized	domain	name	registry	do	you	ask	for	which	address	corresponds	to	a	.eth	name?
Which	copy	of	the	Uniswap	contract	do	you	accept	as	being	"the"	Uniswap	exchange?	Even	NFTs	are	a	coordination	game.	The	two	largest	parts	of	an	NFT's	value
are	(i)	pride	in	holding	the	NFT	and	ability	to	show	off	your	ownership,	and	(ii)	the	possibility	of	selling	it	in	the	future.	For	both	of	these	components,	it's	really
really	important	that	whatever	NFT	you	buy	is	recognized	as	legitimate	by	everyone	else.	In	all	of	these	cases,	there's	a	great	benefit	to	having	the	same	answer	as
everyone	else,	and	the	mechanism	that	determines	that	equilibrium	has	a	lot	of	power.

Theories	of	legitimacy

There	are	many	different	ways	in	which	legitimacy	can	come	about.	In	general,	legitimacy	arises	because	the	thing	that	gains	legitimacy	is	psychologically
appealing	to	most	people.	But	of	course,	people's	psychological	intuitions	can	be	quite	complex.	It	is	impossible	to	make	a	full	listing	of	theories	of	legitimacy,	but
we	can	start	with	a	few:

Legitimacy	by	brute	force:	someone	convinces	everyone	that	they	are	powerful	enough	to	impose	their	will	and	resisting	them	will	be	very	hard.	This	drives
most	people	to	submit	because	each	person	expects	that	everyone	else	will	be	too	scared	to	resist	as	well.
Legitimacy	by	continuity:	if	something	was	legitimate	at	time	T,	it	is	by	default	legitimate	at	time	T+1.
Legitimacy	by	fairness:	something	can	become	legitimate	because	it	satisfies	an	intuitive	notion	of	fairness.	See	also:	my	post	on	credible	neutrality,	though
note	that	this	is	not	the	only	kind	of	fairness.
Legitimacy	by	process:	if	a	process	is	legitimate,	the	outputs	of	that	process	gain	legitimacy	(eg.	laws	passed	by	democracies	are	sometimes	described	in
this	way).
Legitimacy	by	performance:	if	the	outputs	of	a	process	lead	to	results	that	satisfy	people,	then	that	process	can	gain	legitimacy	(eg.	successful	dictatorships
are	sometimes	described	in	this	way).
Legitimacy	by	participation:	if	people	participate	in	choosing	an	outcome,	they	are	more	likely	to	consider	it	legitimate.	This	is	similar	to	fairness,	but	not
quite:	it	rests	on	a	psychological	desire	to	be	consistent	with	your	previous	actions.

Note	that	legitimacy	is	a	descriptive	concept;	something	can	be	legitimate	even	if	you	personally	think	that	it	is	horrible.	That	said,	if	enough	people	think	that	an
outcome	is	horrible,	there	is	a	higher	chance	that	some	event	will	happen	in	the	future	that	will	cause	that	legitimacy	to	go	away,	often	at	first	gradually,	then
suddenly.

Legitimacy	is	a	powerful	social	technology,	and	we	should	use	it
The	public	goods	funding	situation	in	cryptocurrency	ecosystems	is	fairly	poor.	There	are	hundreds	of	billions	of	dollars	of	capital	flowing	around,	but	public	goods
that	are	key	to	that	capital's	ongoing	survival	are	receiving	only	tens	of	millions	of	dollars	per	year	of	funding.

There	are	two	ways	to	respond	to	this	fact.	The	first	way	is	to	be	proud	of	these	limitations	and	the	valiant,	even	if	not	particularly	effective,	efforts	that	your
community	makes	to	work	around	them.	This	seems	to	be	the	route	that	the	Bitcoin	ecosystem	often	takes:
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The	personal	self-sacrifice	of	the	teams	funding	core	development	is	of	course	admirable,	but	it's	admirable	the	same	way	that	Eliud	Kipchoge	running	a	marathon
in	under	2	hours	is	admirable:	it's	an	impressive	show	of	human	fortitude,	but	it's	not	the	future	of	transportation	(or,	in	this	case,	public	goods	funding).	Much	like
we	have	much	better	technologies	to	allow	people	to	move	42	km	in	under	an	hour	without	exceptional	fortitude	and	years	of	training,	we	should	also	focus	on
building	better	social	technologies	to	fund	public	goods	at	the	scales	that	we	need,	and	as	a	systemic	part	of	our	economic	ecology	and	not	one-off
acts	of	philanthropic	initiative.

Now,	let	us	get	back	to	cryptocurrency.	A	major	power	of	cryptocurrency	(and	other	digital	assets	such	as	domain	names,	virtual	land	and	NFTs)	is	that	it	allows
communities	to	summon	up	large	amounts	of	capital	without	any	individual	person	needing	to	personally	donate	that	capital.	However,	this	capital	is	constrained
by	conceptions	of	legitimacy:	you	cannot	simply	allocate	it	to	a	centralized	team	without	compromising	on	what	makes	it	valuable.	While	Bitcoin	and	Ethereum	do
already	rely	on	conceptions	of	legitimacy	to	respond	to	51%	attacks,	using	conceptions	of	legitimacy	to	guide	in-protocol	funding	of	public	goods	is	much	harder.
But	at	the	increasingly	rich	application	layer	where	new	protocols	are	constantly	being	created,	we	have	quite	a	bit	more	flexibility	in	where	that	funding	could	go.

Legitimacy	in	Bitshares

One	of	the	long-forgotten,	but	in	my	opinion	very	innovative,	ideas	from	the	early	cryptocurrency	space	was	the	Bitshares	social	consensus	model.	Essentially,
Bitshares	described	itself	as	a	community	of	people	(PTS	and	AGS	holders)	who	were	willing	to	help	collectively	support	an	ecosystem	of	new	projects,	but	for	a
project	to	be	welcomed	into	the	ecosystem,	it	would	have	to	allocate	10%	of	its	token	supply	to	existing	PTS	and	AGS	holders.

Now,	of	course	anyone	can	make	a	project	that	does	not	allocate	any	coins	to	PTS/AGS	holders,	or	even	fork	a	project	that	did	make	an	allocation	and	take	the
allocation	out.	But,	as	Dan	Larimer	says:

You	cannot	force	anyone	to	do	anything,	but	in	this	market	is	is	all	network	effect.	If	someone	comes	up	with	a	compelling	implementation	then	you	can
adopt	the	entire	PTS	community	for	the	cost	of	generating	a	new	genesis	block.	The	individual	who	decided	to	start	from	scratch	would	have	to	build	an
entire	new	community	around	his	system.	Considering	the	network	effect,	I	suspect	that	the	coin	that	honors	ProtoShares	will	win.

This	is	also	a	conception	of	legitimacy:	any	project	that	makes	the	allocation	to	PTS/AGS	holders	will	get	the	attention	and	support	of	the	community	(and	it	will	be
worthwhile	for	each	individual	community	member	to	take	an	interest	in	the	project	because	the	rest	of	the	community	is	doing	so	as	well),	and	any	project	that
does	not	make	the	allocation	will	not.	Now,	this	is	certainly	not	a	conception	of	legitimacy	that	we	want	to	replicate	verbatim	-	there	is	little	appetite	in
the	Ethereum	community	for	enriching	a	small	group	of	early	adopters	-	but	the	core	concept	can	be	adapted	into	something	much	more	socially
valuable.

Extending	the	model	to	Ethereum

Blockchain	ecosystems,	Ethereum	included,	value	freedom	and	decentralization.	But	the	public	goods	ecology	of	most	of	these	blockchains	is,	regrettably,	still
quite	authority-driven	and	centralized:	whether	it's	Ethereum,	Zcash	or	any	other	major	blockchain,	there	is	typically	one	(or	at	most	2-3)	entities	that	far	outspend
everyone	else,	giving	independent	teams	that	want	to	build	public	goods	few	options.	I	call	this	model	of	public	goods	funding	"Central	Capital	Coordinators	for
Public-goods"	(CCCPs).

This	state	of	affairs	is	not	the	fault	of	the	organizations	themselves,	who	are	typically	valiantly	doing	their	best	to	support	the	ecosystem.	Rather,
it's	the	rules	of	the	ecosystem	that	are	being	unfair	to	that	organization,	because	they	hold	the	organization	to	an	unfairly	high	standard.	Any	single
centralized	organization	will	inevitably	have	blindspots	and	at	least	a	few	categories	and	teams	whose	value	that	it	fails	to	understand;	this	is	not	because	anyone
involved	is	doing	anything	wrong,	but	because	such	perfection	is	beyond	the	reach	of	small	groups	of	humans.	So	there	is	great	value	in	creating	a	more	diversified
and	resilient	approach	to	public	goods	funding	to	take	the	pressure	off	any	single	organization.

Fortunately,	we	already	have	the	seed	of	such	an	alternative!	The	Ethereum	application-layer	ecosystem	exists,	is	growing	increasingly	powerful,	and	is	already
showing	its	public-spiritedness.	Companies	like	Gnosis	have	been	contributing	to	Ethereum	client	development,	and	various	Ethereum	DeFi	projects	have	donated
hundreds	of	thousands	of	dollars	to	the	Gitcoin	Grants	matching	pool.
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Gitcoin	Grants	has	already	achieved	a	high	level	of	legitimacy:	its	public	goods	funding	mechanism,	quadratic	funding,	has	proven	itself	to	be	credibly	neutral	and
effective	at	reflecting	the	community's	priorities	and	values	and	plugging	the	holes	left	by	existing	funding	mechanisms.	Sometimes,	top	Gitcoin	Grants	matching
recipients	are	even	used	as	inspiration	for	grants	by	other	and	more	centralized	grant-giving	entities.	The	Ethereum	Foundation	itself	has	played	a	key	role	in
supporting	this	experimentation	and	diversity,	incubating	efforts	like	Gitcoin	Grants,	along	with	MolochDAO	and	others,	that	then	go	on	to	get	broader	community
support.

We	can	make	this	nascent	public	goods-funding	ecosystem	even	stronger	by	taking	the	Bitshares	model,	and	making	a	modification:	instead	of	giving	the	strongest
community	support	to	projects	who	allocate	tokens	to	a	small	oligarchy	who	bought	PTS	or	AGS	back	in	2013,	we	support	projects	that	contribute	a	small
portion	of	their	treasuries	toward	the	public	goods	that	make	them	and	the	ecosystem	that	they	depend	on	possible.	And,	crucially,	we	can	deny	these
benefits	to	projects	that	fork	an	existing	project	and	do	not	give	back	value	to	the	broader	ecosystem.

There	are	many	ways	to	do	support	public	goods:	making	a	long-term	commitment	to	support	the	Gitcoin	Grants	matching	pool,	supporting	Ethereum	client
development	(also	a	reasonably	credibly-neutral	task	as	there's	a	clear	definition	of	what	an	Ethereum	client	is),	or	even	running	one's	own	grant	program	whose
scope	goes	beyond	that	particular	application-layer	project	itself.	The	easiest	way	to	agree	on	what	counts	as	sufficient	support	is	to	agree	on	how	much	-	for
example,	5%	of	a	project's	spending	going	to	support	the	broader	ecosystem	and	another	1%	going	to	public	goods	that	go	beyond	the	blockchain	space	-	and	rely
on	good	faith	to	choose	where	that	funding	would	go.

Does	the	community	actually	have	that	much	leverage?

Of	course,	there	are	limits	to	the	value	of	this	kind	of	community	support.	If	a	competing	project	(or	even	a	fork	of	an	existing	project)	gives	its	users	a	much	better
offering,	then	users	are	going	to	flock	to	it,	regardless	of	how	many	people	yell	at	them	to	instead	use	some	alternative	that	they	consider	to	be	more	pro-social.

But	these	limits	are	different	in	different	contexts;	sometimes	the	community's	leverage	is	weak,	but	at	other	times	it's	quite	strong.	An	interesting	case	study	in
this	regard	is	the	case	of	Tether	vs	DAI.	Tether	has	many	scandals,	but	despite	this	traders	use	Tether	to	hold	and	move	around	dollars	all	the	time.	The	more
decentralized	and	transparent	DAI,	despite	its	benefits,	is	unable	to	take	away	much	of	Tether's	market	share,	at	least	as	far	as	traders	go.	But	where	DAI	excels	is
applications:	Augur	uses	DAI,	xDai	uses	DAI,	PoolTogether	uses	DAI,	zk.money	plans	to	use	DAI,	and	the	list	goes	on.	What	dapps	use	USDT?	Far	fewer.

Hence,	though	the	power	of	community-driven	legitimacy	effects	is	not	infinite,	there	is	nevertheless	considerable	room	for	leverage,	enough	to	encourage	projects
to	direct	at	least	a	few	percent	of	their	budgets	to	the	broader	ecosystem.	There's	even	a	selfish	reason	to	participate	in	this	equilibrium:	if	you	were	the	developer
of	an	Ethereum	wallet,	or	an	author	of	a	podcast	or	newsletter,	and	you	saw	two	competing	projects,	one	of	which	contributes	significantly	to	ecosystem-level
public	goods	including	yourself	and	one	which	does	not,	for	which	one	would	you	do	your	utmost	to	help	them	secure	more	market	share?

NFTs:	supporting	public	goods	beyond	Ethereum

The	concept	of	supporting	public	goods	through	value	generated	"out	of	the	ether"	by	publicly	supported	conceptions	of	legitimacy	has	value	going	far	beyond	the
Ethereum	ecosystem.	An	important	and	immediate	challenge	and	opportunity	is	NFTs.	NFTs	stand	a	great	chance	of	significantly	helping	many	kinds	of	public
goods,	especially	of	the	creative	variety,	at	least	partially	solve	their	chronic	and	systemic	funding	deficiencies.

Actually	a	very	admirable	first	step.

But	they	could	also	be	a	missed	opportunity:	there	is	little	social	value	in	helping	Elon	Musk	earn	yet	another	$1	million	by	selling	his	tweet	when,	as	far	as	we	can
tell,	the	money	is	just	going	to	himself	(and,	to	his	credit,	he	eventually	decided	not	to	sell).	If	NFTs	simply	become	a	casino	that	largely	benefits	already-wealthy
celebrities,	that	would	be	a	far	less	interesting	outcome.

Fortunately,	we	have	the	ability	to	help	shape	the	outcome.	Which	NFTs	people	find	attractive	to	buy,	and	which	ones	they	do	not,	is	a	question	of	legitimacy:
if	everyone	agrees	that	one	NFT	is	interesting	and	another	NFT	is	lame,	then	people	will	strongly	prefer	buying	the	first,	because	it	would	have	both	higher	value
for	bragging	rights	and	personal	pride	in	holding	it,	and	because	it	could	be	resold	for	more	because	everyone	else	is	thinking	in	the	same	way.	If	the	conception	of
legitimacy	for	NFTs	can	be	pulled	in	a	good	direction,	there	is	an	opportunity	to	establish	a	solid	channel	of	funding	to	artists,	charities	and	others.

Here	are	two	potential	ideas:

1.	 Some	institution	(or	even	DAO)	could	"bless"	NFTs	in	exchange	for	a	guarantee	that	some	portion	of	the	revenues	goes	toward	a	charitable	cause,	ensuring
that	multiple	groups	benefit	at	the	same	time.	This	blessing	could	even	come	with	an	official	categorization:	is	the	NFT	dedicated	to	global	poverty	relief,
scientific	research,	creative	arts,	local	journalism,	open	source	software	development,	empowering	marginalized	communities,	or	something	else?

2.	 We	can	work	with	social	media	platforms	to	make	NFTs	more	visible	on	people's	profiles,	giving	buyers	a	way	to	show	the	values	that	they	committed	not	just
their	words	but	their	hard-earned	money	to.	This	could	be	combined	with	(1)	to	nudge	users	toward	NFTs	that	contribute	to	valuable	social	causes.

There	are	definitely	more	ideas,	but	this	is	an	area	that	certainly	deserves	more	active	coordination	and	thought.

In	summary
The	concept	of	legitimacy	(higher-order	acceptance)	is	very	powerful.	Legitimacy	appears	in	any	context	where	there	is	coordination,	and	especially	on
the	internet,	coordination	is	everywhere.
There	are	different	ways	in	which	legitimacy	comes	to	be:	brute	force,	continuity,	fairness,	process,	performance	and	participation	are	among	the
important	ones.
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Cryptocurrency	is	powerful	because	it	lets	us	summon	up	large	pools	of	capital	by	collective	economic	will,	and	these	pools	of	capital	are,	at	the	beginning,
not	controlled	by	any	person.	Rather,	these	pools	of	capital	are	controlled	directly	by	concepts	of	legitimacy.
It's	too	risky	to	start	doing	public	goods	funding	by	printing	tokens	at	the	base	layer.	Fortunately,	however,	Ethereum	has	a	very	rich	application-layer
ecosystem,	where	we	have	much	more	flexibility.	This	is	in	part	because	there's	an	opportunity	not	just	to	influence	existing	projects,	but	also	shape	new
ones	that	will	come	into	existence	in	the	future.
Application-layer	projects	that	support	public	goods	in	the	community	should	get	the	support	of	the	community,	and	this	is	a	big	deal.	The
example	of	DAI	shows	that	this	support	really	matters!
The	Etherem	ecosystem	cares	about	mechanism	design	and	innovating	at	the	social	layer.	The	Ethereum	ecosystem's	own	public	goods	funding
challenges	are	a	great	place	to	start!
But	this	goes	far	beyond	just	Ethereum	itself.	NFTs	are	one	example	of	a	large	pool	of	capital	that	depends	on	concepts	of	legitimacy.	The	NFT	industry
could	be	a	significant	boon	to	artists,	charities	and	other	public	goods	providers	far	beyond	our	own	virtual	corner	of	the	world,	but	this	outcome	is	not
predetermined;	it	depends	on	active	coordination	and	support.
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Prediction	Markets:	Tales	from	the	Election

Special	thanks	to	Jeff	Coleman,	Karl	Floersch	and	Robin	Hanson	for	critical	feedback	and	review.

Trigger	warning:	I	express	some	political	opinions.

Prediction	markets	are	a	subject	that	has	interested	me	for	many	years.	The	idea	of	allowing	anyone	in	the	public	to	make	bets	about	future	events,	and
using	the	odds	at	which	these	bets	are	made	as	a	credibly	neutral	source	of	predicted	probabilities	of	these	events,	is	a	fascinating	application	of
mechanism	design.	Closely	related	ideas,	like	futarchy,	have	always	interested	me	as	innovative	tools	that	could	improve	governance	and	decision-
making.	And	as	Augur	and	Omen,	and	more	recently	PolyMarket,	have	shown,	prediction	markets	are	a	fascinating	application	of	blockchains	(in	all	three
cases,	Ethereum)	as	well.

And	the	2020	US	presidential	election,	it	seems	like	prediction	markets	are	finally	entering	the	limelight,	with	blockchain-based	markets	in	particular
growing	from	near-zero	in	2016	to	millions	of	dollars	of	volume	in	2020.	As	someone	who	is	closely	interested	in	seeing	Ethereum	applications	cross	the
chasm	into	widespread	adoption,	this	of	course	aroused	my	interest.	At	first,	I	was	inclined	to	simply	watch,	and	not	participate	myself:	I	am	not	an	expert
on	US	electoral	politics,	so	why	should	I	expect	my	opinion	to	be	more	correct	than	that	of	everyone	else	who	was	already	trading?	But	in	my	Twitter-
sphere,	I	saw	more	and	more	arguments	from	Very	Smart	People	whom	I	respected	arguing	that	the	markets	were	in	fact	being	irrational	and	I	should
participate	and	bet	against	them	if	I	can.	Eventually,	I	was	convinced.

I	decided	to	make	an	experiment	on	the	blockchain	that	I	helped	to	create:	I	bought	$2,000	worth	of	NTRUMP	(tokens	that	pay	$1	if	Trump	loses)	on
Augur.	Little	did	I	know	then	that	my	position	would	eventually	increase	to	$308,249,	earning	me	a	profit	of	over	$56,803,	and	that	I	would	make	all	of
these	remaining	bets,	against	willing	counterparties,	after	Trump	had	already	lost	the	election.	What	would	transpire	over	the	next	two	months	would
prove	to	be	a	fascinating	case	study	in	social	psychology,	expertise,	arbitrage,	and	the	limits	of	market	efficiency,	with	important	ramifications	to	anyone
who	is	deeply	interested	in	the	possibilities	of	economic	institution	design.

Before	the	Election

My	first	bet	on	this	election	was	actually	not	on	a	blockchain	at	all.	When	Kanye	announced	his	presidential	bid	in	July,	a	political	theorist	whom	I
ordinarily	quite	respect	for	his	high-quality	and	original	thinking	immediately	claimed	on	Twitter	that	he	was	confident	that	this	would	split	the	anti-
Trump	vote	and	lead	to	a	Trump	victory.	I	remember	thinking	at	the	time	that	this	particular	opinion	of	his	was	over-confident,	perhaps	even	a	result	of
over-internalizing	the	heuristic	that	if	a	viewpoint	seems	clever	and	contrarian	then	it	is	likely	to	be	correct.	So	of	course	I	offered	to	make	a	$200	bet,
myself	betting	the	boring	conventional	pro-Biden	view,	and	he	honorably	accepted.

The	election	came	up	again	on	my	radar	in	September,	and	this	time	it	was	the	prediction	markets	that	caught	my	attention.	The	markets	gave	Trump	a
nearly	50%	chance	of	winning,	but	I	saw	many	Very	Smart	People	in	my	Twitter-sphere	whom	I	respected	pointing	out	that	this	number	seemed	far	too
high.	This	of	course	led	to	the	familiar	"efficient	markets	debate":	if	you	can	buy	a	token	that	gives	you	$1	if	Trump	loses	for	$0.52,	and	Trump's	actual
chance	of	losing	is	much	higher,	why	wouldn't	people	just	come	in	and	buy	the	token	until	the	price	rises	more?	And	if	nobody	has	done	this,	who	are	you
to	think	that	you're	smarter	than	everyone	else?

Ne0liberal's	Twitter	thread	just	before	Election	Day	does	an	excellent	job	summarizing	his	case	against	prediction	markets	being	accurate	at	that	time.	In
short,	the	(non-blockchain)	prediction	markets	that	most	people	used	at	least	prior	to	2020	have	all	sorts	of	restrictions	that	make	it	difficult	for	people	to
participate	with	more	than	a	small	amount	of	cash.	As	a	result,	if	a	very	smart	individual	or	a	professional	organization	saw	a	probability	that	they
believed	was	wrong,	they	would	only	have	a	very	limited	ability	to	push	the	price	in	the	direction	that	they	believe	to	be	correct.

The	most	important	restrictions	that	the	paper	points	out	are:

Low	limits	(well	under	$1,000)	on	how	much	each	person	can	bet
High	fees	(eg.	a	5%	withdrawal	fee	on	PredictIt)

And	this	is	where	I	pushed	back	against	ne0liberal	in	September:	although	the	stodgy	old-world	centralized	prediction	markets	may	have	low	limits	and
high	fees,	the	crypto	markets	do	not!	On	Augur	or	Omen,	there's	no	limit	to	how	much	someone	can	buy	or	sell	if	they	think	the	price	of	some	outcome
token	is	too	low	or	too	high.	And	the	blockchain-based	prediction	markets	were	following	the	same	prices	as	PredictIt.	If	the	markets	really	were	over-
estimating	Trump	because	high	fees	and	low	trading	limits	were	preventing	the	more	cool-headed	traders	from	outbidding	the	overly	optimistic	ones,
then	why	would	blockchain-based	markets,	which	don't	have	those	issues,	show	the	same	prices?

PredictIt Augur
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The	main	response	my	Twitter	friends	gave	to	this	was	that	blockchain-based	markets	are	highly	niche,	and	very	few	people,	particularly	very	few	people
who	know	much	about	politics,	have	easy	access	to	cryptocurrency.	That	seemed	plausible,	but	I	was	not	too	confident	in	that	argument.	And	so	I	bet
$2,000	against	Trump	and	went	no	further.

The	Election
Then	the	election	happened.	After	an	initial	scare	where	Trump	at	first	won	more	seats	than	we	expected,	Biden	turned	out	to	be	the	eventual	winner.
Whether	or	not	the	election	itself	validated	or	refuted	the	efficiency	of	prediction	markets	is	a	topic	that,	as	far	as	I	can	tell,	is	quite	open	to
interpretation.	On	the	one	hand,	by	a	standard	Bayes	rule	application,	I	should	decrease	my	confidence	of	prediction	markets,	at	least	relative	to	Nate
Silver.	Prediction	markets	gave	a	60%	chance	of	Biden	winning,	Nate	Silver	gave	a	90%	chance	of	Biden	winning.	Since	Biden	in	fact	won,	this	is	one
piece	of	evidence	that	I	live	in	a	world	where	Nate	gives	the	more	correct	answers.

But	on	the	other	hand,	you	can	make	a	case	that	the	prediction	markets	bettter	estimated	the	margin	of	victory.	The	median	of	Nate's	probability
distribution	was	somewhere	around	370	of	538	electoral	college	votes	going	to	Biden:

The	Trump	markets	didn't	give	a	probability	distribution,	but	if	you	had	to	guess	a	probability	distribution	from	the	statistic	"40%	chance	Trump	will	win",
you	would	probably	give	one	with	a	median	somewhere	around	300	EC	votes	for	Biden.	The	actual	result:	306.	So	the	net	score	for	prediction	markets	vs
Nate	seems	to	me,	on	reflection,	ambiguous.

After	the	election
But	what	I	could	not	have	imagined	at	the	time	was	that	the	election	itself	was	just	the	beginning.	A	few	days	after	the	election,	Biden	was	declared	the
winner	by	various	major	organizations	and	even	a	few	foreign	governments.	Trump	mounted	various	legal	challenges	to	the	election	results,	as	was
expected,	but	each	of	these	challenges	quickly	failed.	But	for	over	a	month,	the	price	of	the	NTRUMP	tokens	stayed	at	85	cents!

At	the	beginning,	it	seemed	reasonable	to	guess	that	Trump	had	a	15%	chance	of	overturning	the	results;	after	all,	he	had	appointed	three	judges	to	the
Supreme	Court,	at	a	time	of	heightened	partisanship	where	many	have	come	to	favor	team	over	principle.	Over	the	next	three	weeks,	however,	it	became
more	and	more	clear	that	the	challenges	were	failing,	and	Trump's	hopes	continued	to	look	grimmer	with	each	passing	day,	but	the	NTRUMP	price	did
not	budge;	in	fact,	it	even	briefly	decreased	to	around	$0.82.	On	December	11,	more	than	five	weeks	after	the	election,	the	Supreme	Court	decisively	and
unanimously	rejected	Trump's	attempts	to	overturn	the	vote,	and	the	NTRUMP	price	finally	rose....	to	$0.88.

It	was	in	November	that	I	was	finally	convinced	that	the	market	skeptics	were	right,	and	I	plunged	in	and	bet	against	Trump	myself.	The	decision	was	not
so	much	about	the	money;	after	all,	barely	two	months	later	I	would	earn	and	donate	to	GiveDirectly	a	far	larger	amount	simply	from	holding	dogecoin.
Rather,	it	was	to	take	part	in	the	experiment	not	just	as	an	observer,	but	as	an	active	participant,	and	improve	my	personal	understanding	of	why
everyone	else	hadn't	already	plunged	in	to	buy	NTRUMP	tokens	before	me.

Dipping	in

I	bought	my	NTRUMP	on	Catnip,	a	front-end	user	interface	that	combines	together	the	Augur	prediction	market	with	Balancer,	a	Uniswap-style	constant-
function	market	maker.	Catnip	was	by	far	the	easiest	interface	for	making	these	trades,	and	in	my	opinion	contributed	significantly	to	Augur's	usability.

There	are	two	ways	to	bet	against	Trump	with	Catnip:

1.	 Use	DAI	to	buy	NTRUMP	on	Catnip	directly
2.	 Use	Foundry	to	access	an	Augur	feature	that	allows	you	to	convert	1	DAI	into	1	NTRUMP	+	1	YTUMP	+	1ITRUMP	(the	"I"	stands	for	"invalid",	more

on	this	later),	and	sell	the	YTRUMP	on	Catnip

At	first,	I	only	knew	about	the	first	option.	But	then	I	discovered	that	Balancer	has	far	more	liquidity	for	YTRUMP,	and	so	I	switched	to	the	second	option.

There	was	also	another	problem:	I	did	not	have	any	DAI.	I	had	ETH,	and	I	could	have	sold	my	ETH	to	get	DAI,	but	I	did	not	want	to	sacrifice	my	ETH
exposure;	it	would	have	been	a	shame	if	I	earned	$50,000	betting	against	Trump	but	simultaneously	lost	$500,000	missing	out	on	ETH	price	changes.	So
I	decided	to	keep	my	ETH	price	exposure	the	same	by	opening	up	a	collateralized	debt	position	(CDP,	now	also	called	a	"vault")	on	MakerDAO.

A	CDP	is	how	all	DAI	is	generated:	users	deposit	their	ETH	into	a	smart	contract,	and	are	allowed	to	withdraw	an	amount	of	newly-generated	DAI	up	to
2/3	of	the	value	of	ETH	that	they	put	in.	They	can	get	their	ETH	back	by	sending	back	the	same	amount	of	DAI	that	they	withdrew	plus	an	extra	interest
fee	(currently	3.5%).	If	the	value	of	the	ETH	collateral	that	you	deposited	drops	to	less	than	150%	the	value	of	the	DAI	you	withdrew,	anyone	can	come	in
and	"liquidate"	the	vault,	forcibly	selling	the	ETH	to	buy	back	the	DAI	and	charging	you	a	high	penalty.	Hence,	it's	a	good	idea	to	have	a	high
collateralization	ratio	in	case	of	sudden	price	movements;	I	had	over	$3	worth	of	ETH	in	my	CDP	for	every	$1	that	I	withdrew.

Recapping	the	above,	here's	the	pipeline	in	diagram	form:
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I	did	this	many	times;	the	slippage	on	Catnip	meant	that	I	could	normally	make	trades	only	up	to	about	$5,000	to	$10,000	at	a	time	without	prices
becoming	too	unfavorable	(when	I	had	skipped	Foundry	and	bought	NTRUMP	with	DAI	directly,	the	limit	was	closer	to	$1,000).	And	after	two	months,	I
had	accumulated	over	367,000	NTRUMP.

Why	not	everyone	else?
Before	I	went	in,	I	had	four	main	hypotheses	about	why	so	few	others	were	buying	up	dollars	for	85	cents:

1.	 Fear	that	either	the	Augur	smart	contracts	would	break	or	Trump	supporters	would	manipulate	the	oracle	(a	decentralized	mechanism	where
holders	of	Augur's	REP	token	vote	by	staking	their	tokens	on	one	outcome	or	the	other)	to	make	it	return	a	false	result

2.	 Capital	costs:	to	buy	these	tokens,	you	have	to	lock	up	funds	for	over	two	months,	and	this	removes	your	ability	to	spend	those	funds	or	make	other
profitable	trades	for	that	duration

3.	 It's	too	technically	complicated	for	almost	everyone	to	trade
4.	 There	just	really	are	far	fewer	people	than	I	thought	who	are	actually	motivated	enough	to	take	a	weird	opportunity	even	when	it	presents	them

straight	in	the	face

All	four	have	reasonable	arguments	going	for	them.	Smart	contracts	breaking	is	a	real	risk,	and	the	Augur	oracle	had	not	before	been	tested	in	such	a
contentious	environment.	Capital	costs	are	real,	and	while	betting	against	something	is	easier	in	a	prediction	market	than	in	a	stock	market	because	you
know	that	prices	will	never	go	above	$1,	locking	up	capital	nevertheless	competes	with	other	lucrative	opportunities	in	the	crypto	markets.	Making
transactions	things	in	dapps	is	technically	complicated,	and	it's	rational	to	have	some	degree	of	fear-of-the-unknown.

But	my	experience	actually	going	into	the	financial	trenches,	and	watching	the	prices	on	this	market	evolve,	taught	me	a	lot	about	each	of	these
hypotheses.

Fear	of	smart	contract	exploits

At	first,	I	thought	that	"fear	of	smart	contract	exploits"	must	have	been	a	significant	part	of	the	explanation.	But	over	time,	I	have	become	more	convinced
that	it	is	probably	not	a	dominant	factor.	One	way	to	see	why	I	think	this	is	the	case	is	to	compare	the	prices	for	YTRUMP	and	ITRUMP.	ITRUMP	stands
for	"Invalid	Trump";	"Invalid"	is	an	event	outcome	that	is	intended	to	be	triggered	in	some	exceptional	cases:	when	the	description	of	the	event	is
ambiguous,	when	the	outcome	of	the	event	is	not	yet	known	when	the	market	is	resolved,	when	the	market	is	unethical	(eg.	assassination	markets),	and	a
few	other	similar	situations.	In	this	market,	the	price	of	ITRUMP	consistently	stayed	under	$0.02.	If	someone	wanted	to	earn	a	profit	by	attacking	the
market,	it	would	be	far	more	lucrative	for	them	to	not	buy	YTRUMP	at	$0.15,	but	instead	buy	ITRUMP	at	$0.02.	If	they	buy	a	large	amount	of	ITRUMP,
they	could	earn	a	50x	return	if	they	can	force	the	"invalid"	outcome	to	actually	trigger.	So	if	you	fear	an	attack,	buying	ITRUMP	is	by	far	the	most	rational
response.	And	yet,	very	few	people	did.

A	further	argument	against	fear	of	smart	contract	exploits,	of	course,	is	the	fact	that	in	every	crypto	application	except	prediction	markets	(eg.
Compound,	the	various	yield	farming	schemes)	people	are	surprisingly	blasé	about	smart	contract	risks.	If	people	are	willing	to	put	their	money	into	all
sorts	of	risky	and	untested	schemes	even	for	a	promise	of	mere	5-8%	annual	gains,	why	would	they	suddenly	become	over-cautious	here?

Capital	costs

Capital	costs	-	the	inconvenience	and	opportunity	cost	of	locking	up	large	amounts	of	money	-	are	a	challenge	that	I	have	come	to	appreciate	much	more
than	I	did	before.	Just	looking	at	the	Augur	side	of	things,	I	needed	to	lock	up	308,249	DAI	for	an	average	of	about	two	months	to	make	a	$56,803	profit.
This	works	out	to	about	a	175%	annualized	interest	rate;	so	far,	quite	a	good	deal,	even	compared	to	the	various	yield	farming	crazes	of	the	summer	of
2020.	But	this	becomes	worse	when	you	take	into	account	what	I	needed	to	do	on	MakerDAO.	Because	I	wanted	to	keep	my	exposure	to	ETH	the	same,	I
needed	to	get	my	DAI	through	a	CDP,	and	safely	using	a	CDP	required	a	collateral	ratio	of	over	3x.	Hence,	the	total	amount	of	capital	I	actually	needed	to
lock	up	was	somewhere	around	a	million	dollars.

Now,	the	interest	rates	are	looking	less	favorable.	And	if	you	add	to	that	the	possibility,	however	remote,	that	a	smart	contract	hack,	or	a	truly
unprecedented	political	event,	actually	will	happen,	it	looks	less	favorable	still.

But	even	still,	assuming	a	3x	lockup	and	a	3%	chance	of	Augur	breaking	(I	had	bought	ITRUMP	to	cover	the	possibility	that	it	breaks	in	the	"invalid"
direction,	so	I	needed	only	worry	about	the	risk	of	breaks	in	the	"yes"	direction	or	the	the	funds	being	stolen	outright),	that	works	out	to	a	risk-neutral
rate	of	about	35%,	and	even	lower	once	you	take	real	human	beings'	views	on	risk	into	account.	The	deal	is	still	very	attractive,	but	on	the	other	hand,	it
now	looks	very	understandable	that	such	numbers	are	unimpressive	to	people	who	live	and	breathe	cryptocurrency	with	its	frequent	100x	ups	and	downs.

Trump	supporters,	on	the	other	hand,	faced	none	of	these	challenges:	they	cancelled	out	my	$308,249	bet	by	throwing	in	a	mere	$60,000	(my	winnings
are	less	than	this	because	of	fees).	When	probabilities	are	close	to	0	or	1,	as	is	the	case	here,	the	game	is	very	lopsided	in	favor	of	those	who	are	trying	to
push	the	probability	away	from	the	extreme	value.	And	this	explains	not	just	Trump;	it's	also	the	reason	why	all	sorts	of	popular-among-a-niche	candidates
with	no	real	chance	of	victory	frequently	get	winning	probabilities	as	high	as	5%.

Technical	complexity

I	had	at	first	tried	buying	NTRUMP	on	Augur,	but	technical	glitches	in	the	user	interface	prevented	me	from	being	able	to	make	orders	on	Augur	directly
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(other	people	I	talked	to	did	not	have	this	issue...	I	am	still	not	sure	what	happened	there).	Catnip's	UI	is	much	simpler	and	worked	excellently.	However,
automated	market	makers	like	Balancer	(and	Uniswap)	work	best	for	smaller	trades;	for	larger	trades,	the	slippage	is	too	high.	This	is	a	good	microcosm
of	the	broader	"AMM	vs	order	book"	debate:	AMMs	are	more	convenient	but	order	books	really	do	work	better	for	large	trades.	Uniswap	v3	is	introducing
an	AMM	design	that	has	better	capital	efficiency;	we	shall	see	if	that	improves	things.

There	were	other	technical	complexities	too,	though	fortunately	they	all	seem	to	be	easily	solvable.	There	is	no	reason	why	an	interface	like	Catnip	could
not	integrate	the	"DAI	->	Foundry	->	sell	YTRUMP"	path	into	a	contract	so	that	you	could	buy	NTRUMP	that	way	in	a	single	transaction.	In	fact,	the
interface	could	even	check	the	price	and	liquidity	properties	of	the	"DAI	->	NTRUMP"	path	and	the	"DAI	->	Foundry	->	sell	YTRUMP"	path	and	give	you
the	better	trade	automatically.	Even	withdrawing	DAI	from	a	MakerDAO	CDP	can	be	included	in	that	path.	My	conclusion	here	is	optimistic:	technical
complexity	issues	were	a	real	barrier	to	participation	this	round,	but	things	will	be	much	easier	in	future	rounds	as	technology	improves.

Intellectual	underconfidence

And	now	we	have	the	final	possibility:	that	many	people	(and	smart	people	in	particular)	have	a	pathology	that	they	suffer	from	excessive	humility,	and
too	easily	conclude	that	if	no	one	else	has	taken	some	action,	then	there	must	therefore	be	a	good	reason	why	that	action	is	not	worth	taking.

Eliezer	Yudkowsky	spends	the	second	half	of	his	excellent	book	Inadequate	Equilibria	making	this	case,	arguing	that	too	many	people	overuse	"modest
epistemology",	and	we	should	be	much	more	willing	to	act	on	the	results	of	our	reasoning,	even	when	the	result	suggests	that	the	great	majority	of	the
population	is	irrational	or	lazy	or	wrong	about	something.	When	I	read	those	sections	for	the	first	time,	I	was	unconvinced;	it	seemed	like	Eliezer	was
simply	being	overly	arrogant.	But	having	gone	through	this	experience,	I	have	come	to	see	some	wisdom	in	his	position.

This	was	not	my	first	time	seeing	the	virtues	of	trusting	one's	own	reasoning	first	hand.	When	I	had	originally	started	working	on	Ethereum,	I	was	at	first
beset	by	fear	that	there	must	be	some	very	good	reason	the	project	was	doomed	to	fail.	A	fully	programmable	smart-contract-capable	blockchain,	I
reasoned,	was	clearly	such	a	great	improvement	over	what	came	before,	that	surely	many	other	people	must	have	thought	of	it	before	I	did.	And	so	I	fully
expected	that,	as	soon	as	I	publish	the	idea,	many	very	smart	cryptographers	would	tell	me	the	very	good	reasons	why	something	like	Ethereum	was
fundamentally	impossible.	And	yet,	no	one	ever	did.

Of	course,	not	everyone	suffers	from	excessive	modesty.	Many	of	the	people	making	predictions	in	favor	of	Trump	winning	the	election	were	arguably
fooled	by	their	own	excessive	contrarianism.	Ethereum	benefited	from	my	youthful	suppression	of	my	own	modesty	and	fears,	but	there	are	plenty	of
other	projects	that	could	have	benefited	from	more	intellectual	humility	and	avoided	failures.

Not	a	sufferer	of	excessive	modesty.

But	nevertheless	it	seems	to	me	more	true	than	ever	that,	as	goes	the	famous	Yeats	quote,	"the	best	lack	all	conviction,	while	the	worst	are	full	of
passionate	intensity."	Whatever	the	faults	of	overconfidence	or	contrarianism	sometimes	may	be,	it	seems	clear	to	me	that	spreading	a	society-wide
message	that	the	solution	is	to	simply	trust	the	existing	outputs	of	society,	whether	those	come	in	the	form	of	academic	institutions,	media,	governments
or	markets,	is	not	the	solution.	All	of	these	institutions	can	only	work	precisely	because	of	the	presence	of	individuals	who	think	that	they	do	not	work,	or
who	at	least	think	that	they	can	be	wrong	at	least	some	of	the	time.

Lessons	for	futarchy
Seeing	the	importance	of	capital	costs	and	their	interplay	with	risks	first	hand	is	also	important	evidence	for	judging	systems	like	futarchy.	Futarchy,
and	"decision	markets"	more	generally	are	an	important	and	potentially	very	socially	useful	application	of	prediction	markets.	There	is	not	much	social
value	in	having	slightly	more	accurate	predictions	of	who	will	be	the	next	president.	But	there	is	a	lot	of	social	value	in	having	conditional	predictions:
if	we	do	A,	what's	the	chance	it	will	lead	to	some	good	thing	X,	and	if	we	do	B	instead	what	are	the	chances	then?	Conditional	predictions	are	important
because	they	do	not	just	satisfy	our	curiosity;	they	can	also	help	us	make	decisions.

Though	electoral	prediction	markets	are	much	less	useful	than	conditional	predictions,	they	can	help	shed	light	on	an	important	question:	how	robust	are
they	to	manipulation	or	even	just	biased	and	wrong	opinions?	We	can	answer	this	question	by	looking	at	how	difficult	arbitrage	is:	suppose	that	a
conditional	prediction	market	currently	gives	probabilities	that	(in	your	opinion)	are	wrong	(could	be	because	of	ill-informed	traders	or	an	explicit
manipulation	attempt;	we	don't	really	care).	How	much	of	an	impact	can	you	have,	and	how	much	profit	can	you	make,	by	setting	things	right?

Let's	start	with	a	concrete	example.	Suppose	that	we	are	trying	to	use	a	prediction	market	to	choose	between	decision	A	and	decision	B,	where	each
decision	has	some	probability	of	achieving	some	desirable	outcome.	Suppose	that	your	opinion	is	that	decision	A	has	a	50%	chance	of	achieving	the	goal,
and	decision	B	has	a	45%	chance.	The	market,	however,	(in	your	opinion	wrongly)	thinks	decision	B	has	a	55%	chance	and	decision	A	has	a	40%	chance.

Probability	of	good	outcome	if	we	choose
strategy... Current	market	position Your	opinion

A 40% 50%
B 55% 45%
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Suppose	that	you	are	a	small	participant,	so	your	individual	bets	won't	affect	the	outcome;	only	many	bettors	acting	together	could.	How	much	of	your
money	should	you	bet?

The	standard	theory	here	relies	on	the	Kelly	criterion.	Essentially,	you	should	act	to	maximize	the	expected	logarithm	of	your	assets.	In	this	case,	we	can
solve	the	resulting	equation.	Suppose	you	invest	portion	\(r\)	of	your	money	into	buying	A-token	for	$0.4.	Your	expected	new	log-wealth,	from	your	point
of	view,	would	be:

\(0.5	*	log((1-r)	+	\frac{r}{0.4})	+	0.5	*	log(1-r)\)

The	first	term	is	the	50%	chance	(from	your	point	of	view)	that	the	bet	pays	off,	and	the	portion	\(r\)	that	you	invest	grows	by	2.5x	(as	you	bought	dollars
at	40	cents).	The	second	term	is	the	50%	chance	that	the	bet	does	not	pay	off,	and	you	lose	the	portion	you	bet.	We	can	use	calculus	to	find	the	\(r\)	that
maximizes	this;	for	the	lazy,	here's	WolframAlpha.	The	answer	is	\(r	=	\frac{1}{6}\).	If	other	people	buy	and	the	price	for	A	on	the	market	gets	up	to	47%
(and	B	gets	down	to	48%),	we	can	redo	the	calculation	for	the	last	trader	who	would	flip	the	market	over	to	make	it	correctly	favor	A:

\(0.5	*	log((1-r)	+	\frac{r}{0.47})	+	0.5	*	log(1-r)\)

Here,	the	expected-log-wealth-maximizing	\(r\)	is	a	mere	0.0566.	The	conclusion	is	clear:	when	decisions	are	close	and	when	there	is	a	lot	of	noise,	it
turns	out	that	it	only	makes	sense	to	invest	a	small	portion	of	your	money	in	a	market.	And	this	is	assuming	rationality;	most	people	invest	less	into
uncertain	gambles	than	the	Kelly	criterion	says	they	should.	Capital	costs	stack	on	top	even	further.	But	if	an	attacker	really	wants	to	force	outcome	B
through	because	they	want	it	to	happen	for	personal	reasons,	they	can	simply	put	all	of	their	capital	toward	buying	that	token.	All	in	all,	the	game	can
easily	be	lopsided	more	than	20:1	in	favor	of	the	attacker.

Of	course,	in	reality	attackers	are	rarely	willing	to	stake	all	their	funds	on	one	decision.	And	futarchy	is	not	the	only	mechanism	that	is	vulerable	to
attacks:	stock	markets	are	similarly	vulnerable,	and	non-market	decision	mechanisms	can	also	be	manipulated	by	determined	wealthy	attackers	in	all
sorts	of	ways.	But	nevertheless,	we	should	be	wary	of	assuming	that	futarchy	will	propel	us	to	new	heights	of	decision-making	accuracy.

Interestingly	enough,	the	math	seems	to	suggest	that	futarchy	would	work	best	when	the	expected	manipulators	would	want	to	push	the	outcome	toward
an	extreme	value.	An	example	of	this	might	be	liability	insurance,	as	someone	wishing	to	improperly	obtain	insurance	would	effectively	be	trying	to	force
the	market-estimated	probability	that	an	unfavorable	event	will	happen	down	to	zero.	And	as	it	turns	out,	liability	insurance	is	futarchy	inventor	Robin
Hanson's	new	favorite	policy	prescription.

Can	prediction	markets	become	better?
The	final	question	to	ask	is:	are	prediction	markets	doomed	to	repeat	errors	as	grave	as	giving	Trump	a	15%	chance	of	overturning	the	election	in	early
December,	and	a	12%	chance	of	overturning	it	even	after	the	Supreme	Court	including	three	judges	whom	he	appointed	telling	him	to	screw	off?	Or	could
the	markets	improve	over	time?	My	answer	is,	surprisingly,	emphatically	on	the	optimistic	side,	and	I	see	a	few	reasons	for	optimism.

Markets	as	natural	selection

First,	these	events	have	given	me	a	new	perspective	on	how	market	efficiency	and	rationality	might	actually	come	about.	Too	often,	proponents	of	market
efficiency	theories	claim	that	market	efficiency	results	because	most	participants	are	rational	(or	at	least	the	rationals	outweigh	any	coherent	group	of
deluded	people),	and	this	is	true	as	an	axiom.	But	instead,	we	could	take	an	evolutionary	perspective	on	what	is	going	on.

Crypto	is	a	young	ecosystem.	It	is	an	ecosystem	that	is	still	quite	disconnected	from	the	mainstream,	Elon's	recent	tweets	notwithstanding,	and	that	does
not	yet	have	much	expertise	in	the	minutiae	of	electoral	politics.	Those	who	are	experts	in	electoral	politics	have	a	hard	time	getting	into	crypto,	and
crypto	has	a	large	presence	of	not-always-correct	forms	of	contrarianism	especially	when	it	comes	to	politics.	But	what	happened	this	year	is	that	within
the	crypto	space,	prediction	market	users	who	correctly	expected	Biden	to	win	got	an	18%	increase	to	their	capital,	and	prediction	market	users	who
incorrectly	expected	Trump	to	win	got	a	100%	decrease	to	their	capital	(or	at	least	the	portion	they	put	into	the	bet).

Thus,	there	is	a	selection	pressure	in	favor	of	the	type	of	people	who	make	bets	that	turn	out	to	be	correct.	After	ten	rounds	of	this,	good	predictors	will
have	more	capital	to	bet	with,	and	bad	predictors	will	have	less	capital	to	bet	with.	This	does	not	rely	on	anyone	"getting	wiser"	or	"learning	their	lesson"
or	any	other	assumption	about	humans'	capacity	to	reason	and	learn.	It	is	simply	a	result	of	selection	dynamics	that	over	time,	participants	that	are	good
at	making	correct	guesses	will	come	to	dominate	the	ecosystem.

Note	that	prediction	markets	fare	better	than	stock	markets	in	this	regard:	the	"nouveau	riche"	of	stock	markets	often	arise	from	getting	lucky	on	a	single
thousandfold	gain,	adding	a	lot	of	noise	to	the	signal,	but	in	prediction	markets,	prices	are	bounded	between	0	and	1,	limiting	the	impact	of	any	one	single
event.

Better	participants	and	better	technology

Second,	prediction	markets	themselves	will	improve.	User	interfaces	have	greatly	improved	already,	and	will	continue	to	improve	further.	The	complexity
of	the	MakerDAO	->	Foundry	->	Catnip	cycle	will	be	abstracted	away	into	a	single	transaction.	Blockchain	scaling	technology	will	improve,	reducing	fees
for	participants	(The	ZK-rollup	Loopring	with	a	built-in	AMM	is	already	live	on	the	Ethereum	mainnet,	and	a	prediction	market	could	theoretically	run	on
it).

Third,	the	demonstration	that	we	saw	of	the	prediction	market	working	correctly	will	ease	participants'	fears.	Users	will	see	that	the	Augur	oracle	is
capable	of	giving	correct	outputs	even	in	very	contentious	situations	(this	time,	there	were	two	rounds	of	disputes,	but	the	no	side	nevertheless	cleanly
won).	People	from	outside	the	crypto	space	will	see	that	the	process	works	and	be	more	inclined	to	participate.	Perhaps	even	Nate	Silver	himself	might
get	some	DAI	and	use	Augur,	Omen,	Polymarket	and	other	markets	to	supplement	his	income	in	2022	and	beyond.

Fourth,	prediction	market	tech	itself	could	improve.	Here	is	a	proposal	from	myself	on	a	market	design	that	could	make	it	more	capital-efficient	to
simultaneously	bet	against	many	unlikely	events,	helping	to	prevent	unlikely	outcomes	from	getting	irrationally	high	odds.	Other	ideas	will	surely	spring
up,	and	I	look	forward	to	seeing	more	experimentation	in	this	direction.

Conclusion
This	whole	saga	has	proven	to	be	an	incredibly	interesting	direct	trial-by-first	test	of	prediction	markets	and	how	they	collide	with	the	complexities	of
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individual	and	social	psychology.	It	shows	a	lot	about	how	market	efficiency	actually	works	in	practice,	what	are	the	limits	of	it	and	what	could	be	done	to
improve	it.

It	has	also	been	an	excellent	demonstration	of	the	power	of	blockchains;	in	fact,	it	is	one	of	the	Ethereum	applications	that	have	provided	to	me	the	most
concrete	value.	Blockchains	are	often	criticized	for	being	speculative	toys	and	not	doing	anything	meaningful	except	for	self-referential	games	(tokens,
with	yield	farming,	whose	returns	are	powered	by...	the	launch	of	other	tokens).	There	are	certainly	exceptions	that	the	critics	fail	to	recognize;	I
personally	have	benefited	from	ENS	and	even	from	using	ETH	for	payments	on	several	occasions	where	all	credit	card	options	failed.	But	over	the	last
few	months,	it	seems	like	we	have	seen	a	rapid	burst	in	Ethereum	applications	being	concretely	useful	for	people	and	interacting	with	the	real	world,	and
prediction	markets	are	a	key	example	of	this.

I	expect	prediction	markets	to	become	an	increasingly	important	Ethereum	application	in	the	years	to	come.	The	2020	election	was	only	the	beginning;	I
expect	more	interest	in	prediction	markets	going	forward,	not	just	for	elections	but	for	conditional	predictions,	decision-making	and	other	applications	as
well.	The	amazing	promises	of	what	prediction	markets	could	bring	if	they	work	mathematically	optimally	will,	of	course,	continue	to	collide	with	the
limits	of	human	reality,	and	hopefully,	over	time,	we	will	get	a	much	clearer	view	of	exactly	where	this	new	social	technology	can	provide	the	most	value.
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An	approximate	introduction	to	how	zk-
SNARKs	are	possible

Special	thanks	to	Dankrad	Feist,	Karl	Floersch	and	Hsiao-wei	Wang	for	feedback	and	review.

Perhaps	the	most	powerful	cryptographic	technology	to	come	out	of	the	last	decade	is	general-
purpose	succinct	zero	knowledge	proofs,	usually	called	zk-SNARKs	("zero	knowledge	succinct
arguments	of	knowledge").	A	zk-SNARK	allows	you	to	generate	a	proof	that	some	computation	has
some	particular	output,	in	such	a	way	that	the	proof	can	be	verified	extremely	quickly	even	if	the
underlying	computation	takes	a	very	long	time	to	run.	The	"ZK"	("zero	knowledge")	part	adds	an
additional	feature:	the	proof	can	keep	some	of	the	inputs	to	the	computation	hidden.

For	example,	you	can	make	a	proof	for	the	statement	"I	know	a	secret	number	such	that	if	you	take
the	word	‘cow',	add	the	number	to	the	end,	and	SHA256	hash	it	100	million	times,	the	output	starts
with	0x57d00485aa".	The	verifier	can	verify	the	proof	far	more	quickly	than	it	would	take	for	them	to
run	100	million	hashes	themselves,	and	the	proof	would	also	not	reveal	what	the	secret	number	is.

In	the	context	of	blockchains,	this	has	two	very	powerful	applications:

1.	 Scalability:	if	a	block	takes	a	long	time	to	verify,	one	person	can	verify	it	and	generate	a	proof,
and	everyone	else	can	just	quickly	verify	the	proof	instead

2.	 Privacy:	you	can	prove	that	you	have	the	right	to	transfer	some	asset	(you	received	it,	and	you
didn't	already	transfer	it)	without	revealing	the	link	to	which	asset	you	received.	This	ensures
security	without	unduly	leaking	information	about	who	is	transacting	with	whom	to	the	public.

But	zk-SNARKs	are	quite	complex;	indeed,	as	recently	as	in	2014-17	they	were	still	frequently	called
"moon	math".	The	good	news	is	that	since	then,	the	protocols	have	become	simpler	and	our
understanding	of	them	has	become	much	better.	This	post	will	try	to	explain	how	ZK-SNARKs	work,
in	a	way	that	should	be	understandable	to	someone	with	a	medium	level	of	understanding	of
mathematics.

Note	that	we	will	focus	on	scalability;	privacy	for	these	protocols	is	actually	relatively	easy
once	the	scalability	is	there,	so	we	will	get	back	to	that	topic	at	the	end.

Why	ZK-SNARKs	"should"	be	hard
Let	us	take	the	example	that	we	started	with:	we	have	a	number	(we	can	encode	"cow"	followed	by
the	secret	input	as	an	integer),	we	take	the	SHA256	hash	of	that	number,	then	we	do	that	again
another	99,999,999	times,	we	get	the	output,	and	we	check	what	its	starting	digits	are.	This	is	a	huge
computation.

A	"succinct"	proof	is	one	where	both	the	size	of	the	proof	and	the	time	required	to	verify	it	grow
much	more	slowly	than	the	computation	to	be	verified.	If	we	want	a	"succinct"	proof,	we	cannot
require	the	verifier	to	do	some	work	per	round	of	hashing	(because	then	the	verification	time	would
be	proportional	to	the	computation).	Instead,	the	verifier	must	somehow	check	the	whole
computation	without	peeking	into	each	individual	piece	of	the	computation.

One	natural	technique	is	random	sampling:	how	about	we	just	have	the	verifier	peek	into	the
computation	in	500	different	places,	check	that	those	parts	are	correct,	and	if	all	500	checks	pass
then	assume	that	the	rest	of	the	computation	must	with	high	probability	be	fine,	too?

Such	a	procedure	could	even	be	turned	into	a	non-interactive	proof	using	the	Fiat-Shamir
heuristic:	the	prover	computes	a	Merkle	root	of	the	computation,	uses	the	Merkle	root	to
pseudorandomly	choose	500	indices,	and	provides	the	500	corresponding	Merkle	branches	of	the
data.	The	key	idea	is	that	the	prover	does	not	know	which	branches	they	will	need	to	reveal	until	they
have	already	"committed	to"	the	data.	If	a	malicious	prover	tries	to	fudge	the	data	after	learning
which	indices	are	going	to	be	checked,	that	would	change	the	Merkle	root,	which	would	result	in	a
new	set	of	random	indices,	which	would	require	fudging	the	data	again...	trapping	the	malicious
prover	in	an	endless	cycle.
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But	unfortunately	there	is	a	fatal	flaw	in	naively	applying	random	sampling	to	spot-check	a
computation	in	this	way:	computation	is	inherently	fragile.	If	a	malicious	prover	flips	one	bit
somewhere	in	the	middle	of	a	computation,	they	can	make	it	give	a	completely	different	result,	and	a
random	sampling	verifier	would	almost	never	find	out.

It	only	takes	one	deliberately	inserted	error,	that	a	random	check	would	almost	never	catch,	to	make	a	computation
give	a	completely	incorrect	result.

If	tasked	with	the	problem	of	coming	up	with	a	zk-SNARK	protocol,	many	people	would	make	their
way	to	this	point	and	then	get	stuck	and	give	up.	How	can	a	verifier	possibly	check	every	single	piece
of	the	computation,	without	looking	at	each	piece	of	the	computation	individually?	But	it	turns	out
that	there	is	a	clever	solution.

Polynomials
Polynomials	are	a	special	class	of	algebraic	expressions	of	the	form:

\(x	+	5\)
\(x^4\)
\(x^3	+	3x^2	+	3x	+	1\)
\(628x^{271}	+	318x^{270}	+	530x^{269}	+	...	+	69x	+	381\)

i.e.	they	are	a	sum	of	any	(finite!)	number	of	terms	of	the	form	\(c	x^k\).

There	are	many	things	that	are	fascinating	about	polynomials.	But	here	we	are	going	to	zoom	in	on	a
particular	one:	polynomials	are	a	single	mathematical	object	that	can	contain	an	unbounded
amount	of	information	(think	of	them	as	a	list	of	integers	and	this	is	obvious).	The	fourth	example
above	contained	816	digits	of	tau,	and	one	can	easily	imagine	a	polynomial	that	contains	far	more.

Furthermore,	a	single	equation	between	polynomials	can	represent	an	unbounded	number	of
equations	between	numbers.	For	example,	consider	the	equation	\(A(x)	+	B(x)	=	C(x)\).	If	this
equation	is	true,	then	it's	also	true	that:

\(A(0)	+	B(0)	=	C(0)\)
\(A(1)	+	B(1)	=	C(1)\)
\(A(2)	+	B(2)	=	C(2)\)
\(A(3)	+	B(3)	=	C(3)\)

And	so	on	for	every	possible	coordinate.	You	can	even	construct	polynomials	to	deliberately
represent	sets	of	numbers	so	you	can	check	many	equations	all	at	once.	For	example,	suppose	that
you	wanted	to	check:
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12	+	1	=	13
10	+	8	=	18
15	+	8	=	23
15	+	13	=	28

You	can	use	a	procedure	called	Lagrange	interpolation	to	construct	polynomials	\(A(x)\)	that	give	(12,
10,	15,	15)	as	outputs	at	some	specific	set	of	coordinates	(eg.	(0,	1,	2,	3)),	\(B(x)\)	the	outputs	(1,
8,	8,	13)	on	those	same	coordinates,	and	so	forth.	In	fact,	here	are	the	polynomials:

\(A(x)	=	-2x^3	+	\frac{19}{2}x^2	-	\frac{19}{2}x	+	12\)
\(B(x)	=	2x^3	-	\frac{19}{2}x^2	+	\frac{29}{2}x	+	1\)
\(C(x)	=	5x	+	13\)

Checking	the	equation	\(A(x)	+	B(x)	=	C(x)\)	with	these	polynomials	checks	all	four	above	equations
at	the	same	time.

Comparing	a	polynomial	to	itself

You	can	even	check	relationships	between	a	large	number	of	adjacent	evaluations	of	the	same
polynomial	using	a	simple	polynomial	equation.	This	is	slightly	more	advanced.	Suppose	that	you
want	to	check	that,	for	a	given	polynomial	\(F\),	\(F(x+2)	=	F(x)	+	F(x+1)\)	within	the	integer	range	\
(\{0,	1	...	98\}\)	(so	if	you	also	check	\(F(0)	=	F(1)	=	1\),	then	\(F(100)\)	would	be	the	100th	Fibonacci
number).

As	polynomials,	\(F(x+2)	-	F(x+1)	-	F(x)\)	would	not	be	exactly	zero,	as	it	could	give	arbitrary	answers
outside	the	range	\(x	=	\{0,	1	...	98\}\).	But	we	can	do	something	clever.	In	general,	there	is	a	rule
that	if	a	polynomial	\(P\)	is	zero	across	some	set	\(S=\{x_1,	x_2	...	x_n\}\)	then	it	can	be	expressed	as	\
(P(x)	=	Z(x)	*	H(x)\),	where	\(Z(x)	=\)	\((x	-	x_1)	*	(x	-	x_2)	*	...	*	(x	-	x_n)\)	and	\(H(x)\)	is	also	a
polynomial.	In	other	words,	any	polynomial	that	equals	zero	across	some	set	is	a	(polynomial)
multiple	of	the	simplest	(lowest-degree)	polynomial	that	equals	zero	across	that	same	set.

Why	is	this	the	case?	It	is	a	nice	corollary	of	polynomial	long	division:	the	factor	theorem.	We	know
that,	when	dividing	\(P(x)\)	by	\(Z(x)\),	we	will	get	a	quotient	\(Q(x)\)	and	a	remainer	\(R(x)\)	which
satisfy	\(P(x)	=	Z(x)	*	Q(x)	+	R(x)\),	where	the	degree	of	the	remainder	\(R(x)\)	is	strictly	less	than
that	of	\(Z(x)\).	Since	we	know	that	\(P\)	is	zero	on	all	of	\(S\),	it	means	that	\(R\)	has	to	be	zero	on	all
of	\(S\)	as	well.	So	we	can	simply	compute	\(R(x)\)	via	polynomial	interpolation,	since	it's	a	polynomial
of	degree	at	most	\(n-1\)	and	we	know	\(n\)	values	(the	zeroes	at	\(S\)).	Interpolating	a	polynomial
with	all	zeroes	gives	the	zero	polynomial,	thus	\(R(x)	=	0\)	and	\(H(x)=	Q(x)\).

Going	back	to	our	example,	if	we	have	a	polynomial	\(F\)	that	encodes	Fibonacci	numbers	(so	\
(F(x+2)	=	F(x)	+	F(x+1)\)	across	\(x	=	\{0,	1	...	98\}\)),	then	I	can	convince	you	that	\(F\)	actually
satisfies	this	condition	by	proving	that	the	polynomial	\(P(x)	=\)	\(F(x+2)	-	F(x+1)	-	F(x)\)	is	zero	over
that	range,	by	giving	you	the	quotient:

\(H(x)	=	\frac{F(x+2)	-	F(x+1)	-	F(x)}{Z(x)}\)

Where	\(Z(x)	=	(x	-	0)	*	(x	-	1)	*	...	*	(x	-	98)\).

You	can	calculate	\(Z(x)\)	yourself	(ideally	you	would	have	it	precomputed),	check	the	equation,	and	if
the	check	passes	then	\(F(x)\)	satisfies	the	condition!

Now,	step	back	and	notice	what	we	did	here.	We	converted	a	100-step-long	computation	(computing
the	100th	Fibonacci	number)	into	a	single	equation	with	polynomials.	Of	course,	proving	the	N'th
Fibonacci	number	is	not	an	especially	useful	task,	especially	since	Fibonacci	numbers	have	a	closed
form.	But	you	can	use	exactly	the	same	basic	technique,	just	with	some	extra	polynomials	and	some
more	complicated	equations,	to	encode	arbitrary	computations	with	an	arbitrarily	large	number	of
steps.

Now,	if	only	there	was	a	way	to	verify	equations	with	polynomials	that's	much	faster	than	checking
each	coefficient...

Polynomial	commitments

And	once	again,	it	turns	out	that	there	is	an	answer:	polynomial	commitments.	A	polynomial
commitment	is	best	viewed	as	a	special	way	to	"hash"	a	polynomial,	where	the	hash	has	the
additional	property	that	you	can	check	equations	between	polynomials	by	checking	equations
between	their	hashes.	Different	polynomial	commitment	schemes	have	different	properties	in	terms
of	exactly	what	kinds	of	equations	you	can	check.

https://blog.ethereum.org/2014/08/16/secret-sharing-erasure-coding-guide-aspiring-dropbox-decentralizer/
https://en.wikipedia.org/wiki/Fibonacci_number
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Here	are	some	common	examples	of	things	you	can	do	with	various	polynomial	commitment	schemes
(we	use	\(com(P)\)	to	mean	"the	commitment	to	the	polynomial	\(P\)"):

Add	them:	given	\(com(P)\),	\(com(Q)\)	and	\(com(R)\)	check	if	\(P	+	Q	=	R\)
Multiply	them:	given	\(com(P)\),	\(com(Q)\)	and	\(com(R)\)	check	if	\(P	*	Q	=	R\)
Evaluate	at	a	point:	given	\(com(P)\),	\(w\),	\(z\)	and	a	supplemental	proof	(or	"witness")	\(Q\),
verify	that	\(P(w)	=	z\)

It's	worth	noting	that	these	primitives	can	be	constructed	from	each	other.	If	you	can	add	and
multiply,	then	you	can	evaluate:	to	prove	that	\(P(w)	=	z\),	you	can	construct	\(Q(x)	=	\frac{P(x)	-	z}
{x	-	w}\),	and	the	verifier	can	check	if	\(Q(x)	*	(x	-	w)	+	z	\stackrel{?}{=}	P(x)\).	This	works	because
if	such	a	polynomial	\(Q(x)\)	exists,	then	\(P(x)	-	z	=	Q(x)	*	(x	-	w)\),	which	means	that	\(P(x)	-	z\)
equals	zero	at	\(w\)	(as	\(x	-	w\)	equals	zero	at	\(w\))	and	so	\(P(x)\)	equals	\(z\)	at	\(w\).

And	if	you	can	evaluate,	you	can	do	all	kinds	of	checks.	This	is	because	there	is	a	mathematical
theorem	that	says,	approximately,	that	if	some	equation	involving	some	polynomials	holds	true	at	a
randomly	selected	coordinate,	then	it	almost	certainly	holds	true	for	the	polynomials	as	a	whole.	So	if
all	we	have	is	a	mechanism	to	prove	evaluations,	we	can	check	eg.	our	equation	\(P(x	+	2)	-	P(x	+	1)	-
P(x)	=	Z(x)	*	H(x)\)	using	an	interactive	game:

As	I	alluded	to	earlier,	we	can	make	this	non-interactive	using	the	Fiat-Shamir	heuristic:	the
prover	can	compute	r	themselves	by	setting	r	=	hash(com(P),	com(H))	(where	hash	is	any
cryptographic	hash	function;	it	does	not	need	any	special	properties).	The	prover	cannot	"cheat"	by
picking	P	and	H	that	"fit"	at	that	particular	r	but	not	elsewhere,	because	they	do	not	know	r	at	the
time	that	they	are	picking	P	and	H!

A	quick	recap	so	far

ZK-SNARKs	are	hard	because	the	verifier	needs	to	somehow	check	millions	of	steps	in	a
computation,	without	doing	a	piece	of	work	to	check	each	individual	step	directly	(as	that	would
take	too	long).
We	get	around	this	by	encoding	the	computation	into	polynomials.
A	single	polynomial	can	contain	an	unboundedly	large	amount	of	information,	and	a	single
polynomial	expression	(eg.	\(P(x+2)	-	P(x+1)	-	P(x)	=	Z(x)	*	H(x)\))	can	"stand	in"	for	an
unboundedly	large	number	of	equations	between	numbers.
If	you	can	verify	the	equation	with	polynomials,	you	are	implicitly	verifying	all	of	the	number

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma


equations	(replace	\(x\)	with	any	actual	x-coordinate)	simultaneously.
We	use	a	special	type	of	"hash"	of	a	polynomial,	called	a	polynomial	commitment,	to	allow	us	to
actually	verify	the	equation	between	polynomials	in	a	very	short	amount	of	time,	even	if	the
underlying	polynomials	are	very	large.

So,	how	do	these	fancy	polynomial	hashes	work?
There	are	three	major	schemes	that	are	widely	used	at	the	moment:	bulletproofs,	Kate	and	FRI.

Here	is	a	description	of	Kate	commitments	by	Dankrad	Feist:
https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html
Here	is	a	description	of	bulletproofs	by	the	curve25519-dalek	team:	https://doc-
internal.dalek.rs/bulletproofs/notes/inner_product_proof/index.html,	and	here	is	an	explanation-
in-pictures	by	myself:	https://twitter.com/VitalikButerin/status/1371844878968176647
Here	is	a	description	of	FRI	by...	myself:	https://vitalik.ca/general/2017/11/22/starks_part_2.html

Whoa,	whoa,	take	it	easy.	Try	to	explain	one	of	them	simply,	without	shipping
me	off	to	even	more	scary	links

To	be	honest,	they're	not	that	simple.	There's	a	reason	why	all	this	math	did	not	really	take	off	until
2015	or	so.

Please?

In	my	opinion,	the	easiest	one	to	understand	fully	is	FRI	(Kate	is	easier	if	you're	willing	to	accept
elliptic	curve	pairings	as	a	"black	box",	but	pairings	are	really	complicated,	so	altogether	I	find	FRI
simpler).

Here	is	how	a	simplified	version	of	FRI	works	(the	real	protocol	has	many	tricks	and	optimizations
that	are	missing	here	for	simplicity).	Suppose	that	you	have	a	polynomial	\(P\)	with	degree	\(<	n\).
The	commitment	to	\(P\)	is	a	Merkle	root	of	a	set	of	evaluations	to	\(P\)	at	some	set	of	pre-selected
coordinates	(eg.	\(\{0,	1	....	8n-1\}\),	though	this	is	not	the	most	efficient	choice).	Now,	we	need	to
add	something	extra	to	prove	that	this	set	of	evaluations	actually	is	a	degree	\(<	n\)	polynomial.

Let	\(Q\)	be	the	polynomial	only	containing	the	even	coefficients	of	\(P\),	and	\(R\)	be	the	polynomial
only	containing	the	odd	coefficients	of	\(P\).	So	if	\(P(x)	=	x^4	+	4x^3	+	6x^2	+	4x	+	1\),	then	\(Q(x)
=	x^2	+	6x	+	1\)	and	\(R(x)	=	4x	+	4\)	(note	that	the	degrees	of	the	coefficients	get	"collapsed	down"
to	the	range	\([0...\frac{n}{2})\)).

Notice	that	\(P(x)	=	Q(x^2)	+	x	*	R(x^2)\)	(if	this	isn't	immediately	obvious	to	you,	stop	and	think	and
look	at	the	example	above	until	it	is).

We	ask	the	prover	to	provide	Merkle	roots	for	\(Q(x)\)	and	\(R(x)\).	We	then	generate	a	random
number	\(r\)	and	ask	the	prover	to	provide	a	"random	linear	combination"	\(S(x)	=	Q(x)	+	r	*	R(x)\).

We	pseudorandomly	sample	a	large	set	of	indices	(using	the	already-provided	Merkle	roots	as	the
seed	for	the	randomness	as	before),	and	ask	the	prover	to	provide	the	Merkle	branches	for	\(P\),	\
(Q\),	\(R\)	and	\(S\)	at	these	indices.	At	each	of	these	provided	coordinates,	we	check	that:

\(P(x)\)	actually	does	equal	\(Q(x^2)	+	x	*	R(x^2)\)
\(S(x)\)	actually	does	equal	\(Q(x)	+	r	*	R(x)\)

If	we	do	enough	checks,	then	we	can	be	convinced	that	the	"expected"	values	of	\(S(x)\)	are	different
from	the	"provided"	values	in	at	most,	say,	1%	of	cases.

Notice	that	\(Q\)	and	\(R\)	both	have	degree	\(<	\frac{n}{2}\).	Because	\(S\)	is	a	linear	combination	of
\(Q\)	and	\(R\),	\(S\)	also	has	degree	\(<	\frac{n}{2}\).	And	this	works	in	reverse:	if	we	can	prove	\(S\)
has	degree	\(<	\frac{n}{2}\),	then	the	fact	that	it's	a	randomly	chosen	combination	prevents	the
prover	from	choosing	malicious	\(Q\)	and	\(R\)	with	hidden	high-degree	coefficients	that	"cancel	out",
so	\(Q\)	and	\(R\)	must	both	be	degree	\(<	\frac{n}{2}\),	and	because	\(P(x)	=	Q(x^2)	+	x	*	R(x^2)\),
we	know	that	\(P\)	must	have	degree	\(<	n\).

From	here,	we	simply	repeat	the	game	with	\(S\),	progressively	"reducing"	the	polynomial	we	care
about	to	a	lower	and	lower	degree,	until	it's	at	a	sufficiently	low	degree	that	we	can	check	it	directly.

https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html
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As	in	the	previous	examples,	"Bob"	here	is	an	abstraction,	useful	for	cryptographers	to	mentally
reason	about	the	protocol.	In	reality,	Alice	is	generating	the	entire	proof	herself,	and	to	prevent	her
from	cheating	we	use	Fiat-Shamir:	we	choose	each	randomly	samples	coordinate	or	r	value	based	on
the	hash	of	the	data	generated	in	the	proof	up	until	that	point.

A	full	"FRI	commitment"	to	\(P\)	(in	this	simplified	protocol)	would	consist	of:

1.	 The	Merkle	root	of	evaluations	of	\(P\)
2.	 The	Merkle	roots	of	evaluations	of	\(Q\),	\(R\),	\(S_1\)
3.	 The	randomly	selected	branches	of	\(P\),	\(Q\),	\(R\),	\(S_1\)	to	check	\(S_1\)	is	correctly	"reduced
from"	\(P\)

4.	 The	Merkle	roots	and	randomly	selected	branches	just	as	in	steps	(2)	and	(3)	for	successively
lower-degree	reductions	\(S_2\)	reduced	from	\(S_1\),	\(S_3\)	reduced	from	\(S_2\),	all	the	way
down	to	a	low-degree	\(S_k\)	(this	gets	repeated	\(\approx	log_2(n)\)	times	in	total)



5.	 The	full	Merkle	tree	of	the	evaluations	of	\(S_k\)	(so	we	can	check	it	directly)

Each	step	in	the	process	can	introduce	a	bit	of	"error",	but	if	you	add	enough	checks,	then	the	total
error	will	be	low	enough	that	you	can	prove	that	\(P(x)\)	equals	a	degree	\(<	n\)	polynomial	in	at
least,	say,	80%	of	positions.	And	this	is	sufficient	for	our	use	cases.	If	you	want	to	cheat	in	a	zk-
SNARK,	you	would	need	to	make	a	polynomial	commitment	for	a	fractional	expression	(eg.	to	"prove"
the	false	claim	that	\(x^2	+	2x	+	3\)	evaluated	at	\(4\)	equals	\(5\),	you	would	need	to	provide	a
polynomial	commitment	for	\(\frac{x^2	+	2x	+	3	-	5}{x	-	4}	=	x	+	6	+	\frac{22}{x	-	4}\)).	The	set	of
evaluations	for	such	a	fractional	expression	would	differ	from	the	evaluations	for	any	real	degree	\(<
n\)	polynomial	in	so	many	positions	that	any	attempt	to	make	a	FRI	commitment	to	them	would	fail	at
some	step.

Also,	you	can	check	carefully	that	the	total	number	and	size	of	the	objects	in	the	FRI	commitment	is
logarithmic	in	the	degree,	so	for	large	polynomials,	the	commitment	really	is	much	smaller	than	the
polynomial	itself.

To	check	equations	between	different	polynomial	commitments	of	this	type	(eg.	check	\(A(x)	+	B(x)	=
C(x)\)	given	FRI	commitments	to	\(A\),	\(B\)	and	\(C\)),	simply	randomly	select	many	indices,	ask	the
prover	for	Merkle	branches	at	each	of	those	indices	for	each	polynomial,	and	verify	that	the	equation
actually	holds	true	at	each	of	those	positions.

The	above	description	is	a	highly	inefficient	protocol;	there	is	a	whole	host	of	algebraic
tricks	that	can	increase	its	efficiency	by	a	factor	of	something	like	a	hundred,	and	you	need	these
tricks	if	you	want	a	protocol	that	is	actually	viable	for,	say,	use	inside	a	blockchain	transaction.	In
particular,	for	example,	\(Q\)	and	\(R\)	are	not	actually	necessary,	because	if	you	choose	your
evaluation	points	very	cleverly,	you	can	reconstruct	the	evaluations	of	\(Q\)	and	\(R\)	that	you	need
directly	from	evaluations	of	\(P\).	But	the	above	description	should	be	enough	to	convince	you	that	a
polynomial	commitment	is	fundamentally	possible.

Finite	fields

In	the	descriptions	above,	there	was	a	hidden	assumption:	that	each	individual	"evaluation"	of	a
polynomial	was	small.	But	when	we	are	dealing	with	polynomials	that	are	big,	this	is	clearly	not	true.
If	we	take	our	example	from	above,	\(628x^{271}	+	318x^{270}	+	530x^{269}	+	...	+	69x	+	381\),
that	encodes	816	digits	of	tau,	and	evaluate	it	at	\(x=1000\),	you	get....	an	816-digit	number
containing	all	of	those	digits	of	tau.	And	so	there	is	one	more	thing	that	we	need	to	add.	In	a	real
implementation,	all	of	the	arithmetic	that	we	are	doing	here	would	not	be	done	using	"regular"
arithmetic	over	real	numbers.	Instead,	it	would	be	done	using	modular	arithmetic.

We	redefine	all	of	our	arithmetic	operations	as	follows.	We	pick	some	prime	"modulus"	p.	The	%
operator	means	"take	the	remainder	of":	\(15\	\%\	7	=	1\),	\(53\	\%\	10	=	3\),	etc	(note	that	the	answer
is	always	non-negative,	so	for	example	\(-1\	\%\	10	=	9\)).	We	redefine

\(x	+	y	\Rightarrow	(x	+	y)\)	%	\(p\)

\(x	*	y	\Rightarrow	(x	*	y)\)	%	\(p\)

\(x^y	\Rightarrow	(x^y)\)	%	\(p\)

\(x	-	y	\Rightarrow	(x	-	y)\)	%	\(p\)

\(x	/	y	\Rightarrow	(x	*	y	^{p-2})\)	%	\(p\)

The	above	rules	are	all	self-consistent.	For	example,	if	\(p	=	7\),	then:

\(5	+	3	=	1\)	(as	\(8\)	%	\(7	=	1\))
\(1	-	3	=	5\)	(as	\(-2\)	%	\(7	=	5\))
\(2	\cdot	5	=	3\)
\(3	/	5	=	2\)	(as	(\(3	\cdot	5^5\))	%	\(7	=	9375\)	%	\(7	=	2\))

More	complex	identities	such	as	the	distributive	law	also	hold:	\((2	+	4)	\cdot	3\)	and	\(2	\cdot	3	+	4
\cdot	3\)	both	evaluate	to	\(4\).	Even	formulas	like	\((a^2	-	b^2)\)	=	\((a	-	b)	\cdot	(a	+	b)\)	are	still
true	in	this	new	kind	of	arithmetic.

Division	is	the	hardest	part;	we	can't	use	regular	division	because	we	want	the	values	to	always
remain	integers,	and	regular	division	often	gives	non-integer	results	(as	in	the	case	of	\(3/5\)).	We	get
around	this	problem	using	Fermat's	little	theorem,	which	states	that	for	any	nonzero	\(x	<	p\),	it
holds	that	\(x^{p-1}\)	%	\(p	=	1\).	This	implies	that	\(x^{p-2}\)	gives	a	number	which,	if	multiplied
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by	\(x\)	one	more	time,	gives	\(1\),	and	so	we	can	say	that	\(x^{p-2}\)	(which	is	an	integer)	equals	\
(\frac{1}{x}\).	A	somewhat	more	complicated	but	faster	way	to	evaluate	this	modular	division
operator	is	the	extended	Euclidean	algorithm,	implemented	in	python	here.

Because	of	how	the	numbers	"wrap	around",	modular	arithmetic	is	sometimes	called	"clock	math"

With	modular	math	we've	created	an	entirely	new	system	of	arithmetic,	and	it's	self-consistent	in	all
the	same	ways	traditional	arithmetic	is	self-consistent.	Hence,	we	can	talk	about	all	of	the	same	kinds
of	structures	over	this	field,	including	polynomials,	that	we	talk	about	in	"regular	math".
Cryptographers	love	working	in	modular	math	(or,	more	generally,	"finite	fields")	because	there	is	a
bound	on	the	size	of	a	number	that	can	arise	as	a	result	of	any	modular	math	calculation	-	no	matter
what	you	do,	the	values	will	not	"escape"	the	set	\(\{0,	1,	2	...	p-1\}\).	Even	evaluating	a	degree-1-
million	polynomial	in	a	finite	field	will	never	give	an	answer	outside	that	set.

What's	a	slightly	more	useful	example	of	a	computation	being	converted	into
a	set	of	polynomial	equations?

Let's	say	we	want	to	prove	that,	for	some	polynomial	\(P\),	\(0	\le	P(n)	<	2^{64}\),	without	revealing
the	exact	value	of	\(P(n)\).	This	is	a	common	use	case	in	blockchain	transactions,	where	you	want	to
prove	that	a	transaction	leaves	a	balance	non-negative	without	revealing	what	that	balance	is.

We	can	construct	a	proof	for	this	with	the	following	polynomial	equations	(assuming	for	simplicity	\(n
=	64\)):

\(P(0)	=	0\)
\(P(x+1)	=	P(x)	*	2	+	R(x)\)	across	the	range	\(\{0...63\}\)
\(R(x)	\in	\{0,1\}\)	across	the	range	\(\{0...63\}\)

The	latter	two	statements	can	be	restated	as	"pure"	polynomial	equations	as	follows	(in	this	context	\
(Z(x)	=	(x	-	0)	*	(x	-	1)	*	...	*	(x	-	63)\)):

\(P(x+1)	-	P(x)	*	2	-	R(x)	=	Z(x)	*	H_1(x)\)
\(R(x)	*	(1	-	R(x))	=	Z(x)	*	H_2(x)\)	(notice	the	clever	trick:	\(y	*	(1-y)	=	0\)	if	and	only	if	\(y	\in	\
{0,	1\}\))

The	idea	is	that	successive	evaluations	of	\(P(i)\)	build	up	the	number	bit-by-bit:	if	\(P(4)	=	13\),	then
the	sequence	of	evaluations	going	up	to	that	point	would	be:	\(\{0,	1,	3,	6,	13\}\).	In	binary,	1	is	1,	3	is
11,	6	is	110,	13	is	1101;	notice	how	\(P(x+1)	=	P(x)	*	2	+	R(x)\)	keeps	adding	one	bit	to	the	end	as	long
as	\(R(x)\)	is	zero	or	one.	Any	number	within	the	range	\(0	\le	x	<	2^{64}\)	can	be	built	up	over	64
steps	in	this	way,	any	number	outside	that	range	cannot.

Privacy
But	there	is	a	problem:	how	do	we	know	that	the	commitments	to	\(P(x)\)	and	\(R(x)\)	don't	"leak"
information	that	allows	us	to	uncover	the	exact	value	of	\(P(64)\),	which	we	are	trying	to	keep
hidden?

There	is	some	good	news:	these	proofs	are	small	proofs	that	can	make	statements	about	a
large	amount	of	data	and	computation.	So	in	general,	the	proof	will	very	often	simply	not
be	big	enough	to	leak	more	than	a	little	bit	of	information.	But	can	we	go	from	"only	a	little
bit"	to	"zero"?	Fortunately,	we	can.

Here,	one	fairly	general	trick	is	to	add	some	"fudge	factors"	into	the	polynomials.	When	we	choose	\
(P\),	add	a	small	multiple	of	\(Z(x)\)	into	the	polynomial	(that	is,	set	\(P'(x)	=	P(x)	+	Z(x)	*	E(x)\)	for
some	random	\(E(x)\)).	This	does	not	affect	the	correctness	of	the	statement	(in	fact,	\(P'\)	evaluates

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
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to	the	same	values	as	\(P\)	on	the	coordinates	that	"the	computation	is	happening	in",	so	it's	still	a
valid	transcript),	but	it	can	add	enough	extra	"noise"	into	the	commitments	to	make	any	remaining
information	unrecoverable.	Additionally,	in	the	case	of	FRI,	it's	important	to	not	sample	random
points	that	are	within	the	domain	that	computation	is	happening	in	(in	this	case	\(\{0...64\}\)).

Can	we	have	one	more	recap,	please??

The	three	most	prominent	types	of	polynomial	commitments	are	FRI,	Kate	and	bulletproofs.
Kate	is	the	simplest	conceptually	but	depends	on	the	really	complicated	"black	box"	of	elliptic
curve	pairings.
FRI	is	cool	because	it	relies	only	on	hashes;	it	works	by	successively	reducing	a	polynomial	to	a
lower	and	lower-degree	polynomial	and	doing	random	sample	checks	with	Merkle	branches	to
prove	equivalence	at	each	step.
To	prevent	the	size	of	individual	numbers	from	blowing	up,	instead	of	doing	arithmetic	and
polynomials	over	the	integers,	we	do	everything	over	a	finite	field	(usually	integers	modulo	some
prime	p)
Polynomial	commitments	lend	themselves	naturally	to	privacy	preservation	because	the	proof	is
already	much	smaller	than	the	polynomial,	so	a	polynomial	commitment	can't	reveal	more	than
a	little	bit	of	the	information	in	the	polynomial	anyway.	But	we	can	add	some	randomness	to	the
polynomials	we're	committing	to	to	reduce	the	information	revealed	from	"a	little	bit"	to	"zero".

What	research	questions	are	still	being	worked	on?

Optimizing	FRI:	there	are	already	quite	a	few	optimizations	involving	carefully	selected
evaluation	domains,	"DEEP-FRI",	and	a	whole	host	of	other	tricks	to	make	FRI	more	efficient.
Starkware	and	others	are	working	on	this.
Better	ways	to	encode	computation	into	polynomials:	figuring	out	the	most	efficient	way	to
encode	complicated	computations	involving	hash	functions,	memory	access	and	other	features
into	polynomial	equations	is	still	a	challenge.	There	has	been	great	progress	on	this	(eg.	see
PLOOKUP),	but	we	still	need	more,	especially	if	we	want	to	encode	general-purpose	virtual
machine	execution	into	polynomials.
Incrementally	verifiable	computation:	it	would	be	nice	to	be	able	to	efficiently	keep
"extending"	a	proof	while	a	computation	continues.	This	is	valuable	in	the	"single-prover"	case,
but	also	in	the	"multi-prover"	case,	particularly	a	blockchain	where	a	different	participant
creates	each	block.	See	Halo	for	some	recent	work	on	this.

I	wanna	learn	more!
My	materials

STARKs:	part	1,	part	2,	part	3
Specific	protocols	for	encoding	computation	into	polynomials:	PLONK
Some	key	mathematical	optimizations	I	didn't	talk	about	here:	Fast	Fourier	transforms

Other	people's	materials

Starkware's	online	course
Dankrad	Feist	on	Kate	commitments
Bulletproofs
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Why	we	need	wide	adoption	of	social	recovery
wallets

Special	thanks	to	Itamar	Lesuisse	from	Argent	and	Daniel	Wang	from	Loopring	for	feedback.

One	of	the	great	challenges	with	making	cryptocurrency	and	blockchain	applications	usable	for
average	users	is	security:	how	do	we	prevent	users'	funds	from	being	lost	or	stolen?	Losses	and
thefts	are	a	serious	issue,	often	costing	innocent	blockchain	users	thousands	of	dollars	or	even	in
some	cases	the	majority	of	their	entire	net	worth.

There	have	been	many	solutions	proposed	over	the	years:	paper	wallets,	hardware	wallets,	and	my
own	one-time	favorite:	multisig	wallets.	And	indeed	they	have	led	to	significant	improvements	in
security.	However,	these	solutions	have	all	suffered	from	various	defects	-	sometimes	providing	far
less	extra	protection	against	theft	and	loss	than	is	actually	needed,	sometimes	being	cumbersome
and	difficult	to	use	leading	to	very	low	adoption,	and	sometimes	both.	But	recently,	there	is	an
emerging	better	alternative:	a	newer	type	of	smart	contract	wallet	called	a	social	recovery	wallet.
These	wallets	can	potentially	provide	a	high	level	of	security	and	much	better	usability	than	previous
options,	but	there	is	still	a	way	to	go	before	they	can	be	easily	and	widely	deployed.	This	post	will
go	through	what	social	recovery	wallets	are,	why	they	matter,	and	how	we	can	and	should
move	toward	much	broader	adoption	of	them	throughout	the	ecosystem.

Wallet	security	is	a	really	big	problem

Wallet	security	issues	have	been	a	thorn	in	the	side	of	the	blockchain	ecosystem	almost	since	the
beginning.	Cryptocurrency	losses	and	thefts	were	rampant	even	back	in	2011	when	Bitcoin	was
almost	the	only	cryptocurrency	out	there;	indeed,	in	my	pre-Ethereum	role	as	a	cofounder	and	writer
of	Bitcoin	Magazine,	I	wrote	an	entire	article	detailing	the	horrors	of	hacks	and	losses	and	thefts	that
were	already	happening	at	the	time.

Here	is	one	sample:

Last	night	around	9PM	PDT,	I	clicked	a	link	to	go	to	CoinChat[.]freetzi[.]com	–	and	I	was
prompted	to	run	java.	I	did	(thinking	this	was	a	legitimate	chatoom),	and	nothing
happened.	I	closed	the	window	and	thought	nothing	of	it.	I	opened	my	bitcoin-qt	wallet
approx	14	minutes	later,	and	saw	a	transaction	that	I	did	NOT	approve	go	to	wallet
1Es3QVvKN1qA2p6me7jLCVMZpQXVXWPNTC	for	almost	my	entire	wallet...

This	person's	losses	were	2.07	BTC,	worth	$300	at	the	time,	and	over	$70000	today.	Here's	another
one:

In	June	2011,	the	Bitcointalk	member	"allinvain"	lost	25,000	BTC	(worth	$500,000	at	the
time)	after	an	unknown	intruder	somehow	gained	direct	access	to	his	computer.	The
attacker	was	able	to	access	allinvain's	wallet.dat	file,	and	quickly	empty	out	the	wallet	–
either	by	sending	a	transaction	from	allinvain's	computer	itself,	or	by	simply	uploading	the
wallet.dat	file	and	emptying	it	on	his	own	machine.

In	present-day	value,	that's	a	loss	of	nearly	one	billion	dollars.	But	theft	is	not	the	only	concern;	there
are	also	losses	from	losing	one's	private	keys.	Here's	Stefan	Thomas:

Bitcoin	developer	Stefan	Thomas	had	three	backups	of	his	wallet	–	an	encrypted	USB	stick,
a	Dropbox	account	and	a	Virtualbox	virtual	machine.	However,	he	managed	to	erase	two	of
them	and	forget	the	password	to	the	third,	forever	losing	access	to	7,000	BTC	(worth
$125,000	at	the	time).	Thomas's	reaction:	"[I'm]	pretty	dedicated	to	creating	better	clients
since	then."

One	analysis	of	the	Bitcoin	ecosystem	suggests	that	1500	BTC	may	be	lost	every	day	-	over	ten	times
more	than	what	Bitcoin	users	spend	on	transaction	fees,	and	over	the	years	adding	up	to	as	much	as
20%	of	the	total	supply.	The	stories	and	the	numbers	alike	point	to	the	same	inescapable	truth:	the
importance	of	the	wallet	security	problem	is	great,	and	it	should	not	be	underestimated.
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It's	easy	to	see	the	social	and	psychological	reasons	why	wallet	security	is	easy	to	underestimate:
people	naturally	worry	about	appearing	uncareful	or	dumb	in	front	of	an	always	judgemental	public,
and	so	many	keep	their	experiences	with	their	funds	getting	hacked	to	themselves.	Loss	of	funds	is
even	worse,	as	there	is	a	pervasive	(though	in	my	opinion	very	incorrect)	feeling	that	"there	is	no	one
to	blame	but	yourself".	But	the	reality	is	that	the	whole	point	of	digital	technology,
blockchains	included,	is	to	make	it	easier	for	humans	to	engage	in	very	complicated	tasks
without	having	to	exert	extreme	mental	effort	or	live	in	constant	fear	of	making	mistakes.
An	ecosystem	whose	only	answer	to	losses	and	thefts	is	a	combination	of	12-step	tutorials,	not-very-
secure	half-measures	and	the	not-so-occasional	semi-sarcastic	"sorry	for	your	loss"	is	going	to	have	a
hard	time	getting	broad	adoption.

So	solutions	that	reduce	the	quantity	of	losses	and	thefts	taking	place,	without	requiring	all
cryptocurrency	users	to	turn	personal	security	into	a	full-time	hobby,	are	highly	valuable	for	the
industry.

Hardware	wallets	alone	are	not	good	enough

Hardware	wallets	are	often	touted	as	the	best-in-class	technology	for	cryptocurrency	funds
management.	A	hardware	wallet	is	a	specialized	hardware	device	which	can	be	connected	to	your
computer	or	phone	(eg.	through	USB),	and	which	contains	a	specialized	chip	that	can	only	generate
private	keys	and	sign	transactions.	A	transaction	would	be	initiated	on	your	computer	or	phone,	must
be	confirmed	on	the	hardware	wallet	before	it	can	be	sent.	The	private	key	stays	on	your	hardware
wallet,	so	an	attacker	that	hacks	into	your	computer	or	phone	could	not	drain	the	funds.

Hardware	wallets	are	a	significant	improvement,	and	they	certainly	would	have	protected	the	Java
chatroom	victim,	but	they	are	not	perfect.	I	see	two	main	problems	with	hardware	wallets:

Supply	chain	attacks:	if	you	buy	a	hardware	wallet,	you	are	trusting	a	number	of	actors	that
were	involved	in	producing	it	-	the	company	that	designed	the	wallet,	the	factory	that	produced
it,	and	everyone	involved	in	shipping	it	who	could	have	replaced	it	with	a	fake.	Hardware	wallets
are	potentially	a	magnet	for	such	attacks:	the	ratio	of	funds	stolen	to	number	of	devices
compromised	is	very	high.	To	their	credit,	hardware	wallet	manufacturers	such	as	Ledger	have
put	in	many	safeguards	to	protect	against	these	risks,	but	some	risks	still	remain.	A	hardware
device	fundamentally	cannot	be	audited	the	same	way	a	piece	of	open	source	software	can.
Still	a	single	point	of	failure:	if	someone	steals	your	hardware	wallet	right	after	they	stand
behind	your	shoulder	and	catch	you	typing	in	the	PIN,	they	can	steal	your	funds.	If	you	lose	your
hardware	wallet,	then	you	lose	your	funds	-	unless	the	hardware	wallet	generates	and	outputs	a
backup	at	setup	time,	but	as	we	will	see	those	have	problems	of	their	own...

Mnemonic	phrases	are	not	good	enough

Many	wallets,	hardware	and	software	alike,	have	a	setup	procedure	during	which	they	output	a
mnemonic	phrase,	which	is	a	human-readable	12	to	24-word	encoding	of	the	wallet's	root	private
key.	A	mnemonic	phrase	looks	like	this:

	vote				dance			type				subject	valley		fall				usage			silk
	essay			lunch			endorse	lunar			obvious	race				ribbon		key
	already	arrow			enable		drama			keen				survey		lesson		cruel

If	you	lose	your	wallet	but	you	have	the	mnemonic	phrase,	you	can	input	the	phrase	when	setting	up
a	new	wallet	to	recover	your	account,	as	the	mnemonic	phrase	contains	the	root	key	from	which	all	of
your	other	keys	can	be	generated.

Mnemonic	phrases	are	good	for	protecting	against	loss,	but	they	do	nothing	against	theft.	Even
worse,	they	add	a	new	vector	for	theft:	if	you	have	the	standard	hardware	wallet	+	mnemonic	backup
combo,	then	someone	stealing	either	your	hardware	wallet	+	PIN	or	your	mnemonic	backup	can	steal
your	funds.	Furthermore,	maintaining	a	mnemonic	phrase	and	not	accidentally	throwing	it	away	is
itself	a	non-trivial	mental	effort.

The	problems	with	theft	can	be	alleviated	if	you	split	the	phrase	in	half	and	give	half	to	your	friend,
but	(i)	almost	no	one	actually	promotes	this,	(ii)	there	are	security	issues,	as	if	the	phrase	is	short
(128	bits)	then	a	sophisticated	and	motivated	attacker	who	steals	one	piece	may	be	able	to	brute-
force	through	all	\(2^{64}\)	possible	combinations	to	find	the	other,	and	(iii)	it	increases	the	mental
overhead	even	further.

So	what	do	we	need?



What	we	need	is	a	wallet	design	which	satisfies	three	key	criteria:

No	single	point	of	failure:	there	is	no	single	thing	(and	ideally,	no	collection	of	things	which
travel	together)	which,	if	stolen,	can	give	an	attacker	access	to	your	funds,	or	if	lost,	can	deny
you	access	to	your	funds.
Low	mental	overhead:	as	much	as	possible,	it	should	not	require	users	to	learn	strange	new
habits	or	exert	mental	effort	to	always	remember	to	follow	certain	patterns	of	behavior.
Maximum	ease	of	transacting:	most	normal	activities	should	not	require	much	more	effort
than	they	do	in	regular	wallets	(eg.	Status,	Metamask...)

Multisig	is	good!

The	best-in-class	technology	for	solving	these	problems	back	in	2013	was	multisig.	You	could	have	a
wallet	that	has	three	keys,	where	any	two	of	them	are	needed	to	send	a	transaction.

This	technology	was	originally	developed	within	the	Bitcoin	ecosystem,	but	excellent	multisig	wallets
(eg.	see	Gnosis	Safe)	now	exist	for	Ethereum	too.	Multisig	wallets	have	been	highly	successful	within
organizations:	the	Ethereum	Foundation	uses	a	4-of-7	multisig	wallet	to	store	its	funds,	as	do	many
other	orgs	in	the	Ethereum	ecosystem.

For	a	multisig	wallet	to	hold	the	funds	for	an	individual,	the	main	challenge	is:	who	holds	the	funds,
and	how	are	transactions	approved?	The	most	common	formula	is	some	variant	of	"two	easily
accessible,	but	separate,	keys,	held	by	you	(eg.	laptop	and	phone)	and	a	third	more	secure	but	less
accessible	a	backup,	held	offline	or	by	a	friend	or	institution".

This	is	reasonably	secure:	there	is	no	single	device	that	can	be	lost	or	stolen	that	would	lead	to	you
losing	access	to	your	funds.	But	the	security	is	far	from	perfect:	if	you	can	steal	someone's	laptop,	it's
often	not	that	hard	to	steal	their	phone	as	well.	The	usability	is	also	a	challenge,	as	every	transaction
now	requires	two	confirmations	with	two	devices.

Social	recovery	is	better

This	gets	us	to	my	preferred	method	for	securing	a	wallet:	social	recovery.	A	social	recovery	system
works	as	follows:

1.	 There	is	a	single	"signing	key"	that	can	be	used	to	approve	transactions
2.	 There	is	a	set	of	at	least	3	(or	a	much	higher	number)	of	"guardians",	of	which	a	majority	can

cooperate	to	change	the	signing	key	of	the	account.

The	signing	key	has	the	ability	to	add	or	remove	guardians,	though	only	after	a	delay	(often	1-3
days).

https://bitcoinmagazine.com/articles/multisig-revolution-incomplete-1406578252
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Under	all	normal	circumstances,	the	user	can	simply	use	their	social	recovery	wallet	like	a	regular
wallet,	signing	messages	with	their	signing	key	so	that	each	transaction	signed	can	fly	off	with	a
single	confirmation	click	much	like	it	would	in	a	"traditional"	wallet	like	Metamask.

If	a	user	loses	their	signing	key,	that	is	when	the	social	recovery	functionality	would	kick	in.	The	user
can	simply	reach	out	to	their	guardians	and	ask	them	to	sign	a	special	transaction	to	change	the
signing	pubkey	registered	in	the	wallet	contract	to	a	new	one.	This	is	easy:	they	can	simply	go	to	a
webpage	such	as	security.loopring.io,	sign	in,	see	a	recovery	request	and	sign	it.	About	as	easy	for
each	guardian	as	making	a	Uniswap	trade.

There	are	many	possible	choices	for	whom	to	select	as	a	guardian.	The	three	most	common	choices
are:

Other	devices	(or	paper	mnemonics)	owned	by	the	wallet	holder	themselves
Friends	and	family	members
Institutions,	which	would	sign	a	recovery	message	if	they	get	a	confirmation	of	your	phone
number	or	email	or	perhaps	in	high	value	cases	verify	you	personally	by	video	call

Guardians	are	easy	to	add:	you	can	add	a	guardian	simply	by	typing	in	their	ENS	name	or	ETH
address,	though	most	social	recovery	wallets	will	require	the	guardian	to	sign	a	transaction	in	the
recovery	webpage	to	agree	to	be	added.	In	any	sanely	designed	social	recovery	wallet,	the	guardian
does	NOT	need	to	download	and	use	the	same	wallet;	they	can	simply	use	their	existing	Ethereum
wallet,	whichever	type	of	wallet	it	is.	Given	the	high	convenience	of	adding	guardians,	if	you	are
lucky	enough	that	your	social	circles	are	already	made	up	of	Ethereum	users,	I	personally	favor	high
guardian	counts	(ideally	7+)	for	increased	security.	If	you	already	have	a	wallet,	there	is	no	ongoing
mental	effort	required	to	be	a	guardian:	any	recovery	operations	that	you	do	would	be	done	through
your	existing	wallet.	If	you	not	know	many	other	active	Ethereum	users,	then	a	smaller	number	of
guardians	that	you	trust	to	be	technically	competent	is	best.

To	reduce	the	risk	of	attacks	on	guardians	and	collusion,	your	guardians	do	not	have	to	be
publicly	known:	in	fact,	they	do	not	need	to	know	each	other's	identities.	This	can	be
accomplished	in	two	ways.	First,	instead	of	the	guardians'	addresses	being	stored	directly	on	chain,	a
hash	of	the	list	of	addresses	can	be	stored	on	chain,	and	the	wallet	owner	would	only	need	to	publish
the	full	list	at	recovery	time.	Second,	each	guardian	can	be	asked	to	deterministically	generate	a	new
single-purpose	address	that	they	would	use	just	for	that	particular	recovery;	they	would	not	need	to
actually	send	any	transactions	with	that	address	unless	a	recovery	is	actually	required.	To
complement	these	technical	protections,	it's	recommended	to	choose	a	diverse	collection	of
guardians	from	different	social	circles	(including	ideally	one	institutional	guardian);	these
recommendations	together	would	make	it	extremely	difficult	for	the	guardians	to	be	attacked
simultaneously	or	collude.

In	the	event	that	you	die	or	are	permanently	incapacitated,	it	would	be	a	socially	agreed	standard
protocol	that	guardians	can	publicly	announce	themselves,	so	in	that	case	they	can	find	each	other
and	recover	your	funds.

Social	recovery	wallets	are	not	a	betrayal,	but	rather	an	expression,	of
"crypto	values"

One	common	response	to	suggestions	to	use	any	form	of	multisig,	social	recovery	or	otherwise,	is	the

https://security.loopring.io/


idea	that	this	solution	goes	back	to	"trusting	people",	and	so	is	a	betrayal	of	the	values	of	the
blockchain	and	cryptocurrency	industry.	While	I	understand	why	one	may	think	this	at	first	glance,	I
would	argue	that	this	criticism	stems	from	a	fundamental	misunderstanding	of	what	crypto	should	be
about.

To	me,	the	goal	of	crypto	was	never	to	remove	the	need	for	all	trust.	Rather,	the	goal	of	crypto	is
to	give	people	access	to	cryptographic	and	economic	building	blocks	that	give	people	more
choice	in	whom	to	trust,	and	furthermore	allow	people	to	build	more	constrained	forms	of
trust:	giving	someone	the	power	to	do	some	things	on	your	behalf	without	giving	them	the	power	to
do	everything.	Viewed	in	this	way,	multisig	and	social	recovery	are	a	perfect	expression	of	this
principle:	each	participant	has	some	influence	over	the	ability	to	accept	or	reject	transactions,	but
no	one	can	move	funds	unilaterally.	This	more	complex	logic	allows	for	a	setup	far	more	secure	than
what	would	be	possible	if	there	had	to	be	one	person	or	key	that	unilaterally	controlled	the	funds.

This	fundamental	idea,	that	human	inputs	should	be	wielded	carefully	but	not	thrown	away	outright,
is	powerful	because	it	works	well	with	the	strengths	and	weaknesses	of	the	human	brain.	The	human
brain	is	quite	poorly	suited	for	remembering	passwords	and	tracking	paper	wallets,	but	it's	an	ASIC
for	keeping	track	of	relationships	with	other	people.	This	effect	is	even	stronger	for	less	technical
users:	they	may	have	a	harder	time	with	wallets	and	passwords,	but	they	are	just	as	adept	at	social
tasks	like	"choose	7	people	who	won't	all	gang	up	on	me".	If	we	can	extract	at	least	some	information
from	human	inputs	into	a	mechanism,	without	those	inputs	turning	into	a	vector	for	attack	and
exploitation,	then	we	should	figure	out	how.	And	social	recovery	is	very	robust:	for	a	wallet	with	7
guardians	to	be	compromised,	4	of	the	7	guardians	would	need	to	somehow	discover	each	other	and
agree	to	steal	the	funds,	without	any	of	them	tipping	the	owner	off:	certainly	a	much	tougher
challenge	than	attacking	a	wallet	protected	purely	by	a	single	individuals.

How	can	social	recovery	protect	against	theft?

Social	recovery	as	explained	above	deals	with	the	risk	that	you	lose	your	wallet.	But	there	is	still	the
risk	that	your	signing	key	gets	stolen:	someone	hacks	into	your	computer,	sneaks	up	behind	you
while	you're	already	logged	in	and	hits	you	over	the	head,	or	even	just	uses	some	user	interface
glitch	to	trick	you	into	signing	a	transaction	that	you	did	not	intend	to	sign.

We	can	extend	social	recovery	to	deal	with	such	issues	by	adding	a	vault.	Every	social	recovery
wallet	can	come	with	an	automatically	generated	vault.	Assets	can	be	moved	to	the	vault	just	by
sending	them	to	the	vault's	address,	but	they	can	be	moved	out	of	the	vault	only	with	a	1	week	delay.
During	that	delay,	the	signing	key	(or,	by	extension,	the	guardians)	can	cancel	the	transaction.	If
desired,	the	vault	could	also	be	programmed	so	that	some	limited	financial	operations	(eg.	Uniswap
trades	between	some	whitelisted	tokens)	can	be	done	without	delay.

Existing	social	recovery	wallets

Currently,	the	two	major	wallets	that	have	implemented	social	recovery	are	the	Argent	wallet	and	the
Loopring	wallet:

https://bitcoinmagazine.com/articles/bitcoin-self-defense-part-i-wallet-protection-1368758841
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The	Argent	wallet	is	the	first	major,	and	still	the	most	popular,	"smart	contract	wallet"	currently	in
use,	and	social	recovery	is	one	of	its	main	selling	points.	The	Argent	wallet	includes	an	interface	by
which	guardians	can	be	added	and	removed:



To	protect	against	theft,	the	wallet	has	a	daily	limit:	transactions	up	to	that	amount	are	instant	but
transactions	above	that	amount	require	guardians	to	approve	to	finalize	the	withdrawal.

The	Loopring	wallet	is	most	known	for	being	built	by	the	developers	of	(and	of	course	including
support	for)	the	Loopring	protocol,	a	ZK	rollup	for	payments	and	decentralized	exchange.	But	the
Loopring	wallet	also	has	a	social	recovery	feature,	which	works	very	similarly	to	that	in	Argent.	In
both	cases,	the	wallet	companies	provide	one	guardian	for	free,	which	relies	on	a	confirmation	code
sent	by	mobile	phone	to	authenticate	you.	For	the	other	guardians,	you	can	add	either	other	users	of
the	same	wallet,	or	any	Ethereum	user	by	providing	their	Ethereum	address.

The	user	experience	in	both	cases	is	surprisingly	smooth.	There	were	two	main	challenges.	First,	the
smoothness	in	both	cases	relies	on	a	central	"relayer"	run	by	the	wallet	maker	that	re-publishes
signed	messages	as	transactions.	Second,	the	fees	are	high.	Fortunately,	both	of	these	problems	are
surmountable.

Migration	to	Layer	2	(rollups)	can	solve	the	remaining	challenges

As	mentioned	above,	there	are	two	key	challenges:	(i)	the	dependence	on	relayers	to	solve
transactions,	and	(ii)	high	transaction	fees.	The	first	challenge,	dependence	on	relayers,	is	an
increasingly	common	problem	in	Ethereum	applications.	The	issue	arises	because	there	are	two
types	of	accounts	in	Ethereum:	externally	owned	accounts	(EOAs),	which	are	accounts	controlled
by	a	single	private	key,	and	contracts.	In	Ethereum,	there	is	a	rule	that	every	transaction	must	start
from	an	EOA;	the	original	intention	was	that	EOAs	represent	"users"	and	contracts	represent
"applications",	and	an	application	can	only	run	if	a	user	talks	to	the	application.	If	we	want	wallets
with	more	complex	policies,	like	multisig	and	social	recovery,	we	need	to	use	contracts	to	represent
users.	But	this	poses	a	challenge:	if	your	funds	are	in	a	contract,	you	need	to	have	some	other
account	that	has	ETH	that	can	pay	to	start	each	transaction,	and	it	needs	quite	a	lot	of	ETH	just	in
case	transaction	fees	get	really	high.

Argent	and	Loopring	get	around	this	problem	by	personally	running	a	"relayer".	The	relayer	listens
for	off-chain	digitally	signed	"messages"	submitted	by	users,	and	wraps	these	messages	in	a
transaction	and	publishes	them	to	chain.	But	for	the	long	run,	this	is	a	poor	solution;	it	adds	an	extra
point	of	centralization.	If	the	relayer	is	down	and	a	user	really	needs	to	send	a	transaction,	they	can
always	just	send	it	from	their	own	EOA,	but	it	is	nevertheless	the	case	that	a	new	tradeoff	between
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centralization	and	inconvenience	is	introduced.	There	are	efforts	to	solve	this	problem	and	get
convenience	without	centralization;	the	main	two	categories	revolve	around	either	making	a
generalized	decentralized	relayer	network	or	modifying	the	Ethereum	protocol	itself	to	allow
transactions	to	begin	from	contracts.	But	neither	of	these	solutions	solve	transaction	fees,	and	in
fact,	they	make	the	problem	worse	due	to	smart	contracts'	inherently	greater	complexity.

Fortunately,	we	can	solve	both	of	these	problems	at	the	same	time,	by	looking	toward	a
third	solution:	moving	the	ecosystem	onto	layer	2	protocols	such	as	optimistic	rollups	and
ZK	rollups.	Optimistic	and	ZK	rollups	can	both	be	designed	with	account	abstraction	built	in,
circumventing	any	need	for	relayers.	Existing	wallet	developers	are	already	looking	into	rollups,	but
ultimately	migrating	to	rollups	en	masse	is	an	ecosystem-wide	challenge.

An	ecosystem-wide	mass	migration	to	rollups	is	as	good	an	opportunity	as	any	to	reverse	the
Ethereum	ecosystem's	earlier	mistakes	and	give	multisig	and	smart	contract	wallets	a	much	more
central	role	in	helping	to	secure	users'	funds.	But	this	requires	broader	recognition	that	wallet
security	is	a	challenge,	and	that	we	have	not	gone	nearly	as	far	in	trying	to	meet	and	challenge	as	we
should.	Multisig	and	social	recovery	need	not	be	the	end	of	the	story;	there	may	well	be	designs	that
work	even	better.	But	the	simple	reform	of	moving	to	rollups	and	making	sure	that	these	rollups	treat
smart	contract	wallets	as	first	class	citizens	is	an	important	step	toward	making	that	happen.

https://docs.opengsn.org/
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An	Incomplete	Guide	to	Rollups

Rollups	are	all	the	rage	in	the	Ethereum	community,	and	are	poised	to	be	the	key	scalability	solution	for
Ethereum	for	the	foreseeable	future.	But	what	exactly	is	this	technology,	what	can	you	expect	from	it	and
how	will	you	be	able	to	use	it?	This	post	will	attempt	to	answer	some	of	those	key	questions.

Background:	what	is	layer-1	and	layer-2	scaling?
There	are	two	ways	to	scale	a	blockchain	ecosystem.	First,	you	can	make	the	blockchain	itself	have
a	higher	transaction	capacity.	The	main	challenge	with	this	technique	is	that	blockchains	with	"bigger
blocks"	are	inherently	more	difficult	to	verify	and	likely	to	become	more	centralized.	To	avoid	such	risks,
developers	can	either	increase	the	efficiency	of	client	software	or,	more	sustainably,	use	techniques	such	as
sharding	to	allow	the	work	of	building	and	verifying	the	chain	to	be	split	up	across	many	nodes;	the	effort
known	as	"eth2"	is	currently	building	this	upgrade	to	Ethereum.

Second,	you	can	change	the	way	that	you	use	the	blockchain.	Instead	of	putting	all	activity	on	the
blockchain	directly,	users	perform	the	bulk	of	their	activity	off-chain	in	a	"layer	2"	protocol.	There	is	a	smart
contract	on-chain,	which	only	has	two	tasks:	processing	deposits	and	withdrawals,	and	verifying	proofs	that
everything	happening	off-chain	is	following	the	rules.	There	are	multiple	ways	to	do	these	proofs,	but	they	all
share	the	property	that	verifying	the	proofs	on-chain	is	much	cheaper	than	doing	the	original	computation
off-chain.

State	channels	vs	plasma	vs	rollups
The	three	major	types	of	layer-2	scaling	are	state	channels,	Plasma	and	rollups.	They	are	three	different
paradigms,	with	different	strengths	and	weaknesses,	and	at	this	point	we	are	fairly	confident	that	all	layer-2
scaling	falls	into	roughly	these	three	categories	(though	naming	controversies	exist	at	the	edges,	eg.	see
"validium").

How	do	channels	work?

See	also:	https://www.jeffcoleman.ca/state-channels	and	statechannels.org

Imagine	that	Alice	is	offering	an	internet	connection	to	Bob,	in	exchange	for	Bob	paying	her	$0.001	per
megabyte.	Instead	of	making	a	transaction	for	each	payment,	Alice	and	Bob	use	the	following	layer-2
scheme.

First,	Bob	puts	$1	(or	some	ETH	or	stablecoin	equivalent)	into	a	smart	contract.	To	make	his	first	payment	to
Alice,	Bob	signs	a	"ticket"	(an	off-chain	message),	that	simply	says	"$0.001",	and	sends	it	to	Alice.	To	make
his	second	payment,	Bob	would	sign	another	ticket	that	says	"$0.002",	and	send	it	to	Alice.	And	so	on	and	so
forth	for	as	many	payments	as	needed.	When	Alice	and	Bob	are	done	transacting,	Alice	can	publish	the
highest-value	ticket	to	chain,	wrapped	in	another	signature	from	herself.	The	smart	contract	verifies	Alice
and	Bob's	signatures,	pays	Alice	the	amount	on	Bob's	ticket	and	returns	the	rest	to	Bob.	If	Alice	is	unwilling
to	close	the	channel	(due	to	malice	or	technical	failure),	Bob	can	initiate	a	withdrawal	period	(eg.	7	days);	if
Alice	does	not	provide	a	ticket	within	that	time,	then	Bob	gets	all	his	money	back.

This	technique	is	powerful:	it	can	be	adjusted	to	handle	bidirectional	payments,	smart	contract	relationships
(eg.	Alice	and	Bob	making	a	financial	contract	inside	the	channel),	and	composition	(if	Alice	and	Bob	have	an
open	channel	and	so	do	Bob	and	Charlie,	Alice	can	trustlessly	interact	with	Charlie).	But	there	are	limits	to
what	channels	can	do.	Channels	cannot	be	used	to	send	funds	off-chain	to	people	who	are	not	yet
participants.	Channels	cannot	be	used	to	represent	objects	that	do	not	have	a	clear	logical	owner	(eg.
Uniswap).	And	channels,	especially	if	used	to	do	things	more	complex	than	simple	recurring	payments,
require	a	large	amount	of	capital	to	be	locked	up.

How	does	plasma	work?

See	also:	the	original	Plasma	paper,	and	Plasma	Cash.

To	deposit	an	asset,	a	user	sends	it	to	the	smart	contract	managing	the	Plasma	chain.	The	Plasma	chain
assigns	that	asset	a	new	unique	ID	(eg.	537).	Each	Plasma	chain	has	an	operator	(this	could	be	a	centralized
actor,	or	a	multisig,	or	something	more	complex	like	PoS	or	DPoS).	Every	interval	(this	could	be	15	seconds,
or	an	hour,	or	anything	in	between),	the	operator	generates	a	"batch"	consisting	of	all	of	the	Plasma
transactions	they	have	received	off-chain.	They	generate	a	Merkle	tree,	where	at	each	index	X	in	the	tree,
there	is	a	transaction	transferring	asset	ID	X	if	such	a	transaction	exists,	and	otherwise	that	leaf	is	zero.	They
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publish	the	Merkle	root	of	this	tree	to	chain.	They	also	send	the	Merkle	branch	of	each	index	X	to	the	current
owner	of	that	asset.	To	withdraw	an	asset,	a	user	publishes	the	Merkle	branch	of	the	most	recent	transaction
sending	the	asset	to	them.	The	contract	starts	a	challenge	period,	during	which	anyone	can	try	to	use	other
Merkle	branches	to	invalidate	the	exit	by	proving	that	either	(i)	the	sender	did	not	own	the	asset	at	the	time
they	sent	it,	or	(ii)	they	sent	the	asset	to	someone	else	at	some	later	point	in	time.	If	no	one	proves	that	the
exit	is	fraudulent	for	(eg.)	7	days,	the	user	can	withdraw	the	asset.

Plasma	provides	stronger	properties	than	channels:	you	can	send	assets	to	participants	who	were	never	part
of	the	system,	and	the	capital	requirements	are	much	lower.	But	it	comes	at	a	cost:	channels	require	no	data
whatsoever	to	go	on	chain	during	"normal	operation",	but	Plasma	requires	each	chain	to	publish	one	hash	at
regular	intervals.	Additionally,	Plasma	transfers	are	not	instant:	you	have	to	wait	for	the	interval	to	end	and
for	the	block	to	be	published.

Additionally,	Plasma	and	channels	share	a	key	weakness	in	common:	the	game	theory	behind	why	they	are
secure	relies	on	the	idea	that	each	object	controlled	by	both	systems	has	some	logical	"owner".	If	that	owner
does	not	care	about	their	asset,	then	an	"invalid"	outcome	involving	that	asset	may	result.	This	is	okay	for
many	applications,	but	it	is	a	deal	breaker	for	many	others	(eg.	Uniswap).	Even	systems	where	the	state	of	an
object	can	be	changed	without	the	owner's	consent	(eg.	account-based	systems,	where	you	can	increase
someone's	balance	without	their	consent)	do	not	work	well	with	Plasma.	This	all	means	that	a	large	amount
of	"application-specific	reasoning"	is	required	in	any	realistic	plasma	or	channels	deployment,	and	it	is	not
possible	to	make	a	plasma	or	channel	system	that	just	simulates	the	full	ethereum	environment	(or	"the
EVM").	To	get	around	this	problem,	we	get	to...	rollups.

Rollups

See	also:	EthHub	on	optimistic	rollups	and	ZK	rollups.

Plasma	and	channels	are	"full"	layer	2	schemes,	in	that	they	try	to	move	both	data	and	computation	off-chain.
However,	fundamental	game	theory	issues	around	data	availability	means	that	it	is	impossible	to	safely	do
this	for	all	applications.	Plasma	and	channels	get	around	this	by	relying	on	an	explicit	notion	of	owners,	but
this	prevents	them	from	being	fully	general.	Rollups,	on	the	other	hand,	are	a	"hybrid"	layer	2	scheme.
Rollups	move	computation	(and	state	storage)	off-chain,	but	keep	some	data	per	transaction	on-
chain.	To	improve	efficiency,	they	use	a	whole	host	of	fancy	compression	tricks	to	replace	data	with
computation	wherever	possible.	The	result	is	a	system	where	scalability	is	still	limited	by	the	data	bandwidth
of	the	underlying	blockchain,	but	at	a	very	favorable	ratio:	whereas	an	Ethereum	base-layer	ERC20	token
transfer	costs	~45000	gas,	an	ERC20	token	transfer	in	a	rollup	takes	up	16	bytes	of	on-chain	space	and	costs
under	300	gas.

The	fact	that	data	is	on-chain	is	key	(note:	putting	data	"on	IPFS"	does	not	work,	because	IPFS	does	not
provide	consensus	on	whether	or	not	any	given	piece	of	data	is	available;	the	data	must	go	on	a	blockchain).
Putting	data	on-chain	and	having	consensus	on	that	fact	allows	anyone	to	locally	process	all	the	operations	in
the	rollup	if	they	wish	to,	allowing	them	to	detect	fraud,	initiate	withdrawals,	or	personally	start	producing
transaction	batches.	The	lack	of	data	availability	issues	means	that	a	malicious	or	offline	operator	can	do
even	less	harm	(eg.	they	cannot	cause	a	1	week	delay),	opening	up	a	much	larger	design	space	for	who	has
the	right	to	publish	batches	and	making	rollups	vastly	easier	to	reason	about.	And	most	importantly,	the	lack
of	data	availability	issues	means	that	there	is	no	longer	any	need	to	map	assets	to	owners,	leading	to	the	key
reason	why	the	Ethereum	community	is	so	much	more	excited	about	rollups	than	previous	forms	of	layer	2
scaling:	rollups	are	fully	general-purpose,	and	one	can	even	run	an	EVM	inside	a	rollup,	allowing
existing	Ethereum	applications	to	migrate	to	rollups	with	almost	no	need	to	write	any	new	code.

OK,	so	how	exactly	does	a	rollup	work?
There	is	a	smart	contract	on-chain	which	maintains	a	state	root:	the	Merkle	root	of	the	state	of	the	rollup
(meaning,	the	account	balances,	contract	code,	etc,	that	are	"inside"	the	rollup).
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Anyone	can	publish	a	batch,	a	collection	of	transactions	in	a	highly	compressed	form	together	with	the
previous	state	root	and	the	new	state	root	(the	Merkle	root	after	processing	the	transactions).	The	contract
checks	that	the	previous	state	root	in	the	batch	matches	its	current	state	root;	if	it	does,	it	switches	the	state
root	to	the	new	state	root.

To	support	depositing	and	withdrawing,	we	add	the	ability	to	have	transactions	whose	input	or	output	is
"outside"	the	rollup	state.	If	a	batch	has	inputs	from	the	outside,	the	transaction	submitting	the	batch	needs
to	also	transfer	these	assets	to	the	rollup	contract.	If	a	batch	has	outputs	to	the	outside,	then	upon
processing	the	batch	the	smart	contract	initiates	those	withdrawals.

And	that's	it!	Except	for	one	major	detail:	how	to	do	know	that	the	post-state	roots	in	the	batches	are
correct?	If	someone	can	submit	a	batch	with	any	post-state	root	with	no	consequences,	they	could	just
transfer	all	the	coins	inside	the	rollup	to	themselves.	This	question	is	key	because	there	are	two	very
different	families	of	solutions	to	the	problem,	and	these	two	families	of	solutions	lead	to	the	two	flavors	of
rollups.

Optimistic	rollups	vs	ZK	rollups

The	two	types	of	rollups	are:

1.	 Optimistic	rollups,	which	use	fraud	proofs:	the	rollup	contract	keeps	track	of	its	entire	history	of
state	roots	and	the	hash	of	each	batch.	If	anyone	discovers	that	one	batch	had	an	incorrect	post-state
root,	they	can	publish	a	proof	to	chain,	proving	that	the	batch	was	computed	incorrectly.	The	contract
verifies	the	proof,	and	reverts	that	batch	and	all	batches	after	it.

2.	 ZK	rollups,	which	use	validity	proofs:	every	batch	includes	a	cryptographic	proof	called	a	ZK-SNARK
(eg.	using	the	PLONK	protocol),	which	proves	that	the	post-state	root	is	the	correct	result	of	executing
the	batch.	No	matter	how	large	the	computation,	the	proof	can	be	very	quickly	verified	on-chain.

There	are	complex	tradeoffs	between	the	two	flavors	of	rollups:

Property Optimistic	rollups ZK	rollups

Fixed	gas	cost	per	batch
~40,000	(a	lightweight	transaction
that	mainly	just	changes	the	value
of	the	state	root)

~500,000	(verification	of	a	ZK-
SNARK	is	quite	computationally
intensive)

Withdrawal	period
~1	week	(withdrawals	need	to	be
delayed	to	give	time	for	someone	to
publish	a	fraud	proof	and	cancel
the	withdrawal	if	it	is	fraudulent)

Very	fast	(just	wait	for	the	next
batch)

Complexity	of	technology Low
High	(ZK-SNARKs	are	very	new
and	mathematically	complex
technology)

Generalizability
Easier	(general-purpose	EVM
rollups	are	already	close	to
mainnet)

Harder	(ZK-SNARK	proving
general-purpose	EVM	execution	is
much	harder	than	proving	simple
computations,	though	there	are
efforts	(eg.	Cairo)	working	to
improve	on	this)
Lower	(if	data	in	a	transaction	is
only	used	to	verify,	and	not	to
cause	state	changes,	then	this	data

https://vitalik.ca/general/2019/09/22/plonk.html
https://medium.com/starkware/hello-cairo-3cb43b13b209


Per-transaction	on-chain	gas	costs Higher can	be	left	out,	whereas	in	an
optimistic	rollup	it	would	need	to
be	published	in	case	it	needs	to	be
checked	in	a	fraud	proof)

Off-chain	computation	costs
Lower	(though	there	is	more	need
for	many	full	nodes	to	redo	the
computation)

Higher	(ZK-SNARK	proving
especially	for	general-purpose
computation	can	be	expensive,
potentially	many	thousands	of
times	more	expensive	than	running
the	computation	directly)

In	general,	my	own	view	is	that	in	the	short	term,	optimistic	rollups	are	likely	to	win	out	for	general-purpose
EVM	computation	and	ZK	rollups	are	likely	to	win	out	for	simple	payments,	exchange	and	other	application-
specific	use	cases,	but	in	the	medium	to	long	term	ZK	rollups	will	win	out	in	all	use	cases	as	ZK-SNARK
technology	improves.

Anatomy	of	a	fraud	proof

The	security	of	an	optimistic	rollup	depends	on	the	idea	that	if	someone	publishes	an	invalid	batch	into	the
rollup,	anyone	else	who	was	keeping	up	with	the	chain	and	detected	the	fraud	can	publish	a	fraud	proof,
proving	to	the	contract	that	that	batch	is	invalid	and	should	be	reverted.

A	fraud	proof	claiming	that	a	batch	was	invalid	would	contain	the	data	in	green:	the	batch	itself	(which	could
be	checked	against	a	hash	stored	on	chain)	and	the	parts	of	the	Merkle	tree	needed	to	prove	just	the	specific
accounts	that	were	read	and/or	modified	by	the	batch.	The	nodes	in	the	tree	in	yellow	can	be	reconstructed
from	the	nodes	in	green	and	so	do	not	need	to	be	provided.	This	data	is	sufficient	to	execute	the	batch	and
compute	the	post-state	root	(note	that	this	is	exactly	the	same	as	how	stateless	clients	verify	individual
blocks).	If	the	computed	post-state	root	and	the	provided	post-state	root	in	the	batch	are	not	the	same,	then
the	batch	is	fraudulent.

It	is	guaranteed	that	if	a	batch	was	constructed	incorrectly,	and	all	previous	batches	were	constructed
correctly,	then	it	is	possible	to	create	a	fraud	proof	showing	the	the	batch	was	constructed	incorrectly.	Note
the	claim	about	previous	batches:	if	there	was	more	than	one	invalid	batch	published	to	the	rollup,	then	it	is
best	to	try	to	prove	the	earliest	one	invalid.	It	is	also,	of	course,	guaranteed	that	if	a	batch	was	constructed
correctly,	then	it	is	never	possible	to	create	a	fraud	proof	showing	that	the	batch	is	invalid.

How	does	compression	work?

A	simple	Ethereum	transaction	(to	send	ETH)	takes	~110	bytes.	An	ETH	transfer	on	a	rollup,	however,	takes
only	~12	bytes:

Parameter Ethereum Rollup

https://ethresear.ch/t/the-stateless-client-concept/172


Nonce ~3 0
Gasprice ~8 0-0.5
Gas 3 0-0.5
To 21 4
Value ~9 ~3
Signature ~68	(2	+	33	+	33) ~0.5
From 0	(recovered	from	sig) 4
Total ~112 ~12

Part	of	this	is	simply	superior	encoding:	Ethereum's	RLP	wastes	1	byte	per	value	on	the	length	of	each	value.
But	there	are	also	some	very	clever	compression	tricks	that	are	going	on:

Nonce:	the	purpose	of	this	parameter	is	to	prevent	replays.	If	the	current	nonce	of	an	account	is	5,	the
next	transaction	from	that	account	must	have	nonce	5,	but	once	the	transaction	is	processed	the	nonce
in	the	account	will	be	incremented	to	6	so	the	transaction	cannot	be	processed	again.	In	the	rollup,	we
can	omit	the	nonce	entirely,	because	we	just	recover	the	nonce	from	the	pre-state;	if	someone	tries
replaying	a	transaction	with	an	earlier	nonce,	the	signature	would	fail	to	verify,	as	the	signature	would
be	checked	against	data	that	contains	the	new	higher	nonce.
Gasprice:	we	can	allow	users	to	pay	with	a	fixed	range	of	gasprices,	eg.	a	choice	of	16	consecutive
powers	of	two.	Alternatively,	we	could	just	have	a	fixed	fee	level	in	each	batch,	or	even	move	gas
payment	outside	the	rollup	protocol	entirely	and	have	transactors	pay	batch	creators	for	inclusion
through	a	channel.
Gas:	we	could	similarly	restrict	the	total	gas	to	a	choice	of	consecutive	powers	of	two.	Alternatively,	we
could	just	have	a	gas	limit	only	at	the	batch	level.
To:	we	can	replace	the	20-byte	address	with	an	index	(eg.	if	an	address	is	the	4527th	address	added	to
the	tree,	we	just	use	the	index	4527	to	refer	to	it.	We	would	add	a	subtree	to	the	state	to	store	the
mapping	of	indices	to	addresses).
Value:	we	can	store	value	in	scientific	notation.	In	most	cases,	transfers	only	need	1-3	significant	digits.
Signature:	we	can	use	BLS	aggregate	signatures,	which	allows	many	signatures	to	be	aggregated	into
a	single	~32-96	byte	(depending	on	protocol)	signature.	This	signature	can	then	be	checked	against	the
entire	set	of	messages	and	senders	in	a	batch	all	at	once.	The	~0.5	in	the	table	represents	the	fact	that
there	is	a	limit	on	how	many	signatures	can	be	combined	in	an	aggregate	that	can	be	verified	in	a	single
block,	and	so	large	batches	would	need	one	signature	per	~100	transactions.

One	important	compression	trick	that	is	specific	to	ZK	rollups	is	that	if	a	part	of	a	transaction	is	only	used	for
verification,	and	is	not	relevant	to	computing	the	state	update,	then	that	part	can	be	left	off-chain.	This
cannot	be	done	in	an	optimistic	rollup	because	that	data	would	still	need	to	be	included	on-chain	in	case	it
needs	to	be	later	checked	in	a	fraud	proof,	whereas	in	a	ZK	rollup	the	SNARK	proving	correctness	of	the
batch	already	proves	that	any	data	needed	for	verification	was	provided.	An	important	example	of	this	is
privacy-preserving	rollups:	in	an	optimistic	rollup	the	~500	byte	ZK-SNARK	used	for	privacy	in	each
transaction	needs	to	go	on	chain,	whereas	in	a	ZK	rollup	the	ZK-SNARK	covering	the	entire	batch	already
leaves	no	doubt	that	the	"inner"	ZK-SNARKs	are	valid.

These	compression	tricks	are	key	to	the	scalability	of	rollups;	without	them,	rollups	would	be	perhaps	only	a
~10x	improvement	on	the	scalability	of	the	base	chain	(though	there	are	some	specific	computation-heavy
applications	where	even	simple	rollups	are	powerful),	whereas	with	compression	tricks	the	scaling	factor	can
go	over	100x	for	almost	all	applications.

Who	can	submit	a	batch?

There	are	a	number	of	schools	of	thought	for	who	can	submit	a	batch	in	an	optimistic	or	ZK	rollup.	Generally,
everyone	agrees	that	in	order	to	be	able	to	submit	a	batch,	a	user	must	put	down	a	large	deposit;	if	that	user
ever	submits	a	fraudulent	batch	(eg.	with	an	invalid	state	root),	that	deposit	would	be	part	burned	and	part
given	as	a	reward	to	the	fraud	prover.	But	beyond	that,	there	are	many	possibilities:

Total	anarchy:	anyone	can	submit	a	batch	at	any	time.	This	is	the	simplest	approach,	but	it	has	some
important	drawbacks.	Particularly,	there	is	a	risk	that	multiple	participants	will	generate	and	attempt	to
submit	batches	in	parallel,	and	only	one	of	those	batches	can	be	successfully	included.	This	leads	to	a
large	amount	of	wasted	effort	in	generating	proofs	and/or	wasted	gas	in	publishing	batches	to	chain.
Centralized	sequencer:	there	is	a	single	actor,	the	sequencer,	who	can	submit	batches	(with	an
exception	for	withdrawals:	the	usual	technique	is	that	a	user	can	first	submit	a	withdrawal	request,	and
then	if	the	sequencer	does	not	process	that	withdrawal	in	the	next	batch,	then	the	user	can	submit	a
single-operation	batch	themselves).	This	is	the	most	"efficient",	but	it	is	reliant	on	a	central	actor	for
liveness.
Sequencer	auction:	an	auction	is	held	(eg.	every	day)	to	determine	who	has	the	right	to	be	the
sequencer	for	the	next	day.	This	technique	has	the	advantage	that	it	raises	funds	which	could	be
distributed	by	eg.	a	DAO	controlled	by	the	rollup	(see:	MEV	auctions)
Random	selection	from	PoS	set:	anyone	can	deposit	ETH	(or	perhaps	the	rollup's	own	protocol
token)	into	the	rollup	contract,	and	the	sequencer	of	each	batch	is	randomly	selected	from	one	of	the
depositors,	with	the	probability	of	being	selected	being	proportional	to	the	amount	deposited.	The	main
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drawback	of	this	technique	is	that	it	leads	to	large	amounts	of	needless	capital	lockup.
DPoS	voting:	there	is	a	single	sequencer	selected	with	an	auction	but	if	they	perform	poorly	token
holders	can	vote	to	kick	them	out	and	hold	a	new	auction	to	replace	them.

Split	batching	and	state	root	provision

Some	of	the	rollups	being	currently	developed	are	using	a	"split	batch"	paradigm,	where	the	action	of
submitting	a	batch	of	layer-2	transactions	and	the	action	of	submitting	a	state	root	are	done	separately.	This
has	some	key	advantages:

1.	 You	can	allow	many	sequencers	in	parallel	to	publish	batches	in	order	to	improve	censorship	resistance,
without	worrying	that	some	batches	will	be	invalid	because	some	other	batch	got	included	first.

2.	 If	a	state	root	is	fraudulent,	you	don't	need	to	revert	the	entire	batch;	you	can	revert	just	the	state	root,
and	wait	for	someone	to	provide	a	new	state	root	for	the	same	batch.	This	gives	transaction	senders	a
better	guarantee	that	their	transactions	will	not	be	reverted.

So	all	in	all,	there	is	a	fairly	complex	zoo	of	techniques	that	are	trying	to	balance	between	complicated
tradeoffs	involving	efficiency,	simplicity,	censorship	resistance	and	other	goals.	It's	still	too	early	to	say
which	combination	of	these	ideas	works	best;	time	will	tell.

How	much	scaling	do	rollups	give	you?
On	the	existing	Ethereum	chain,	the	gas	limit	is	12.5	million,	and	each	byte	of	data	in	a	transaction	costs	16
gas.	This	means	that	if	a	block	contains	nothing	but	a	single	batch	(we'll	say	a	ZK	rollup	is	used,	spending
500k	gas	on	proof	verification),	that	batch	can	have	(12	million	/	16)	=	750,000	bytes	of	data.	As	shown
above,	a	rollup	for	ETH	transfers	requires	only	12	bytes	per	user	operation,	meaning	that	the	batch	can
contain	up	to	62,500	transactions.	At	an	average	block	time	of	13	seconds,	this	translates	to	~4807	TPS
(compared	to	12.5	million	/	21000	/	13	~=	45	TPS	for	ETH	transfers	directly	on	Ethereum	itself).

Here's	a	chart	for	some	other	example	use	cases:

Application Bytes	in	rollup Gas	cost	on	layer	1 Max	scalability	gain
ETH	transfer 12 21,000 105x

ERC20	transfer 16	(4	more	bytes	to
specify	which	token) ~50,000 187x

Uniswap	trade
~14	(4	bytes	sender	+	4
bytes	recipient	+	3	bytes
value	+	1	byte	max	price
+	1	byte	misc)

~100,000 428x

Privacy-preserving
withdrawal	(Optimistic
rollup)

296	(4	bytes	index	of	root
+	32	bytes	nullifier	+	4
bytes	recipient	+	256
bytes	ZK-SNARK	proof)

~380,000 77x

Privacy-preserving
withdrawal	(ZK	rollup)

40	(4	bytes	index	of	root
+	32	bytes	nullifier	+	4
bytes	recipient)

~380,000 570x

Max	scalability	gain	is	calculated	as	(L1	gas	cost)	/	(bytes	in	rollup	*	16)	*	12	million	/	12.5	million.

Now,	it	is	worth	keeping	in	mind	that	these	figures	are	overly	optimistic	for	a	few	reasons.	Most	importantly,
a	block	would	almost	never	just	contain	one	batch,	at	the	very	least	because	there	are	and	will	be	multiple
rollups.	Second,	deposits	and	withdrawals	will	continue	to	exist.	Third,	in	the	short	term	usage	will	be	low,
and	so	fixed	costs	will	dominate.	But	even	with	these	factors	taken	into	account,	scalability	gains	of	over
100x	are	expected	to	be	the	norm.

Now	what	if	we	want	to	go	above	~1000-4000	TPS	(depending	on	the	specific	use	case)?	Here	is	where	eth2
data	sharding	comes	in.	The	sharding	proposal	opens	up	a	space	of	16	MB	every	12	seconds	that	can	be
filled	with	any	data,	and	the	system	guarantees	consensus	on	the	availability	of	that	data.	This	data	space
can	be	used	by	rollups.	This	~1398k	bytes	per	sec	is	a	23x	improvement	on	the	~60	kB/sec	of	the	existing
Ethereum	chain,	and	in	the	longer	term	the	data	capacity	is	expected	to	grow	even	further.	Hence,	rollups
that	use	eth2	sharded	data	can	collectively	process	as	much	as	~100k	TPS,	and	even	more	in	the	future.

What	are	some	not-yet-fully-solved	challenges	in	rollups?
While	the	basic	concept	of	a	rollup	is	now	well-understood,	we	are	quite	certain	that	they	are	fundamentally
feasible	and	secure,	and	multiple	rollups	have	already	been	deployed	to	mainnet,	there	are	still	many	areas
of	rollup	design	that	have	not	been	well	explored,	and	quite	a	few	challenges	in	fully	bringing	large	parts	of
the	Ethereum	ecosystem	onto	rollups	to	take	advantage	of	their	scalability.	Some	key	challenges	include:

User	and	ecosystem	onboarding	-	not	many	applications	use	rollups,	rollups	are	unfamiliar	to	users,
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and	few	wallets	have	started	integrating	rollups.	Merchants	and	charities	do	not	yet	accept	them	for
payments.
Cross-rollup	transactions	-	efficiently	moving	assets	and	data	(eg.	oracle	outputs)	from	one	rollup	into
another	without	incurring	the	expense	of	going	through	the	base	layer.
Auditing	incentives	-	how	to	maximize	the	chance	that	at	least	one	honest	node	actually	will	be	fully
verifying	an	optimistic	rollup	so	they	can	publish	a	fraud	proof	if	something	goes	wrong?	For	small-scale
rollups	(up	to	a	few	hundred	TPS)	this	is	not	a	significant	issue	and	one	can	simply	rely	on	altruism,	but
for	larger-scale	rollups	more	explicit	reasoning	about	this	is	needed.
Exploring	the	design	space	in	between	plasma	and	rollups	-	are	there	techniques	that	put	some
state-update-relevant	data	on	chain	but	not	all	of	it,	and	is	there	anything	useful	that	could	come	out	of
that?
Maximizing	security	of	pre-confirmations	-	many	rollups	provide	a	notion	of	"pre-confirmation"	for
faster	UX,	where	the	sequencer	immediately	provides	a	promise	that	a	transaction	will	be	included	in
the	next	batch,	and	the	sequencer's	deposit	is	destroyed	if	they	break	their	word.	But	the	economy
security	of	this	scheme	is	limited,	because	of	the	possibility	of	making	many	promises	to	very	many
actors	at	the	same	time.	Can	this	mechanism	be	improved?
Improving	speed	of	response	to	absent	sequencers	-	if	the	sequencer	of	a	rollup	suddenly	goes
offline,	it	would	be	valuable	to	recover	from	that	situation	maximally	quickly	and	cheaply,	either	quickly
and	cheaply	mass-exiting	to	a	different	rollup	or	replacing	the	sequencer.
Efficient	ZK-VM	-	generating	a	ZK-SNARK	proof	that	general-purpose	EVM	code	(or	some	different
VM	that	existing	smart	contracts	can	be	compiled	to)	has	been	executed	correctly	and	has	a	given
result.

Conclusions
Rollups	are	a	powerful	new	layer-2	scaling	paradigm,	and	are	expected	to	be	a	cornerstone	of	Ethereum
scaling	in	the	short	and	medium-term	future	(and	possibly	long-term	as	well).	They	have	seen	a	large	amount
of	excitement	from	the	Ethereum	community	because	unlike	previous	attempts	at	layer-2	scaling,	they	can
support	general-purpose	EVM	code,	allowing	existing	applications	to	easily	migrate	over.	They	do	this	by
making	a	key	compromise:	not	trying	to	go	fully	off-chain,	but	instead	leaving	a	small	amount	of	data	per
transaction	on-chain.

There	are	many	kinds	of	rollups,	and	many	choices	in	the	design	space:	one	can	have	an	optimistic	rollup
using	fraud	proofs,	or	a	ZK	rollup	using	validity	proofs	(aka.	ZK-SNARKs).	The	sequencer	(the	user	that	can
publish	transaction	batches	to	chain)	can	be	either	a	centralized	actor,	or	a	free-for-all,	or	many	other
choices	in	between.	Rollups	are	still	an	early-stage	technology,	and	development	is	continuing	rapidly,	but
they	work	and	some	(notably	Loopring,	ZKSync	and	DeversiFi)	have	already	been	running	for	months.	Expect
much	more	exciting	work	to	come	out	of	the	rollup	space	in	the	years	to	come.

https://loopring.io/
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Endnotes	on	2020:	Crypto	and	Beyond

I'm	writing	this	sitting	in	Singapore,	the	city	in	which	I've	now	spent	nearly	half	a	year	of
uninterrupted	time	-	an	unremarkable	duration	for	many,	but	for	myself	the	longest	I've	stayed	in	any
one	place	for	nearly	a	decade.	After	months	of	fighting	what	may	perhaps	even	be	humanity's	first
boss-level	enemy	since	1945,	the	city	itself	is	close	to	normal,	though	the	world	as	a	whole	and	its	7.8
billion	inhabitants,	normally	so	close	by,	continue	to	be	so	far	away.	Many	other	parts	of	the	world
have	done	less	well	and	suffered	more,	though	there	is	now	a	light	at	the	end	of	the	tunnel,	as
hopefully	rapid	deployment	of	vaccines	will	help	humanity	as	a	whole	overcome	this	great	challenge.

2020	has	been	a	strange	year	because	of	these	events,	but	also	others.	As	life	"away	from	keyboard
(AFK)"	has	gotten	much	more	constrained	and	challenging,	the	internet	has	been	supercharged,	with
consequences	both	good	and	bad.	Politics	around	the	world	has	gone	in	strange	directions,	and	I	am
continually	worried	by	the	many	political	factions	that	are	so	easily	abandoning	their	most	basic
principles	because	they	seem	to	have	decided	that	their	(often	mutually	contradictory)	personal
causes	are	just	too	important.	And	yet	at	the	same	time,	there	are	rays	of	hope	coming	from	unusual
corners,	with	new	technological	discoveries	in	transportation,	medicine,	artificial	intelligence	-	and,
of	course,	blockchains	and	cryptography	-	that	could	open	up	a	new	chapter	for	humanity	finally
coming	to	fruition.

Where	we	started Where	we're	going

And	so,	2020	is	as	good	a	year	as	any	to	ponder	a	key	question:	how	should	we	re-evaluate	our
models	of	the	world?	What	ways	of	seeing,	understanding	and	reasoning	about	the	world	are	going	to
be	more	useful	in	the	decades	to	come,	and	what	paths	are	no	longer	as	valuable?	What	paths	did	we
not	see	before	that	were	valuable	all	along?	In	this	post,	I	will	give	some	of	my	own	answers,
covering	far	from	everything	but	digging	into	a	few	specifics	that	seem	particularly	interesting.	It's
sometimes	hard	to	tell	which	of	these	ideas	are	a	recognition	of	a	changing	reality,	and	which	are
just	myself	finally	seeing	what	has	always	been	there;	often	enough	it's	some	of	both.	The	answers	to
these	questions	have	a	deep	relevance	both	to	the	crypto	space	that	I	call	home	as	well	as	to	the
wider	world.

The	Changing	Role	of	Economics
Economics	has	historically	focused	on	"goods"	in	the	form	of	physical	objects:	production	of
food,	manufacturing	of	widgets,	buying	and	selling	houses,	and	the	like.	Physical	objects	have	some
particular	properties:	they	can	be	transferred,	destroyed,	bought	and	sold,	but	not	copied.	If	one
person	is	using	a	physical	object,	it's	usually	impractical	for	another	person	to	use	it	simultaneously.
Many	objects	are	only	valuable	if	"consumed"	outright.	Making	ten	copies	of	an	object	requires
something	close	to	ten	times	the	resources	that	it	takes	to	make	one	(not	quite	ten	times,	but
surprisingly	close,	especially	at	larger	scales).	But	on	the	internet,	very	different	rules	apply.
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Copying	is	cheap.	I	can	write	an	article	or	a	piece	of	code	once,	and	it	usually	takes	quite	a	bit	of
effort	to	write	it	once,	but	once	that	work	is	done,	an	unlimited	number	of	people	can	download	and
enjoy	it.	Very	few	things	are	"consumable";	often	products	are	superseded	by	better	ones,	but	if	that
does	not	happen,	something	produced	today	may	continue	to	provide	value	to	people	until	the	end	of
time.

On	the	internet,	"public	goods"	take	center	stage.	Certainly,	private	goods	exist,	particularly	in
the	form	of	individuals'	scarce	attention	and	time	and	virtual	assets	that	command	that	attention,	but
the	average	interaction	is	one-to-many,	not	one-to-one.	Confounding	the	situation	even	further,	the
"many"	rarely	maps	easily	to	our	traditional	structures	for	structuring	one-to-many	interactions,	such
as	companies,	cities	or	countries;.	Instead,	these	public	goods	are	typically	public	across	a	widely
scattered	collection	of	people	all	around	the	world.	Many	online	platforms	serving	wide	groups	of
people	need	governance,	to	decide	on	features,	content	moderation	policies	or	other	challenges
important	to	their	user	community,	though	there	too,	the	user	community	rarely	maps	cleanly	to
anything	but	itself.	How	is	it	fair	for	the	US	government	to	govern	Twitter,	when	Twitter	is	often	a
platform	for	public	debates	between	US	politicians	and	representatives	of	its	geopolitical	rivals?	But
clearly,	governance	challenges	exist	-	and	so	we	need	more	creative	solutions.

This	is	not	merely	of	interest	to	"pure"	online	services.	Though	goods	in	the	physical	world	-	food,
houses,	healthcare,	transportation	-	continue	to	be	as	important	as	ever,	improvements	in	these
goods	depend	even	more	than	before	on	technology,	and	technological	progress	does	happen	over
the	internet.

Examples	of	important	public	goods	in	the	Ethereum	ecosystem	that	were	funded	by	the	recent	Gitcoin	quadratic
funding	round.	Open	source	software	ecosystems,	including	blockchains,	are	hugely	dependent	on	public	goods.
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But	also,	economics	itself	seems	to	be	a	less	powerful	tool	in	dealing	with	these	issues.	Out	of
all	the	challenges	of	2020,	how	many	can	be	understood	by	looking	at	supply	and	demand	curves?
One	way	to	see	what	is	going	on	here	is	by	looking	at	the	relationship	between	economics	and
politics.	In	the	19th	century,	the	two	were	frequently	viewed	as	being	tied	together,	a	subject	called
"political	economy".	In	the	20th	century,	the	two	are	more	typically	split	apart.	But	in	the	21st
century,	the	lines	between	"private"	and	"public"	are	once	again	rapidly	blurring.	Governments	are
behaving	more	like	market	actors,	and	corporations	are	behaving	more	like	governments.

We	see	this	merge	happening	in	the	crypto	space	as	well,	as	the	researchers'	eye	of	attention	is
increasingly	switching	focus	to	the	challenge	of	governance.	Five	years	ago,	the	main	economic
topics	being	considered	in	the	crypto	space	had	to	do	with	consensus	theory.	This	is	a	tractable
economics	problem	with	clear	goals,	and	so	we	would	on	several	occasions	obtain	nice	clean	results
like	the	selfish	mining	paper.	Some	points	of	subjectivity,	like	quantifying	decentralization,	exist,	but
they	could	be	easily	encapsulated	and	treated	separately	from	the	formal	math	of	the	mechanism
design.	But	in	the	last	few	years,	we	have	seen	the	rise	of	increasingly	complicated	financial
protocols	and	DAOs	on	top	of	blockchains,	and	at	the	same	time	governance	challenges	within
blockchains.	Should	Bitcoin	Cash	redirect	12.5%	of	its	block	reward	toward	paying	a	developer
team?	If	so,	who	decides	who	that	developer	team	is?	Should	Zcash	extend	its	20%	developer	reward
for	another	four	years?	These	problems	certainly	can	be	analyzed	economically	to	some	extent,	but
the	analysis	inevitably	gets	stuck	at	concepts	like	coordination,	flipping	between	equilibria,
"Schelling	points"	and	"legitimacy",	that	are	much	more	difficult	to	express	with	numbers.	And	so,	a
hybrid	discipline,	combining	formal	mathematical	reasoning	with	the	softer	style	of	humanistic
reasoning,	is	required.

We	wanted	digital	nations,	instead	we	got	digital	nationalism
One	of	the	most	fascinating	things	that	I	noticed	fairly	early	in	the	crypto	space	starting	from	around
2014	is	just	how	quickly	it	started	replicating	the	political	patterns	of	the	world	at	large.	I	don't	mean
this	just	in	some	broad	abstract	sense	of	"people	are	forming	tribes	and	attacking	each	other",	I
mean	similarities	that	are	surprisingly	deep	and	specific.

First,	the	story.	From	2009	to	about	2013,	the	Bitcoin	world	was	a	relatively	innocent	happy	place.
The	community	was	rapidly	growing,	prices	were	rising,	and	disagreements	over	block	size	or	long-
term	direction,	while	present,	were	largely	academic	and	took	up	little	attention	compared	to	the
shared	broader	goal	of	helping	Bitcoin	grow	and	prosper.

But	in	2014,	the	schisms	started	to	arise.	Transaction	volumes	on	the	Bitcoin	blockchain	hit	250
kilobytes	per	block	and	kept	rising,	for	the	first	time	raising	fears	that	blockchain	usage	might
actually	hit	the	1	MB	limit	before	the	limit	could	be	increased.	Non-Bitcoin	blockchains,	up	until	this
point	a	minor	sideshow,	suddenly	became	a	major	part	of	the	space,	with	Ethereum	itself	arguably
leading	the	charge.	And	it	was	during	these	events	that	disagreements	that	were	before	politely
hidden	beneath	the	surface	suddenly	blew	up.	"Bitcoin	maximalism",	the	idea	that	the	goal	of	the
crypto	space	should	not	be	a	diverse	ecosystem	of	cryptocurrencies	generally	but	Bitcoin	and	Bitcoin
alone	specifically,	grew	from	a	niche	curiosity	into	a	prominent	and	angry	movement	that	Dominic
Williams	and	I	quickly	saw	for	what	it	is	and	gave	its	current	name.	The	small	block	ideology,	arguing
that	the	block	size	should	be	increased	very	slowly	or	even	never	increased	at	all	regardless	of	how
high	transaction	fees	go,	began	to	take	root.

The	disagreements	within	Bitcoin	would	soon	turn	into	an	all-out	civil	war.	Theymos,	the	operator	of
the	/r/bitcoin	subreddit	and	several	other	key	public	Bitcoin	discussion	spaces,	resorted	to	extreme
censorship	to	impose	his	(small-block-leaning)	views	on	the	community.	In	response,	the	big-blockers
moved	to	a	new	subreddit,	/r/btc.	Some	valiantly	attempted	to	defuse	tensions	with	diplomatic
conferences	including	a	famous	one	in	Hong	Kong,	and	a	seeming	consensus	was	reached,	though
one	year	later	the	small	block	side	would	end	up	reneging	on	its	part	of	the	deal.	By	2017,	the	big
block	faction	was	firmly	on	its	way	to	defeat,	and	in	August	of	that	year	they	would	secede	(or	"fork
off")	to	implement	their	own	vision	on	their	own	separate	continuation	of	the	Bitcoin	blockchain,
which	they	called	"Bitcoin	Cash"	(symbol	BCH).

The	community	split	was	chaotic,	and	one	can	see	this	in	how	the	channels	of	communication	were
split	up	in	the	divorce:	/r/bitcoin	stayed	under	the	control	of	supporters	of	Bitcoin	(BTC).	/r/btc	was
controlled	by	supporters	of	Bitcoin	Cash	(BCH).	Bitcoin.org	was	controlled	by	supporters	of	Bitcoin
(BTC).	Bitcoin.com	on	the	other	hand	was	controlled	by	supporters	of	Bitcoin	Cash	(BCH).	Each	side
claimed	themselves	to	be	the	true	Bitcoin.	The	result	looked	remarkably	similar	to	one	of	those	civil
wars	that	happens	from	time	to	time	that	results	in	a	country	splitting	in	half,	the	two	halves	calling
themselves	almost	identical	names	that	differ	only	in	which	subset	of	the	words	"democratic",
"people's"	and	"republic"	appears	on	each	side.	Neither	side	had	the	ability	to	destroy	the	other,	and
of	course	there	was	no	higher	authority	to	adjudicate	the	dispute.
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Major	Bitcoin	forks,	as	of	2020.	Does	not	include	Bitcoin	Diamond,	Bitcoin	Rhodium,	Bitcoin	Private,	or	any	of	the
other	long	list	of	Bitcoin	forks	that	I	would	highly	recommend	you	just	ignore	completely,	except	to	sell	(and

perhaps	you	should	sell	some	of	the	forks	listed	above	too,	eg.	BSV	is	definitely	a	scam!)

Around	the	same	time,	Ethereum	had	its	own	chaotic	split,	in	the	form	of	the	DAO	fork,	a
highly	controversial	resolution	to	a	theft	in	which	over	$50	million	was	stolen	from	the	first	major
smart	contract	application	on	Ethereum.	Just	like	in	the	Bitcoin	case,	there	was	first	a	civil	war	-
though	only	lasting	four	weeks	-	and	then	a	chain	split,	followed	by	an	online	war	between	the	two
now-separate	chains,	Ethereum	(ETH)	and	Ethereum	Classic	(ETC).	The	naming	split	was	as	fun	as	in
Bitcoin:	the	Ethereum	Foundation	held	ethereumproject	on	Twitter	but	Ethereum	Classic	supporters
held	ethereumproject	on	Github.

Some	on	the	Ethereum	side	would	argue	that	Ethereum	Classic	had	very	few	"real"	supporters,	and
the	whole	thing	was	mostly	a	social	attack	by	Bitcoin	supporters:	either	to	support	the	version	of
Ethereum	that	aligned	with	their	values,	or	to	cause	chaos	and	destroy	Ethereum	outright.	I	myself
believed	these	claims	somewhat	at	the	beginning,	though	over	time	I	came	to	realize	that	they	were
overhyped.	It	is	true	that	some	Bitcoin	supporters	had	certainly	tried	to	shape	the	outcome	in	their
own	image.	But	to	a	large	extent,	as	is	the	case	in	many	conflicts,	the	"foreign	interference"	card	was
simply	a	psychological	defense	that	many	Ethereum	supporters,	myself	included,	subconsciously
used	to	shield	ourselves	from	the	fact	that	many	people	within	our	own	community	really	did	have
different	values.	Fortunately	relations	between	the	two	currencies	have	since	improved	-	in	part
thanks	to	the	excellent	diplomatic	skills	of	Virgil	Griffith	-	and	Ethereum	Classic	developers	have
even	agreed	to	move	to	a	different	Github	page.

Civil	wars,	alliances,	blocs,	alliances	with	participants	in	civil	wars,	you	can	all	find	it	in	crypto.
Though	fortunately,	the	conflict	is	all	virtual	and	online,	without	the	extremely	harmful	in-person
consequences	that	often	come	with	such	things	happening	in	real	life.	So	what	can	we	learn	from	all
this?	One	important	takeaway	is	this:	if	phenomena	like	this	happen	in	contexts	as	widely	different
from	each	other	as	conflicts	between	countries,	conflicts	between	religions	and	relations	within	and
between	purely	digital	cryptocurrencies,	then	perhaps	what	we're	looking	at	is	the	indelible
epiphenomena	of	human	nature	-	something	much	more	difficult	to	resolve	than	by	changing	what
kinds	of	groups	we	organize	in.	So	we	should	expect	situations	like	this	to	continue	to	play	out	in
many	contexts	over	the	decades	to	come.	And	perhaps	it's	harder	than	we	thought	to	separate	the
good	that	may	come	out	of	this	from	the	bad:	those	same	energies	that	drive	us	to	fight	also	drive	us
to	contribute.

What	motivates	us	anyway?
One	of	the	key	intellectual	undercurrents	of	the	2000s	era	was	the	recognition	of	the	importance	of
non-monetary	motivations.	People	are	motivated	not	just	by	earning	as	much	money	as	possible	in
the	work	and	extracting	enjoyment	from	their	money	in	their	family	lives;	even	at	work	we	are
motivated	by	social	status,	honor,	altruism,	reciprocity,	a	feeling	of	contribution,	different	social
conceptions	of	what	is	good	and	valuable,	and	much	more.

These	differences	are	very	meaningful	and	measurable.	For	one	example,	see	this	Swiss	study	on
compensating	differentials	for	immoral	work	-	how	much	extra	do	employers	have	to	pay	to	convince
someone	to	do	a	job	if	that	job	is	considered	morally	unsavory?
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As	we	can	see,	the	effects	are	massive:	if	a	job	is	widely	considered	immoral,	you	need	to	pay
employees	almost	twice	as	much	for	them	to	be	willing	to	do	it.	From	personal	experience,	I	would
even	argue	that	this	understates	the	case:	in	many	cases,	top-quality	workers	would	not	be	willing	to
work	for	a	company	that	they	think	is	bad	for	the	world	at	almost	any	price.	"Work"	that	is	difficult	to
formalize	(eg.	word-of-mouth	marketing)	functions	similarly:	if	people	think	a	project	is	good,	they
will	do	it	for	free,	if	they	do	not,	they	will	not	do	it	at	all.	This	is	also	likely	why	blockchain	projects
that	raise	a	lot	of	money	but	are	unscrupulous,	or	even	just	corporate-controlled	profit-oriented	"VC
chains",	tend	to	fail:	even	a	billion	dollars	of	capital	cannot	compete	with	a	project	having	a	soul.

That	said,	it	is	possible	to	be	overly	idealistic	about	this	fact,	in	several	ways.	First	of	all,	while	this
decentralized,	non-market,	non-governmental	subsidy	toward	projects	that	are	socially
considered	to	be	good	is	massive,	likely	amounting	to	tens	of	trillions	of	dollars	per	year
globally,	its	effect	is	not	infinite.	If	a	developer	has	a	choice	between	earning	$30,000	per	year	by
being	"ideologically	pure",	and	making	a	$30	million	ICO	by	sticking	a	needless	token	into	their
project,	they	will	do	the	latter.	Second,	idealistic	motivations	are	uneven	in	what	they	motivate.	Rick
Falkvinge's	Swarmwise	played	up	the	possibility	of	decentralized	non-market	organization	in	part	by
pointing	to	political	activism	as	a	key	example.	And	this	is	true,	political	activism	does	not	require
getting	paid.	But	longer	and	more	grueling	tasks,	even	something	as	simple	as	making	good	user
interfaces,	are	not	so	easily	intrinsically	motivated.	And	so	if	you	rely	on	intrinsic	motivation	too
much,	you	get	projects	where	some	tasks	are	overdone	and	other	tasks	are	done	poorly,	or	even
ignored	entirely.	And	third,	perceptions	of	what	people	find	intrinsically	attractive	to	work	on	may
change,	and	may	even	be	manipulated.

One	important	conclusion	for	me	from	this	is	the	importance	of	culture	(and	that	oh-so-important
word	that	crypto	influencers	have	unfortunately	ruined	for	me,	"narrative").	If	a	project	having	a	high
moral	standing	is	equivalent	to	that	project	having	twice	as	much	money,	or	even	more,	then	culture
and	narrative	are	extremely	powerful	forces	that	command	the	equivalent	of	tens	of	trillions	of
dollars	of	value.	And	this	does	not	even	begin	to	cover	the	role	of	such	concepts	in	shaping	our
perceptions	of	legitimacy	and	coordination.	And	so	anything	that	influences	the	culture	can	have	a
great	impact	on	the	world	and	on	people's	financial	interests,	and	we're	going	to	see	more	and	more
sophisticated	efforts	from	all	kinds	of	actors	to	do	so	systematically	and	deliberately.	This	is	the
darker	conclusion	of	the	importance	of	non-monetary	social	motivations	-	they	create	the	battlefield
for	the	permanent	and	final	frontier	of	war,	the	war	that	is	fortunately	not	usually	deadly	but
unfortunately	impossible	to	create	peace	treaties	for	because	of	how	inextricably	subjective	it	is	to
determine	what	even	counts	as	a	battle:	the	culture	war.
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Big	X	is	here	to	stay,	for	all	X
One	of	the	great	debates	of	the	20th	century	is	that	between	"Big	Government"	and	"Big	Business"	-
with	various	permutations	of	each:	Big	Brother,	Big	Banks,	Big	Tech,	also	at	times	joining	the	stage.
In	this	environment,	the	Great	Ideologies	were	typically	defined	by	trying	to	abolish	the	Big	X	that
they	disliked:	communism	focusing	on	corporations,	anarcho-capitalism	on	governments,	and	so
forth.	Looking	back	in	2020,	one	may	ask:	which	of	the	Great	Ideologies	succeeded,	and	which	failed?

Let	us	zoom	into	one	specific	example:	the	1996	Declaration	of	Independence	of	Cyberspace:

Governments	of	the	Industrial	World,	you	weary	giants	of	flesh	and	steel,	I	come	from
Cyberspace,	the	new	home	of	Mind.	On	behalf	of	the	future,	I	ask	you	of	the	past	to	leave
us	alone.	You	are	not	welcome	among	us.	You	have	no	sovereignty	where	we	gather.

And	the	similarly-spirited	Crypto-Anarchist	Manifesto:

Computer	technology	is	on	the	verge	of	providing	the	ability	for	individuals	and	groups	to
communicate	and	interact	with	each	other	in	a	totally	anonymous	manner.	Two	persons
may	exchange	messages,	conduct	business,	and	negotiate	electronic	contracts	without	ever
knowing	the	True	Name,	or	legal	identity,	of	the	other.	Interactions	over	networks	will	be
untraceable,	via	extensive	re-routing	of	encrypted	packets	and	tamper-proof	boxes	which
implement	cryptographic	protocols	with	nearly	perfect	assurance	against	any	tampering.
Reputations	will	be	of	central	importance,	far	more	important	in	dealings	than	even	the
credit	ratings	of	today.	These	developments	will	alter	completely	the	nature	of	government
regulation,	the	ability	to	tax	and	control	economic	interactions,	the	ability	to	keep
information	secret,	and	will	even	alter	the	nature	of	trust	and	reputation.

How	have	these	predictions	fared?	The	answer	is	interesting:	I	would	say	that	they	succeeded	in	one
part	and	failed	in	the	other.	What	succeeded?	We	have	interactions	over	networks,	we	have	powerful
cryptography	that	is	difficult	for	even	state	actors	to	break,	we	even	have	powerful	cryptocurrency,
with	smart	contract	capabilities	that	the	thinkers	of	the	1990s	mostly	did	not	even	anticipate,	and
we're	increasingly	moving	toward	anonymized	reputation	systems	with	zero	knowledge	proofs.	What
failed?	Well,	the	government	did	not	go	away.	And	what	just	proved	to	be	totally	unexpected?
Perhaps	the	most	interesting	plot	twist	is	that	the	two	forces	are,	a	few	exceptions	notwithstanding,
by	and	large	not	acting	like	mortal	enemies,	and	there	are	even	many	people	within	governments
that	are	earnestly	trying	to	find	ways	to	be	friendly	to	blockchains	and	cryptocurrency	and	new	forms
of	cryptographic	trust.

What	we	see	in	2020	is	this:	Big	Government	is	as	powerful	as	ever,	but	Big	Business	is	also	as
powerful	as	ever.	"Big	Protest	Mob"	is	as	powerful	as	ever	too,	as	is	Big	Tech,	and	soon	enough
perhaps	Big	Cryptography.	It's	a	densely	populated	jungle,	with	an	uneasy	peace	between	many
complicated	actors.	If	you	define	success	as	the	total	absence	of	a	category	of	powerful	actor	or	even
a	category	of	activity	that	you	dislike,	then	you	will	probably	leave	the	21st	century	disappointed.	But
if	you	define	success	more	through	what	happens	than	through	what	doesn't	happen,	and	you	are
okay	with	imperfect	outcomes,	there	is	enough	space	to	make	everyone	happy.

Often,	the	boundary	between	multiple	intersecting	worlds	is	the	most	interesting	place	to	be.	The	monkeys	get	it.
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Prospering	in	the	dense	jungle
So	we	have	a	world	where:

One-to-one	interactions	are	less	important,	one-to-many	and	many-to-many	interactions	are
more	important.
The	environment	is	much	more	chaotic,	and	difficult	to	model	with	clean	and	simple	equations.
Many-to-many	interactions	particularly	follow	strange	rules	that	we	still	do	not	understand	well.
The	environment	is	dense,	and	different	categories	of	powerful	actors	are	forced	to	live	quite
closely	side	by	side	with	each	other.

In	some	ways,	this	is	a	world	that	is	less	convenient	for	someone	like	myself.	I	grew	up	with	a	form	of
economics	that	is	focused	on	analyzing	simpler	physical	objects	and	buying	and	selling,	and	am	now
forced	to	contend	with	a	world	where	such	analysis,	while	not	irrelevant,	is	significantly	less	relevant
than	before.	That	said,	transitions	are	always	challenging.	In	fact,	transitions	are	particularly
challenging	for	those	who	think	that	they	are	not	challenging	because	they	think	that	the	transition
merely	confirms	what	they	believed	all	along.	If	you	are	still	operating	today	precisely	according	to	a
script	that	was	created	in	2009,	when	the	Great	Financial	Crisis	was	the	most	recent	pivotal	event	on
anyone's	mind,	then	there	are	almost	certainly	important	things	that	happened	in	the	last	decade
that	you	are	missing.	An	ideology	that's	finished	is	an	ideology	that's	dead.

It's	a	world	where	blockchains	and	cryptocurrencies	are	well	poised	to	play	an	important	part,
though	for	reasons	much	more	complex	than	many	people	think,	and	having	as	much	to	do	with
cultural	forces	as	anything	financial	(one	of	the	more	underrated	bull	cases	for	cryptocurrency	that	I
have	always	believed	is	simply	the	fact	that	gold	is	lame,	the	younger	generations	realize	that	it's
lame,	and	that	$9	trillion	has	to	go	somewhere).	Similarly	complex	forces	are	what	will	lead	to
blockchains	and	cryptocurrencies	being	useful.	It's	easy	to	say	that	any	application	can	be	done	more
efficiently	with	a	centralized	service,	but	in	practice	social	coordination	problems	are	very	real,	and
unwillingness	to	sign	onto	a	system	that	has	even	a	perception	of	non-neutrality	or	ongoing
dependence	on	a	third	party	is	real	too.	And	so	the	centralized	and	even	consortium-based
approaches	claiming	to	replace	blockchains	don't	get	anywhere,	while	"dumb	and	inefficient"	public-
blockchain-based	solutions	just	keep	quietly	moving	forward	and	gaining	actual	adoption.

And	finally	it's	a	very	multidisciplinary	world,	one	that	is	much	harder	to	break	up	into	layers	and
analyze	each	layer	separately.	You	may	need	to	switch	from	one	style	of	analysis	to	another	style	of
analysis	in	mid-sentence.	Things	happen	for	strange	and	inscrutable	reasons,	and	there	are	always
surprises.	The	question	that	remains	is:	how	do	we	adapt	to	it?

https://www.goldeneaglecoin.com/Guide/value-of-all-the-gold-in-the-world
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Convex	and	Concave	Dispositions

One	of	the	major	philosophical	differences	that	I	have	noticed	in	how	people	approach	making	large-scale	decisions	in
the	world	is	how	they	approach	the	age-old	tradeoff	of	compromise	versus	purity.	Given	a	choice	between	two
alternatives,	often	both	expressed	as	deep	principled	philosophies,	do	you	naturally	gravitate	toward	the	idea	that	one
of	the	two	paths	should	be	correct	and	we	should	stick	to	it,	or	do	you	prefer	to	find	a	way	in	the	middle	between	the
two	extremes?

In	mathematical	terms,	we	can	rephrase	this	as	follows:	do	you	expect	the	world	that	we	are	living	in,	and	in
particular	the	way	that	it	responds	to	the	actions	that	we	take,	to	fundamentally	be	concave	or	convex?

Someone	with	a	concave	disposition	might	say	things	like	this:

"Going	to	the	extremes	has	never	been	good	for	us;	you	can	die	from	being	too	hot	or	too	cold.	We	need	to	find
the	balance	between	the	two	that's	just	right"
"If	you	implement	only	a	little	bit	of	a	philosophy,	you	can	pick	the	parts	that	have	the	highest	benefits	and	the
lowest	risks,	and	avoid	the	parts	that	are	more	risky.	But	if	you	insist	on	going	to	the	extremes,	once	you've
picked	the	low-hanging	fruit,	you'll	be	forced	to	look	harder	and	harder	for	smaller	and	smaller	benefits,	and
before	you	know	it	the	growing	risks	might	outweigh	the	benefit	of	the	whole	thing"
"The	opposing	philosophy	probably	has	some	value	too,	so	we	should	try	to	combine	the	best	parts	of	both,	and
definitely	avoid	doing	things	that	the	opposing	philosophy	considers	to	be	extremely	terrible,	just	in	case"

Someone	with	a	convex	disposition	might	say	things	like	this:

"We	need	to	focus.	Otherwise,	we	risk	becoming	a	jack	of	all	trades,	master	of	none"
"If	we	take	even	a	few	steps	down	that	road,	it	will	become	slippery	slope	and	only	pull	us	down	ever	further	until
we	end	up	in	the	abyss.	There's	only	two	stable	positions	on	the	slope:	either	we're	down	there,	or	we	stay	up
here"
"If	you	give	an	inch,	they	will	take	a	mile"
"Whether	we're	following	this	philosophy	or	that	philosophy,	we	should	be	following	some	philosophy	and	just
stick	to	it.	Making	a	wishy-washy	mix	of	everything	doesn't	make	sense"

I	personally	find	myself	perenially	more	sympathetic	to	the	concave	approach	than	the	convex	approach,	across	a	wide
variety	of	contexts.	If	I	had	to	choose	either	(i)	a	coin-flip	between	anarcho-capitalism	and	Soviet	communism	or	(ii)	a
50/50	compromise	between	the	two,	I	would	pick	the	latter	in	a	heartbeat.	I	argued	for	moderation	in	Bitcoin	block
size	debates,	arguing	against	both	1-2	MB	small	blocks	and	128	MB	"very	big	blocks".	I've	argued	against	the	idea
that	freedom	and	decentralization	are	"you	either	have	it	or	you	don't"	properties	with	no	middle	ground.	I	argued	in
favor	of	the	DAO	fork,	but	to	many	people's	surprise	I've	argued	since	then	against	similar	"state-intervention"	hard
forks	that	were	proposed	more	recently.	As	I	said	in	2019,	"support	for	Szabo's	law	[blockchain	immutability]	is	a
spectrum,	not	a	binary".

But	as	you	can	probably	tell	by	the	fact	that	I	needed	to	make	those	statements	at	all,	not	everyone	seems	to	share	the
same	broad	intuition.	I	would	particularly	argue	that	the	Ethereum	ecosystem	in	general	has	a	fundamentally
concave	temperament,	while	the	Bitcoin	ecosystem's	temperament	is	much	more	fundamentally	convex.	In
Bitcoin	land,	you	can	frequently	hear	arguments	that,	for	example,	either	you	have	self-sovereignty	or	you	don't,	or
that	any	system	must	have	either	a	fundamentally	centralizing	or	a	fundamentally	decentralizing	tendency,	with	no
possibility	halfway	in	between.
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The	occasional	half-joking	support	for	Tron	is	a	key	example:	from	my	own	concave	point	of	view,	if	you	value
decentralization	and	immutability,	you	should	recognize	that	while	the	Ethereum	ecosystem	does	sometimes	violate
purist	conceptions	of	these	values,	Tron	violates	them	far	more	egregiously	and	without	remorse,	and	so	Ethereum	is
still	by	far	the	more	palatable	of	the	two	options.	But	from	a	convex	point	of	view,	the	extremeness	of	Tron's	violations
of	these	norms	is	a	virtue:	while	Ethereum	half-heartedly	pretends	to	be	decentralized,	Tron	is	centralized	but	at	least
it's	proud	and	honest	about	it.

This	difference	between	concave	and	convex	mindsets	is	not	at	all	limited	to	arcane	points	about
efficiency/decentralization	tradeoffs	in	cryptocurrencies.	It	applies	to	politics	(guess	which	side	has	more	outright
anarcho-capitalists),	other	choices	in	technology,	and	even	what	food	you	eat.

But	in	all	of	these	questions	too,	I	personally	find	myself	fairly	consistently	coming	out	on	the	side	of	balance.

Being	concave	about	concavity
But	it's	worth	noting	that	even	on	the	meta-level,	concave	temperament	is	something	that	one	must	take	great	care	to
avoid	being	extreme	about.	There	are	certainly	situations	where	policy	A	gives	a	good	result,	policy	B	gives	a	worse
but	still	tolerable	result,	but	a	half-hearted	mix	between	the	two	is	worst	of	all.	The	coronavirus	is	perhaps	an
excellent	example:	a	100%	effective	travel	ban	is	far	more	than	twice	as	useful	as	a	50%	effective	travel	ban.	An
effective	lockdown	that	pushes	the	R0	of	the	virus	down	below	1	can	eradicate	the	virus,	leading	to	a	quick	recovery,
but	a	half-hearted	lockdown	that	only	pushes	the	R0	down	to	1.3	leads	to	months	of	agony	with	little	to	show	for	it.
This	is	one	possible	explanation	for	why	many	Western	countries	responded	poorly	to	it:	political	systems	designed	for
compromise	risk	falling	into	middle	approaches	even	when	they	are	not	effective.

Another	example	is	a	war:	if	you	invade	country	A,	you	conquer	country	A,	if	you	invade	country	B,	you	conquer
country	B,	but	if	you	invade	both	at	the	same	time	sending	half	your	soldiers	to	each	one,	the	power	of	the	two
combined	will	crush	you.	In	general,	problems	where	the	effect	of	a	response	is	convex	are	often	places	where	you	can
find	benefits	of	some	degree	of	centralization.

But	there	are	also	many	places	where	a	mix	is	clearly	better	than	either	extreme.	A	common	example	is	the	question
of	setting	tax	rates.	In	economics	there	is	the	general	principle	that	deadweight	loss	is	quadratic:	that	is,	the	harms
from	the	inefficiency	of	a	tax	are	proportional	to	the	square	of	the	tax	rate.	The	reason	why	this	is	the	case	can	be
seen	as	follows.	A	tax	rate	of	2%	deters	very	few	transactions,	and	even	the	transactions	it	deters	are	not	very
valuable	-	how	valuable	can	a	transaction	be	if	a	mere	2%	tax	is	enough	to	discourage	the	participants	from	making	it?
A	tax	rate	of	20%	would	deter	perhaps	ten	times	more	transactions,	but	each	individual	transaction	that	was	deterred
is	itself	ten	times	more	valuable	to	its	participants	than	in	the	2%	case.	Hence,	a	10x	higher	tax	may	cause	100x
higher	economic	harm.	And	for	this	reason,	a	low	tax	is	generally	better	than	a	coin	flip	between	high	tax	and	no	tax.

By	similar	economic	logic,	an	outright	prohibition	on	some	behavior	may	cause	more	than	twice	as	much	harm	as	a
tax	set	high	enough	to	only	deter	half	of	people	from	participating.	Replacing	existing	prohibitions	with	medium-high
punitive	taxes	(a	very	concave-temperamental	thing	to	do)	could	increase	efficiency,	increase	freedom	and	provide
valuable	revenue	to	build	public	goods	or	help	the	impoverished.

Another	example	of	effects	like	this	in	Laffer	curve:	a	tax	rate	of	zero	raises	no	revenue,	a	tax	rate	of	100%	raises	no
revenue	because	no	one	bothers	to	work,	but	some	tax	rate	in	the	middle	raises	the	most	revenue.	There	are	debates
about	what	that	revenue-maximizing	rate	is,	but	in	general	there's	broad	agreement	that	the	chart	looks	something
like	this:
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If	you	had	to	pick	either	the	average	of	two	proposed	tax	plans,	or	a	coin-flip	between	them,	it's	obvious	that	the
average	is	usually	best.	And	taxes	are	not	the	only	phenomenon	that	are	like	this;	economics	studies	a	wide	array	of
"diminishing	returns"	phenomena	which	occur	everywhere	in	production,	consumption	and	many	other	aspects	of
regular	day-to-day	behavior.	Finally,	a	common	flip-side	of	diminishing	returns	is	accelerating	costs:	to	give	one
notable	example,	if	you	take	standard	economic	models	of	utility	of	money,	they	directly	imply	that	double	the
economic	inequality	can	cause	four	times	the	harm.

The	world	has	more	than	one	dimension
Another	point	of	complexity	is	that	in	the	real	world,	policies	are	not	just	single-dimensional	numbers.	There	are	many
ways	to	average	between	two	different	policies,	or	two	different	philosophies.	One	easy	example	to	see	this	is:
suppose	that	you	and	your	friend	want	to	live	together,	but	you	want	to	live	in	Toronto	and	your	friend	wants	to	live	in
New	York.	How	would	you	compromise	between	these	two	options?

Well,	you	could	take	the	geographic	compromise,	and	enjoy	your	peaceful	existence	at	the	arithmetic	midpoint
between	the	two	lovely	cities	at....

This	Assembly	of	God	church	about	29km	southwest	of	Ithaca,	NY.
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Or	you	could	be	even	more	mathematically	pure,	and	take	the	straight-line	midpoint	between	Toronto	and	New	York
without	even	bothering	to	stay	on	the	Earth's	surface.	Then,	you're	still	pretty	close	to	that	church,	but	you're	six
kilometers	under	it.	A	different	way	to	compromise	is	spending	six	months	every	year	in	Toronto	and	six	months	in
New	York	-	and	this	may	well	be	an	actually	reasonable	path	for	some	people	to	take.

The	point	is,	when	the	options	being	presented	to	you	are	more	complicated	than	simple	single-dimensional	numbers,
figuring	out	how	to	compromise	between	the	options	well,	and	really	take	the	best	parts	of	both	and	not	the	worst
parts	of	both,	is	an	art,	and	a	challenging	one.

And	this	is	to	be	expected:	"convex"	and	"concave"	are	terms	best	suited	to	mathematical	functions	where	the	input
and	the	output	are	both	one-dimensional.	The	real	world	is	high-dimensional	-	and	as	machine-learning	researchers
have	now	well	established,	in	high-dimensional	environments	the	most	common	setting	that	you	can	expect	to	find
yourself	in	is	not	a	universally	convex	or	universally	concave	one,	but	rather	a	saddle	point:	a	point	where	the	local
region	is	convex	in	some	directions	but	concave	in	other	directions.

A	saddle	point.	Convex	left-to-right,	concave	forward-to-backward.

This	is	probably	the	best	mathematical	explanation	for	why	both	of	these	dispositions	are	to	some	extent	necessary:
the	world	is	not	entirely	convex,	but	it	is	not	entirely	concave	either.	But	the	existence	of	some	concave	path	between
any	two	distant	positions	A	and	B	is	very	likely,	and	if	you	can	find	that	path	then	you	can	often	find	a	synthesis
between	the	two	positions	that	is	better	than	both.
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Why	Proof	of	Stake	(Nov	2020)

There	are	three	key	reasons	why	PoS	is	a	superior	blockchain	security	mechanism	compared	to	PoW.

PoS	offers	more	security	for	the	same	cost
The	easiest	way	to	see	this	is	to	put	proof	of	stake	and	proof	of	work	side	by	side,	and	look	at	how
much	it	costs	to	attack	a	network	per	$1	per	day	in	block	rewards.

GPU-based	proof	of	work

You	can	rent	GPUs	cheaply,	so	the	cost	of	attacking	the	network	is	simply	the	cost	of	renting	enough
GPU	power	to	outrun	the	existing	miners.	For	every	$1	of	block	rewards,	the	existing	miners	should
be	spending	close	to	$1	in	costs	(if	they're	spending	more,	miners	will	drop	out	due	to	being
unprofitable,	if	they're	spending	less,	new	miners	can	join	in	and	take	high	profits).	Hence,	attacking
the	network	just	requires	temporarily	spending	more	than	$1	per	day,	and	only	for	a	few	hours.

Total	cost	of	attack:	~$0.26	(assuming	6-hour	attack),	potentially	reduced	to	zero	as	the	attacker
receives	block	rewards

ASIC-based	proof	of	work

ASICs	are	a	capital	cost:	you	buy	an	ASIC	once	and	you	can	expect	it	to	be	useful	for	~2	years	before
it	wears	out	and/or	is	obsoleted	by	newer	and	better	hardware.	If	a	chain	gets	51%	attacked,	the
community	will	likely	respond	by	changing	the	PoW	algorithm	and	your	ASIC	will	lose	its	value.	On
average,	mining	is	~1/3	ongoing	costs	and	~2/3	capital	costs	(see	here	for	some	sources).	Hence,	per
$1	per	day	in	reward,	miners	will	be	spending	~$0.33	per	day	on	electricity+maintenance	and
~$0.67	per	day	on	their	ASIC.	Assuming	an	ASIC	lasts	~2	years,	that's	$486.67	that	a	miner	would
need	to	spend	on	that	quantity	of	ASIC	hardware.

Total	cost	of	attack:	$486.67	(ASICs)	+	$0.08	(electricity+maintenance)	=	$486.75

That	said,	it's	worth	noting	that	ASICs	provide	this	heightened	level	of	security	against	attacks	at	a
high	cost	of	centralization,	as	the	barriers	to	entry	to	joining	become	very	high.

Proof	of	stake

Proof	of	stake	is	almost	entirely	capital	costs	(the	coins	being	deposited);	the	only	operating	costs	are
the	cost	of	running	a	node.	Now,	how	much	capital	are	people	willing	to	lock	up	to	get	$1	per	day	of
rewards?	Unlike	ASICs,	deposited	coins	do	not	depreciate,	and	when	you're	done	staking	you
get	your	coins	back	after	a	short	delay.	Hence,	participants	should	be	willing	to	pay	much
higher	capital	costs	for	the	same	quantity	of	rewards.

Let's	assume	that	a	~15%	rate	of	return	is	enough	to	motivate	people	to	stake	(that	is	the	expected
eth2	rate	of	return).	Then,	$1	per	day	of	rewards	will	attract	6.667	years'	worth	of	returns	in
deposits,	or	$2433.	Hardware	and	electricity	costs	of	a	node	are	small;	a	thousand-dollar	computer
can	stake	for	hundreds	of	thousands	of	dollars	in	deposits,	and	~$100	per	months	in	electricity	and
internet	is	sufficient	for	such	an	amount.	But	conservatively,	we	can	say	these	ongoing	costs	are
~10%	of	the	total	cost	of	staking,	so	we	only	have	$0.90	per	day	of	rewards	that	end	up
corresponding	to	capital	costs,	so	we	do	need	to	cut	the	above	figure	by	~10%.

Total	cost	of	attack:	$0.90/day	*	6.667	years	=	$2189

In	the	long	run,	this	cost	is	expected	to	go	even	higher,	as	staking	becomes	more	efficient	and	people
become	comfortable	with	lower	rates	of	return.	I	personally	expect	this	number	to	eventually	rise	to
something	like	$10000.

Note	that	the	only	"cost"	being	incurred	to	get	this	high	level	of	security	is	just	the	inconvenience	of
not	being	able	to	move	your	coins	around	at	will	while	you	are	staking.	It	may	even	be	the	case	that
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the	public	knowledge	that	all	these	coins	are	locked	up	causes	the	value	of	the	coin	to	rise,	so	the
total	amount	of	money	floating	around	in	the	community,	ready	to	make	productive	investments	etc,
remains	the	same!	Whereas	in	PoW,	the	"cost"	of	maintaining	consensus	is	real	electricity
being	burned	in	insanely	large	quantities.

Higher	security	or	lower	costs?

Note	that	there	are	two	ways	to	use	this	5-20x	gain	in	security-per-cost.	One	is	to	keep	block	rewards
the	same	but	benefit	from	increased	security.	The	other	is	to	massively	reduce	block	rewards	(and
hence	the	"waste"	of	the	consensus	mechanism)	and	keep	the	security	level	the	same.

Either	way	is	okay.	I	personally	prefer	the	latter,	because	as	we	will	see	below,	in	proof	of	stake	even
a	successful	attack	is	much	less	harmful	and	much	easier	to	recover	from	than	an	attack	on	proof	of
work!

Attacks	are	much	easier	to	recover	from	in	proof	of	stake
In	a	proof	of	work	system,	if	your	chain	gets	51%	attacked,	what	do	you	even	do?	So	far,	the	only
response	in	practice	has	been	"wait	it	out	until	the	attacker	gets	bored".	But	this	misses	the
possibility	of	a	much	more	dangerous	kind	of	attack	called	a	spawn	camping	attack,	where	the
attacker	attacks	the	chain	over	and	over	again	with	the	explicit	goal	of	rendering	it	useless.

In	a	GPU-based	system,	there	is	no	defense,	and	a	persistent	attacker	may	quite	easily	render	a
chain	permanently	useless	(or	more	realistically,	switches	to	proof	of	stake	or	proof	of	authority).	In
fact,	after	the	first	few	days,	the	attacker's	costs	may	become	very	low,	as	honest	miners	will	drop
out	since	they	have	no	way	to	get	rewards	while	the	attack	is	going	on.

In	an	ASIC-based	system,	the	community	can	respond	to	the	first	attack,	but	continuing	the
attack	from	there	once	again	becomes	trivial.	The	community	would	meet	the	first	attack	by
hard-forking	to	change	the	PoW	algorithm,	thereby	"bricking"	all	ASICs	(the	attacker's	and	honest
miners'!).	But	if	the	attacker	is	willing	to	suffer	that	initial	expense,	after	that	point	the	situation
reverts	to	the	GPU	case	(as	there	is	not	enough	time	to	build	and	distribute	ASICs	for	the	new
algorithm),	and	so	from	there	the	attacker	can	cheaply	continue	the	spawn	camp	inevitably.

In	the	PoS	case,	however,	things	are	much	brighter.	For	certain	kinds	of	51%	attacks
(particularly,	reverting	finalized	blocks),	there	is	a	built-in	"slashing"	mechanism	in	the	proof	of	stake
consensus	by	which	a	large	portion	of	the	attacker's	stake	(and	no	one	else's	stake)	can	get
automatically	destroyed.	For	other,	harder-to-detect	attacks	(notably,	a	51%	coalition	censoring
everyone	else),	the	community	can	coordinate	on	a	minority	user-activated	soft	fork	(UASF)	in
which	the	attacker's	funds	are	once	again	largely	destroyed	(in	Ethereum,	this	is	done	via	the
"inactivity	leak	mechanism").	No	explicit	"hard	fork	to	delete	coins"	is	required;	with	the
exception	of	the	requirement	to	coordinate	on	the	UASF	to	select	a	minority	block,
everything	else	is	automated	and	simply	following	the	execution	of	the	protocol	rules.

Hence,	attacking	the	chain	the	first	time	will	cost	the	attacker	many	millions	of	dollars,	and	the
community	will	be	back	on	their	feet	within	days.	Attacking	the	chain	the	second	time	will	still	cost
the	attacker	many	millions	of	dollars,	as	they	would	need	to	buy	new	coins	to	replace	their	old	coins
that	were	burned.	And	the	third	time	will...	cost	even	more	millions	of	dollars.	The	game	is	very
asymmetric,	and	not	in	the	attacker's	favor.

Proof	of	stake	is	more	decentralized	than	ASICs
GPU-based	proof	of	work	is	reasonably	decentralized;	it	is	not	too	hard	to	get	a	GPU.	But	GPU-based
mining	largely	fails	on	the	"security	against	attacks"	criterion	that	we	mentioned	above.	ASIC-based
mining,	on	the	other	hand,	requires	millions	of	dollars	of	capital	to	get	into	(and	if	you	buy	an	ASIC
from	someone	else,	most	of	the	time,	the	manufacturing	company	gets	the	far	better	end	of	the	deal).

This	is	also	the	correct	answer	to	the	common	"proof	of	stake	means	the	rich	get	richer"	argument:
ASIC	mining	also	means	the	rich	get	richer,	and	that	game	is	even	more	tilted	in	favor	of	the	rich.	At
least	in	PoS	the	minimum	needed	to	stake	is	quite	low	and	within	reach	of	many	regular	people.

Additionally,	proof	of	stake	is	more	censorship	resistant.	GPU	mining	and	ASIC	mining	are	both
very	easy	to	detect:	they	require	huge	amounts	of	electricity	consumption,	expensive	hardware
purchases	and	large	warehouses.	PoS	staking,	on	the	other	hand,	can	be	done	on	an	unassuming
laptop	and	even	over	a	VPN.
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Possible	advantages	of	proof	of	work
There	are	two	primary	genuine	advantages	of	PoW	that	I	see,	though	I	see	these	advantages	as	being
fairly	limited.

Proof	of	stake	is	more	like	a	"closed	system",	leading	to	higher	wealth
concentration	over	the	long	term

In	proof	of	stake,	if	you	have	some	coin	you	can	stake	that	coin	and	get	more	of	that	coin.	In	proof	of
work,	you	can	always	earn	more	coins,	but	you	need	some	outside	resource	to	do	so.	Hence,	one
could	argue	that	over	the	long	term,	proof	of	stake	coin	distributions	risk	becoming	more	and	more
concentrated.

The	main	response	to	this	that	I	see	is	simply	that	in	PoS,	the	rewards	in	general	(and	hence
validator	revenues)	will	be	quite	low;	in	eth2,	we	are	expecting	annual	validator	rewards	to	equal
~0.5-2%	of	the	total	ETH	supply.	And	the	more	validators	are	staking,	the	lower	interest	rates	get.
Hence,	it	would	likely	take	over	a	century	for	the	level	of	concentration	to	double,	and	on	such	time
scales	other	pressures	(people	wanting	to	spend	their	money,	distributing	their	money	to	charity	or
among	their	children,	etc.)	are	likely	to	dominate.

Proof	of	stake	requires	"weak	subjectivity",	proof	of	work	does	not

See	here	for	the	original	intro	to	the	concept	of	"weak	subjectivity".	Essentially,	the	first	time	a	node
comes	online,	and	any	subsequent	time	a	node	comes	online	after	being	offline	for	a	very	long
duration	(ie.	multiple	months),	that	node	must	find	some	third-party	source	to	determine	the	correct
head	of	the	chain.	This	could	be	their	friend,	it	could	be	exchanges	and	block	explorer	sites,	the
client	developers	themselves,	or	many	other	actors.	PoW	does	not	have	this	requirement.

However,	arguably	this	is	a	very	weak	requirement;	in	fact,	users	need	to	trust	client	developers
and/or	"the	community"	to	about	this	extent	already.	At	the	very	least,	users	need	to	trust	someone
(usually	client	developers)	to	tell	them	what	the	protocol	is	and	what	any	updates	to	the	protocol
have	been.	This	is	unavoidable	in	any	software	application.	Hence,	the	marginal	additional	trust
requirement	that	PoS	imposes	is	still	quite	low.

But	even	if	these	risks	do	turn	out	to	be	significant,	they	seem	to	me	to	be	much	lower	than	the
immense	gains	that	PoS	sytems	get	from	their	far	greater	efficiency	and	their	better	ability	to	handle
and	recover	from	attacks.

See	also:	my	previous	pieces	on	proof	of	stake.

Proof	of	Stake	FAQ
A	Proof	of	Stake	Design	Philosophy
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Gitcoin	Grants	Round	7	Retrospective

Round	7	of	Gitcoin	Grants	has	successfully	completed!	This	round	has	seen	an	unprecedented	growth	in	interest	and	contributions,	with	$274,830	in
contributions	and	$450,000	in	matched	funds	distributed	across	857	projects.

The	category	structure	was	once	again	changed;	this	time	was	had	a	split	between	"dapp	tech",	"infrastructure	tech"	and	"community".	Here	are	the
results:

Defi	joins	the	matching!
In	this	round,	we	were	able	to	have	much	higher	matching	values	than	before.	This	was	because	the	usual	matchings,	provided	by	the	Ethereum
Foundation	and	a	few	other	actors,	were	supplemented	for	the	first	time	by	a	high	level	of	participation	from	various	defi	projects:

The	matchers	were:

Chainlink,	a	smart	contract	oracle	project
Optimism,	a	layer-2	optimistic	rollup
The	Ethereum	Foundation
Balancer,	a	decentralized	exchange
Synthetix,	a	synthetic	assets	platform
Yearn,	a	collateralized-lending	platform
Three	Arrows	Capital,	an	investment	fund
Defiance	Capital,	another	investment	fund
Future	Fund,	which	is	totally	not	an	investment	fund!	(/s)
$MEME,	a	memecoin
Yam,	a	defi	project
Some	individual	contributors:	ferretpatrol,	bantg,	Mariano	Conti,	Robert	Leshner,	Eric	Conner,	10b576da0

The	projects	together	contributed	a	large	amount	of	matching	funding,	some	of	which	was	used	this	round	and	some	of	which	is	reserved	as	a	"rainy
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day	fund"	for	future	rounds	in	case	future	matchers	are	less	forthcoming.

This	is	a	significant	milestone	for	the	ecosystem	because	it	shows	that	Gitcoin	Grants	is	expanding	beyond	reliance	on	a	very	small	number	of
funders,	and	is	moving	toward	something	more	sustainable.	But	it	is	worth	exploring,	what	exactly	is	driving	these	matchers	to	contribute,	and	is	it
sustainable?

There	are	a	few	possibile	motivations	that	are	likely	all	in	play	to	various	extents:

1.	 People	are	naturally	altruistic	to	some	extent,	and	this	round	defi	projects	got	unexpectedly	wealthy	for	the	first	time	due	to	a	rapid	rise	in
interest	and	token	prices,	and	so	donating	some	of	that	windfall	felt	like	a	natural	"good	thing	to	do"

2.	 Many	in	the	community	are	critical	of	defi	projects	by	default,	viewing	them	as	unproductive	casinos	that	create	a	negative	image	of	what
Ethereum	is	supposed	to	be	about.	Contributing	to	public	goods	is	an	easy	way	for	a	defi	project	to	show	that	they	want	to	be	a	positive
contributor	to	the	ecosystem	and	make	it	better

3.	 Even	in	the	absence	of	such	negative	perceptions,	defi	is	a	competitive	market	that	is	heavily	dependent	on	community	support	and	network
effects,	and	so	it's	very	valuable	to	a	project	to	win	friends	in	the	ecosystem

4.	 The	largest	defi	projects	capture	enough	of	the	benefit	from	these	public	goods	that	it's	in	their	own	interest	to	contribute
5.	 There's	a	high	degree	of	common-ownership	between	defi	projects	(holders	of	one	token	also	hold	other	tokens	and	hold	ETH),	and	so	even	if

it's	not	strictly	in	a	project's	interest	to	donate	a	large	amount,	token	holders	of	that	project	push	the	project	to	contribute	because	they	as
holders	benefit	from	the	gains	to	both	that	project	but	also	to	the	other	projects	whose	tokens	they	hold.

The	remaining	question	is,	of	course:	how	sustainable	will	these	incentives	be?	Are	the	altruistic	and	public-relations	incentives	only	large	enough
for	a	one-time	burst	of	donations	of	this	size,	or	could	it	become	more	sustainable?	Could	we	reliably	expect	to	see,	say,	$2-3	million	per	year	spent
on	quadratic	funding	matching	from	here	on?	If	so,	it	would	be	excellent	news	for	public	goods	funding	diversification	and	democratization	in	the
Ethereum	ecosystem.

Where	did	the	troublemakers	go?

One	curious	result	from	the	previous	round	and	this	round	is	that	the	"controversial"	community	grant	recipients	from	previous	rounds	seem	to	have
dropped	in	prominence	on	their	own.	In	theory,	we	should	have	seen	them	continue	to	get	support	from	their	supporters	with	their	detractors	being
able	to	do	nothing	about	it.	In	practice,	though,	the	top	media	recipients	this	round	appear	to	be	relatively	uncontroversial	and	universally	beloved
mainstays	of	the	Ethereum	ecosystem.	Even	the	Zero	Knowledge	Podcast,	an	excellent	podcast	but	one	aimed	for	a	relatively	smaller	and	more
highly	technical	audience,	has	received	a	large	contribution	this	round.

What	happened?	Why	did	the	distribution	of	media	recipients	improve	in	quality	all	on	its	own?	Is	the	mechanism	perhaps	more	self-correcting	than
we	had	thought?

Overpayment

This	round	is	the	first	round	where	top	recipients	on	all	sides	received	quite	a	large	amount.	On	the	infrastructure	side,	the	White	Hat	Hacking
project	(basically	a	fund	to	donate	to	samczsun)	received	a	total	of	$39,258,	and	the	Bankless	podcast	got	$47,620.	We	could	ask	the	question:	are
the	top	recipients	getting	too	much	funding?

To	be	clear,	I	do	think	that	it's	very	improper	to	try	to	create	a	moral	norm	that	public	goods	contributors	should	only	be	earning	salaries	up	to	a
certain	level	and	should	not	be	able	to	earn	much	more	than	that.	People	launching	coins	earn	huge	windfalls	all	the	time;	it	is	completely	natural
and	fair	for	public	goods	contributors	to	also	get	that	possibility	(and	furthermore,	the	numbers	from	this	round	translate	to	about	~$200,000	per
year,	which	is	not	even	that	high).

However,	one	can	ask	a	more	limited	and	pragmatic	question:	given	the	current	reward	structure,	is	putting	an	extra	$1	into	the	hands	of	a	top
contributor	less	valuable	than	putting	$1	into	the	hands	of	one	of	the	other	very	valuable	projects	that's	still	underfunded?	Turbogeth,	Nethermind,
RadicalXChange	and	many	other	projects	could	still	do	quite	a	lot	with	a	marginal	dollar.	For	the	first	time,	the	matching	amounts	are	high	enough
that	this	is	actually	a	significant	issue.

Especially	if	matching	amounts	increase	even	further,	is	the	ecosystem	going	to	be	able	to	correctly	allocate	funds	and	avoid	overfunding	projects?
Alternatively,	if	it	fails	to	avoid	over-concentrating	funds,	is	that	all	that	bad?	Perhaps	the	possibility	of	becoming	the	center	of	attention	for	one
round	and	earning	a	$500,000	windfall	will	be	part	of	the	incentive	that	motivates	independent	public	goods	contributors!

We	don't	know;	but	these	are	the	yet-unknown	facts	that	running	the	experiment	at	its	new	increased	scale	is	for	the	first	time	going	to	reveal.

Let's	talk	about	categories...

The	concept	of	categories	as	it	is	currently	implemented	in	Gitcoin	Grants	is	a	somewhat	strange	one.	Each	category	has	a	fixed	total	matching
amount	that	is	split	between	projects	within	that	category.	What	this	mechanism	basically	says	is	that	the	community	can	be	trusted	to	choose
between	projects	within	a	category,	but	we	need	a	separate	technocratic	judgement	to	judge	how	the	funds	are	split	between	the	different
categories	in	the	first	place.

But	it	gets	more	paradoxical	from	here.	In	Round	7,	a	"collections"	feature	was	introduced	halfway	through	the	round:

https://www.zeroknowledge.fm/
https://samczsun.com/
http://podcast.banklesshq.com/
https://gitcoin.co/grants/collections


If	you	click	"Add	to	Cart"	on	a	collection,	you	immediately	add	everything	in	the	collection	to	your	cart.	This	is	strange	because	this	mechanism
seems	to	send	the	exact	opposite	message:	users	that	don't	understand	the	details	well	can	choose	to	allocate	funds	to	entire	categories,	but	(unless
they	manually	edit	the	amounts)	they	should	not	be	making	many	active	decisions	within	each	category.

Which	is	it?	Do	we	trust	the	radical	quadratic	fancy	democracy	to	allocate	within	categories	but	not	between	them,	do	we	trust	it	to	allocate
between	categories	but	nudge	people	away	from	making	fine-grained	decisions	within	them,	or	something	else	entirely?	I	recommend	that	for
Round	8	we	think	harder	about	the	philosophical	challenges	here	and	come	up	with	a	more	principled	approach.

One	option	would	be	to	have	one	matching	pool	and	have	all	the	categories	just	be	a	voluntary	UI	layer.	Another	would	be	to	experiment	with	even
more	"affirmative	action"	to	bootstrap	particular	categories:	for	example,	we	could	split	the	Community	matching	into	a	$25,000	matching	pool	for
each	major	world	region	(eg.	North	America	+	Oceania,	Latin	America,	Europe,	Africa,	Middle	East,	India,	East	+	Southeast	Asia)	to	try	to	give
projects	in	more	neglected	areas	a	leg	up.	There	are	many	possibilities	here!	One	hybrid	route	is	that	the	"focused"	pools	could	themselves	be
quadratic	funded	in	the	previous	round!

Identity	verification

As	collusion,	fake	accounts	and	other	attacks	on	Gitcoin	Grants	have	been	recently	increasing,	Round	7	added	an	additional	verification	option	with
the	decentralized	social-graph-based	BrightID,	and	single-handedly	boosted	the	project's	userbase	by	a	factor	of	ten:

https://www.brightid.org/


This	is	good,	because	along	with	helping	BrightID's	growth,	it	also	subjects	the	project	to	a	trial-by-fire:	there's	now	a	large	incentive	to	try	to	create
a	large	number	of	fake	accounts	on	it!	BrightID	is	going	to	face	a	tough	challenge	making	it	reasonably	easy	for	regular	users	to	join	but	at	the
same	time	resist	attacks	from	fake	and	duplicate	accounts.	I	look	forward	to	seeing	them	try	to	meet	the	challenge!

ZK	rollups	for	scalability

Finally,	Round	7	was	the	first	round	where	Gitcoin	Grants	experimented	with	using	the	ZkSync	ZK	rollup	to	decrease	fees	for	payments:

The	main	thing	to	report	here	is	simply	that	the	ZK	rollup	successfully	did	decrease	fees!	The	user	experience	worked	well.	Many	optimistic	and	ZK
rollup	projects	are	now	looking	at	collaborating	with	wallets	on	direct	integrations,	which	should	increase	the	usability	and	security	of	such
techniques	further.

Conclusions

Round	7	has	been	a	pivotal	round	for	Gitcoin	Grants.	The	matching	funding	has	become	much	more	sustainable.	The	levels	of	funding	are	now	large
enough	to	successfully	fund	quadratic	freelancers	to	the	point	where	a	project	getting	"too	much	funding"	is	a	conceivable	thing	to	worry	about!
Identity	verification	is	taking	steps	forward.	Payments	have	become	much	more	efficient	with	the	introduction	of	the	ZkSync	ZK	rollup.	I	look
forward	to	seeing	the	grants	continue	for	many	more	rounds	in	the	future.

https://wallet.zksync.io/
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https://wallet.zksync.io/
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Coordination,	Good	and	Bad
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Trust	Models
The	Meaning	Of	Decentralization

Coordination,	the	ability	for	large	groups	of	actors	to	work	together	for	their	common	interest,	is	one	of	the	most	powerful
forces	in	the	universe.	It	is	the	difference	between	a	king	comfortably	ruling	a	country	as	an	oppressive	dictatorship,	and
the	people	coming	together	and	overthrowing	him.	It	is	the	difference	between	the	global	temperature	going	up	3-5'C	and
the	temperature	going	up	by	a	much	smaller	amount	if	we	work	together	to	stop	it.	And	it	is	the	factor	that	makes
companies,	countries	and	any	social	organization	larger	than	a	few	people	possible	at	all.

Coordination	can	be	improved	in	many	ways:	faster	spread	of	information,	better	norms	that	identify	what	behaviors	are
classified	as	cheating	along	with	more	effective	punishments,	stronger	and	more	powerful	organizations,	tools	like	smart
contracts	that	allow	interactions	with	reduced	levels	of	trust,	governance	technologies	(voting,	shares,	decision	markets...),
and	much	more.	And	indeed,	we	as	a	species	are	getting	better	at	all	of	these	things	with	each	passing	decade.

But	there	is	also	a	very	philosophically	counterintuitive	dark	side	to	coordination.	While	it	is	emphatically	true	that
"everyone	coordinating	with	everyone"	leads	to	much	better	outcomes	than	"every	man	for	himself",	what	that
does	NOT	imply	is	that	each	individual	step	toward	more	coordination	is	necessarily	beneficial.	If	coordination	is
improved	in	an	unbalanced	way,	the	results	can	easily	be	harmful.

We	can	think	about	this	visually	as	a	map,	though	in	reality	the	map	has	many	billions	of	"dimensions"	rather	than	two:
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The	bottom-left	corner,	"every	man	for	himself",	is	where	we	don't	want	to	be.	The	top-right	corner,	total	coordination,	is
ideal,	but	likely	unachievable.	But	the	landscape	in	the	middle	is	far	from	an	even	slope	up,	with	many	reasonably	safe	and
productive	places	that	it	might	be	best	to	settle	down	in	and	many	deep	dark	caves	to	avoid.

Now	what	are	these	dangerous	forms	of	partial	coordination,	where	someone	coordinating	with	some	fellow	humans	but	not
others	leads	to	a	deep	dark	hole?	It's	best	to	describe	them	by	giving	examples:

Citizens	of	a	nation	valiantly	sacrificing	themselves	for	the	greater	good	of	their	country	in	a	war....	when	that	country
turns	out	to	be	WW2-era	Germany	or	Japan
A	lobbyist	giving	a	politician	a	bribe	in	exchange	for	that	politician	adopting	the	lobbyist's	preferred	policies
Someone	selling	their	vote	in	an	election
All	sellers	of	a	product	in	a	market	colluding	to	raise	their	prices	at	the	same	time
Large	miners	of	a	blockchain	colluding	to	launch	a	51%	attack

In	all	of	the	above	cases,	we	see	a	group	of	people	coming	together	and	cooperating	with	each	other,	but	to	the	great
detriment	of	some	group	that	is	outside	the	circle	of	coordination,	and	thus	to	the	net	detriment	of	the	world	as	a	whole.	In
the	first	case,	it's	all	the	people	that	were	the	victims	of	the	aforementioned	nations'	aggression	that	are	outside	the	circle	of
coordination	and	suffer	heavily	as	a	result;	in	the	second	and	third	cases,	it's	the	people	affected	by	the	decisions	that	the
corrupted	voter	and	politician	are	making,	in	the	fourth	case	it's	the	customers,	and	in	the	fifth	case	it's	the	non-
participating	miners	and	the	blockchain's	users.	It's	not	an	individual	defecting	against	the	group,	it's	a	group	defecting
against	a	broader	group,	often	the	world	as	a	whole.

This	type	of	partial	coordination	is	often	called	"collusion",	but	it's	important	to	note	that	the	range	of	behaviors	that	we	are
talking	about	is	quite	broad.	In	normal	speech,	the	word	"collusion"	tends	to	be	used	more	often	to	describe	relatively
symmetrical	relationships,	but	in	the	above	cases	there	are	plenty	of	examples	with	a	strong	asymmetric	character.	Even
extortionate	relationships	("vote	for	my	preferred	policies	or	I'll	publicly	reveal	your	affair")	are	a	form	of	collusion	in	this
sense.	In	the	rest	of	this	post,	we'll	use	"collusion"	to	refer	to	"undesired	coordination"	generally.

Evaluate	Intentions,	Not	Actions	(!!)



One	important	property	of	especially	the	milder	cases	of	collusion	is	that	one	cannot	determine	whether	or	not	an	action	is
part	of	an	undesired	collusion	just	by	looking	at	the	action	itself.	The	reason	is	that	the	actions	that	a	person	takes	are	a
combination	of	that	person's	internal	knowledge,	goals	and	preferences	together	with	externally	imposed	incentives	on	that
person,	and	so	the	actions	that	people	take	when	colluding,	versus	the	actions	that	people	take	on	their	own	volition	(or
coordinating	in	benign	ways)	often	overlap.

For	example,	consider	the	case	of	collusion	between	sellers	(a	type	of	antitrust	violation).	If	operating	independently,	each
of	three	sellers	might	set	a	price	for	some	product	between	$5	and	$10;	the	differences	within	the	range	reflect	difficult-to-
see	factors	such	as	the	seller's	internal	costs,	their	own	willingness	to	work	at	different	wages,	supply-chain	issues	and	the
like.	But	if	the	sellers	collude,	they	might	set	a	price	between	$8	and	$13.	Once	again,	the	range	reflects	different
possibilities	regarding	internal	costs	and	other	difficult-to-see	factors.	If	you	see	someone	selling	that	product	for	$8.75,	are
they	doing	something	wrong?	Without	knowing	whether	or	not	they	coordinated	with	other	sellers,	you	can't	tell!	Making	a
law	that	says	that	selling	that	product	for	more	than	$8	would	be	a	bad	idea;	maybe	there	are	legitimate	reasons	why	prices
have	to	be	high	at	the	current	time.	But	making	a	law	against	collusion,	and	successfully	enforcing	it,	gives	the	ideal
outcome	-	you	get	the	$8.75	price	if	the	price	has	to	be	that	high	to	cover	sellers'	costs,	but	you	don't	get	that	price	if	the
factors	driving	prices	up	naturally	are	low.

This	applies	in	the	bribery	and	vote	selling	cases	too:	it	may	well	be	the	case	that	some	people	vote	for	the	Orange	Party
legitimately,	but	others	vote	for	the	Orange	Party	because	they	were	paid	to.	From	the	point	of	view	of	someone
determining	the	rules	for	the	voting	mechanism,	they	don't	know	ahead	of	time	whether	the	Orange	Party	is	good	or	bad.
But	what	they	do	know	is	that	a	vote	where	people	vote	based	on	their	honest	internal	feelings	works	reasonably	well,	but	a
vote	where	voters	can	freely	buy	and	sell	their	votes	works	terribly.	This	is	because	vote	selling	has	a	tragedy-of-the-
commons:	each	voter	only	gains	a	small	portion	of	the	benefit	from	voting	correctly,	but	would	gain	the	full	bribe	if	they	vote
the	way	the	briber	wants,	and	so	the	required	bribe	to	lure	each	individual	voter	is	far	smaller	than	the	bribe	that	would
actually	compensate	the	population	for	the	costs	of	whatever	policy	the	briber	wants.	Hence,	votes	where	vote	selling	is
permitted	quickly	collapse	into	plutocracy.

Understanding	the	Game	Theory

We	can	zoom	further	out	and	look	at	this	from	the	perspective	of	game	theory.	In	the	version	of	game	theory	that	focuses	on
individual	choice	-	that	is,	the	version	that	assumes	that	each	participant	makes	decisions	independently	and	that	does	not
allow	for	the	possibility	of	groups	of	agents	working	as	one	for	their	mutual	benefit,	there	are	mathematical	proofs	that	at
least	one	stable	Nash	equilibrium	must	exist	in	any	game.	In	fact,	mechanism	designers	have	a	very	wide	latitude	to
"engineer"	games	to	achieve	specific	outcomes.	But	in	the	version	of	game	theory	that	allows	for	the	possibility	of	coalitions
working	together	(ie.	"colluding"),	called	cooperative	game	theory,	we	can	prove	that	there	are	large	classes	of	games	that
do	not	have	any	stable	outcome	(called	a	"core").	In	such	games,	whatever	the	current	state	of	affairs	is,	there	is	always
some	coalition	that	can	profitably	deviate	from	it.

One	important	part	of	that	set	of	inherently	unstable	games	is	majority	games.	A	majority	game	is	formally	described	as	a
game	of	agents	where	any	subset	of	more	than	half	of	them	can	capture	a	fixed	reward	and	split	it	among	themselves	-	a
setup	eerily	similar	to	many	situations	in	corporate	governance,	politics	and	many	other	situations	in	human	life.	That	is	to
say,	if	there	is	a	situation	with	some	fixed	pool	of	resources	and	some	currently	established	mechanism	for	distributing
those	resources,	and	it's	unavoidably	possible	for	51%	of	the	participants	can	conspire	to	seize	control	of	the	resources,	no
matter	what	the	current	configuration	is	there	is	always	some	conspiracy	that	can	emerge	that	would	be	profitable	for	the
participants.	However,	that	conspiracy	would	then	in	turn	be	vulnerable	to	potential	new	conspiracies,	possibly	including	a
combination	of	previous	conspirators	and	victims...	and	so	on	and	so	forth.

Round A B C
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This	fact,	the	instability	of	majority	games	under	cooperative	game	theory,	is	arguably	highly	underrated	as	a
simplified	general	mathematical	model	of	why	there	may	well	be	no	"end	of	history"	in	politics	and	no	system
that	proves	fully	satisfactory;	I	personally	believe	it's	much	more	useful	than	the	more	famous	Arrow's	theorem,
for	example.

Note	once	again	that	the	core	dichotomy	here	is	not	"individual	versus	group";	for	a	mechanism	designer,	"individual	versus
group"	is	surprisingly	easy	to	handle.	It's	"group	versus	broader	group"	that	presents	the	challenge.

Decentralization	as	Anti-Collusion

But	there	is	another,	brighter	and	more	actionable,	conclusion	from	this	line	of	thinking:	if	we	want	to	create	mechanisms
that	are	stable,	then	we	know	that	one	important	ingredient	in	doing	so	is	finding	ways	to	make	it	more	difficult	for
collusions,	especially	large-scale	collusions,	to	happen	and	to	maintain	themselves.	In	the	case	of	voting,	we	have	the	secret
ballot	-	a	mechanism	that	ensures	that	voters	have	no	way	to	prove	to	third	parties	how	they	voted,	even	if	they	want	to
prove	it	(MACI	is	one	project	trying	to	use	cryptography	to	extend	secret-ballot	principles	to	an	online	context).	This
disrupts	trust	between	voters	and	bribers,	heavily	restricting	undesired	collusions	that	can	happen.	In	that	case	of	antitrust
and	other	corporate	malfeasance,	we	often	rely	on	whistleblowers	and	even	give	them	rewards,	explicitly	incentivizing
participants	in	a	harmful	collusion	to	defect.	And	in	the	case	of	public	infrastructure	more	broadly,	we	have	that	oh-so-
important	concept:	decentralization.

One	naive	view	of	why	decentralization	is	valuable	is	that	it's	about	reducing	risk	from	single	points	of	technical	failure.	In
traditional	"enterprise"	distributed	systems,	this	is	often	actually	true,	but	in	many	other	cases	we	know	that	this	is	not
sufficient	to	explain	what's	going	on.	It's	instructive	here	to	look	at	blockchains.	A	large	mining	pool	publicly	showing	how
they	have	internally	distributed	their	nodes	and	network	dependencies	doesn't	do	much	to	calm	community	members	scared
of	mining	centralization.	And	pictures	like	these,	showing	90%	of	Bitcoin	hashpower	at	the	time	being	capable	of	showing
up	to	the	same	conference	panel,	do	quite	a	bit	to	scare	people:
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But	why	is	this	image	scary?	From	a	"decentralization	as	fault	tolerance"	view,	large	miners	being	able	to	talk	to	each	other
causes	no	harm.	But	if	we	look	at	"decentralization"	as	being	the	presence	of	barriers	to	harmful	collusion,	then	the	picture
becomes	quite	scary,	because	it	shows	that	those	barriers	are	not	nearly	as	strong	as	we	thought.	Now,	in	reality,	the
barriers	are	still	far	from	zero;	the	fact	that	those	miners	can	easily	perform	technical	coordination	and	likely	are	all	in	the
same	Wechat	groups	does	not,	in	fact,	mean	that	Bitcoin	is	"in	practice	little	better	than	a	centralized	company".

So	what	are	the	remaining	barriers	to	collusion?	Some	major	ones	include:

Moral	Barriers.	In	Liars	and	Outliers,	Bruce	Schneier	reminds	us	that	many	"security	systems"	(locks	on	doors,
warning	signs	reminding	people	of	punishments...)	also	serve	a	moral	function,	reminding	potential	misbehavers	that
they	are	about	to	conduct	a	serious	transgression	and	if	they	want	to	be	a	good	person	they	should	not	do	that.
Decentralization	arguably	serves	that	function.
Internal	negotiation	failure.	The	individual	companies	may	start	demanding	concessions	in	exchange	for
participating	in	the	collusion,	and	this	could	lead	to	negotiation	stalling	outright	(see	"holdout	problems"	in	economics).
Counter-coordination.	The	fact	that	a	system	is	decentralized	makes	it	easy	for	participants	not	participating	in	the
collusion	to	make	a	fork	that	strips	out	the	colluding	attackers	and	continue	the	system	from	there.	Barriers	for	users
to	join	the	fork	are	low,	and	the	intention	of	decentralization	creates	moral	pressure	in	favor	of	participating	in	the
fork.
Risk	of	defection.	It	still	is	much	harder	for	five	companies	to	join	together	to	do	something	widely	considered	to	be
bad	than	it	is	for	them	to	join	together	for	a	non-controversial	or	benign	purpose.	The	five	companies	do	not	know	each
other	too	well,	so	there	is	a	risk	that	one	of	them	will	refuse	to	participate	and	blow	the	whistle	quickly,	and	the
participants	have	a	hard	time	judging	the	risk.	Individual	employees	within	the	companies	may	blow	the	whistle	too.

Taken	together,	these	barriers	are	substantial	indeed	-	often	substantial	enough	to	stop	potential	attacks	in	their	tracks,
even	when	those	five	companies	are	simultaneously	perfectly	capable	of	quickly	coordinating	to	do	something	legitimate.
Ethereum	blockchain	miners,	for	example,	are	perfectly	capable	of	coordinating	increases	to	the	gas	limit,	but	that	does	not
mean	that	they	can	so	easily	collude	to	attack	the	chain.

The	blockchain	experience	shows	how	designing	protocols	as	institutionally	decentralized	architectures,	even	when	it's	well-
known	ahead	of	time	that	the	bulk	of	the	activity	will	be	dominated	by	a	few	companies,	can	often	be	a	very	valuable	thing.
This	idea	is	not	limited	to	blockchains;	it	can	be	applied	in	other	contexts	as	well	(eg.	see	here	for	applications	to	antitrust).

Forking	as	Counter-Coordination

But	we	cannot	always	effectively	prevent	harmful	collusions	from	taking	place.	And	to	handle	those	cases	where	a	harmful
collusion	does	take	place,	it	would	be	nice	to	make	systems	that	are	more	robust	against	them	-	more	expensive	for	those
colluding,	and	easier	to	recover	for	the	system.

There	are	two	core	operating	principles	that	we	can	use	to	achieve	this	end:	(1)	supporting	counter-coordination	and	(2)
skin-in-the-game.	The	idea	behind	counter-coordination	is	this:	we	know	that	we	cannot	design	systems	to	be	passively
robust	to	collusions,	in	large	part	because	there	is	an	extremely	large	number	of	ways	to	organize	a	collusion	and	there	is	no
passive	mechanism	that	can	detect	them,	but	what	we	can	do	is	actively	respond	to	collusions	and	strike	back.

In	digital	systems	such	as	blockchains	(this	could	also	be	applied	to	more	mainstream	systems,	eg.	DNS),	a	major	and
crucially	important	form	of	counter-coordination	is	forking.
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If	a	system	gets	taken	over	by	a	harmful	coalition,	the	dissidents	can	come	together	and	create	an	alternative	version	of	the
system,	which	has	(mostly)	the	same	rules	except	that	it	removes	the	power	of	the	attacking	coalition	to	control	the	system.
Forking	is	very	easy	in	an	open-source	software	context;	the	main	challenge	in	creating	a	successful	fork	is	usually
gathering	the	legitimacy	(game-theoretically	viewed	as	a	form	of	"common	knowledge")	needed	to	get	all	those	who
disagree	with	the	main	coalition's	direction	to	follow	along	with	you.

This	is	not	just	theory;	it	has	been	accomplished	successfully,	most	notably	in	the	Steem	community's	rebellion	against	a
hostile	takeover	attempt,	leading	to	a	new	blockchain	called	Hive	in	which	the	original	antagonists	have	no	power.

Markets	and	Skin	in	the	Game

Another	class	of	collusion-resistance	strategy	is	the	idea	of	skin	in	the	game.	Skin	in	the	game,	in	this	context,	basically
means	any	mechanism	that	holds	individual	contributors	in	a	decision	individually	accountable	for	their	contributions.	If	a
group	makes	a	bad	decision,	those	who	approved	the	decision	must	suffer	more	than	those	who	attempted	to	dissent.	This
avoids	the	"tragedy	of	the	commons"	inherent	in	voting	systems.

Forking	is	a	powerful	form	of	counter-coordination	precisely	because	it	introduces	skin	in	the	game.	In	Hive,	the	community
fork	of	Steem	that	threw	off	the	hostile	takeover	attempt,	the	coins	that	were	used	to	vote	in	favor	of	the	hostile	takeover
were	largely	deleted	in	the	new	fork.	The	key	individuals	who	participated	in	the	attack	individually	suffered	as	a	result.

Markets	are	in	general	very	powerful	tools	precisely	because	they	maximize	skin	in	the	game.	Decision	markets
(prediction	markets	used	to	guide	decisions;	also	called	futarchy)	are	an	attempt	to	extend	this	benefit	of	markets	to
organizational	decision-making.	That	said,	decision	markets	can	only	solve	some	problems;	in	particular,	they	cannot	tell	us
what	variables	we	should	be	optimizing	for	in	the	first	place.

Structuring	Coordination

This	all	leads	us	to	an	interesting	view	of	what	it	is	that	people	building	social	systems	do.	One	of	the	goals	of	building	an
effective	social	system	is,	in	large	part,	determining	the	structure	of	coordination:	which	groups	of	people	and	in	what
configurations	can	come	together	to	further	their	group	goals,	and	which	groups	cannot?

Different	coordination	structures,	different	outcomes	

Sometimes,	more	coordination	is	good:	it's	better	when	people	can	work	together	to	collectively	solve	their	problems.	At
other	times,	more	coordination	is	dangerous:	a	subset	of	participants	could	coordinate	to	disenfranchise	everyone	else.	And
at	still	other	times,	more	coordination	is	necessary	for	another	reason:	to	enable	the	broader	community	to	"strike	back"
against	a	collusion	attacking	the	system.

In	all	three	of	those	cases,	there	are	different	mechanisms	that	can	be	used	to	achieve	these	ends.	Of	course,	it	is	very
difficult	to	prevent	communication	outright,	and	it	is	very	difficult	to	make	coordination	perfect.	But	there	are	many	options
in	between	that	can	nevertheless	have	powerful	effects.

Here	are	a	few	possible	coordination	structuring	techniques:

Technologies	and	norms	that	protect	privacy
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Technological	means	that	make	it	difficult	to	prove	how	you	behaved	(secret	ballots,	MACI	and	similar	tech)
Deliberate	decentralization,	distributing	control	of	some	mechanism	to	a	wide	group	of	people	that	are	known	to	not	be
well-coordinated
Decentralization	in	physical	space,	separating	out	different	functions	(or	different	shares	of	the	same	function)	to
different	locations	(eg.	see	Samo	Burja	on	connections	between	urban	decentralization	and	political	decentralization)
Decentralization	between	role-based	constituencies,	separating	out	different	functions	(or	different	shares	of	the	same
function)	to	different	types	of	participants	(eg.	in	a	blockchain:	"core	developers",	"miners",	"coin	holders",	"application
developers",	"users")
Schelling	points,	allowing	large	groups	of	people	to	quickly	coordinate	around	a	single	path	forward.	Complex
Schelling	points	could	potentially	even	be	implemented	in	code	(eg.	recovery	from	51%	attacks	can	benefit	from	this).
Speaking	a	common	language	(or	alternatively,	splitting	control	between	multiple	constituencies	who	speak	different
languages)
Using	per-person	voting	instead	of	per-(coin/share)	voting	to	greatly	increase	the	number	of	people	who	would	need	to
collude	to	affect	a	decision
Encouraging	and	relying	on	defectors	to	alert	the	public	about	upcoming	collusions

None	of	these	strategies	are	perfect,	but	they	can	be	used	in	various	contexts	with	differing	levels	of	success.	Additionally,
these	techniques	can	and	should	be	combined	with	mechanism	design	that	attempts	to	make	harmful	collusions	less
profitable	and	more	risky	to	the	extent	possible;	skin	in	the	game	is	a	very	powerful	tool	in	this	regard.	Which	combination
works	best	ultimately	depends	on	your	specific	use	case.
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Trust	Models

One	of	the	most	valuable	properties	of	many	blockchain	applications	is	trustlessness:	the	ability	of
the	application	to	continue	operating	in	an	expected	way	without	needing	to	rely	on	a	specific	actor
to	behave	in	a	specific	way	even	when	their	interests	might	change	and	push	them	to	act	in	some
different	unexpected	way	in	the	future.	Blockchain	applications	are	never	fully	trustless,	but	some
applications	are	much	closer	to	being	trustless	than	others.	If	we	want	to	make	practical	moves
toward	trust	minimization,	we	want	to	have	the	ability	to	compare	different	degrees	of	trust.

First,	my	simple	one-sentence	definition	of	trust:	trust	is	the	use	of	any	assumptions	about	the
behavior	of	other	people.	If	before	the	pandemic	you	would	walk	down	the	street	without	making
sure	to	keep	two	meters'	distance	from	strangers	so	that	they	could	not	suddenly	take	out	a	knife	and
stab	you,	that's	a	kind	of	trust:	both	trust	that	people	are	very	rarely	completely	deranged,	and	trust
that	the	people	managing	the	legal	system	continue	to	provide	strong	incentives	against	that	kind	of
behavior.	When	you	run	a	piece	of	code	written	by	someone	else,	you	trust	that	they	wrote	the	code
honestly	(whether	due	to	their	own	sense	of	decency	or	due	to	an	economic	interest	in	maintaining
their	reputations),	or	at	least	that	there	exist	enough	people	checking	the	code	that	a	bug	would	be
found.	Not	growing	your	own	food	is	another	kind	of	trust:	trust	that	enough	people	will	realize	that
it's	in	their	interests	to	grow	food	so	they	can	sell	it	to	you.	You	can	trust	different	sizes	of	groups	of
people,	and	there	are	different	kinds	of	trust.

For	the	purposes	of	analyzing	blockchain	protocols,	I	tend	to	break	down	trust	into	four	dimensions:

How	many	people	do	you	need	to	behave	as	you	expect?
Out	of	how	many?
What	kinds	of	motivations	are	needed	for	those	people	to	behave?	Do	they	need	to	be	altruistic,
or	just	profit	seeking?	Do	they	need	to	be	uncoordinated?
How	badly	will	the	system	fail	if	the	assumptions	are	violated?

For	now,	let	us	focus	on	the	first	two.	We	can	draw	a	graph:
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The	more	green,	the	better.	Let	us	explore	the	categories	in	more	detail:

1	of	1:	there	is	exactly	one	actor,	and	the	system	works	if	(and	only	if)	that	one	actor	does	what
you	expect	them	to.	This	is	the	traditional	"centralized"	model,	and	it	is	what	we	are	trying	to	do
better	than.
N	of	N:	the	"dystopian"	world.	You	rely	on	a	whole	bunch	of	actors,	all	of	whom	need	to	act	as
expected	for	everything	to	work,	with	no	backups	if	any	of	them	fail.
N/2	of	N:	this	is	how	blockchains	work	-	they	work	if	the	majority	of	the	miners	(or	PoS
validators)	are	honest.	Notice	that	N/2	of	N	becomes	significantly	more	valuable	the	larger	the
N	gets;	a	blockchain	with	a	few	miners/validators	dominating	the	network	is	much	less
interesting	than	a	blockchain	with	its	miners/validators	widely	distributed.	That	said,	we	want	to
improve	on	even	this	level	of	security,	hence	the	concern	around	surviving	51%	attacks.
1	of	N:	there	are	many	actors,	and	the	system	works	as	long	as	at	least	one	of	them	does	what
you	expect	them	to.	Any	system	based	on	fraud	proofs	falls	into	this	category,	as	do	trusted
setups	though	in	that	case	the	N	is	often	smaller.	Note	that	you	do	want	the	N	to	be	as	large	as
possible!
Few	of	N:	there	are	many	actors,	and	the	system	works	as	long	as	at	least	some	small	fixed
number	of	them	do	what	you	expect	them	do.	Data	availability	checks	fall	into	this	category.
0	of	N:	the	systems	works	as	expected	without	any	dependence	whatsoever	on	external	actors.
Validating	a	block	by	checking	it	yourself	falls	into	this	category.

While	all	buckets	other	than	"0	of	N"	can	be	considered	"trust",	they	are	very	different	from	each
other!	Trusting	that	one	particular	person	(or	organization)	will	work	as	expected	is	very	different
from	trusting	that	some	single	person	anywhere	will	do	what	you	expect	them	to.	"1	of	N"	is	arguably
much	closer	to	"0	of	N"	than	it	is	to	"N/2	of	N"	or	"1	of	1".	A	1-of-N	model	might	perhaps	feel	like	a	1-
of-1	model	because	it	feels	like	you're	going	through	a	single	actor,	but	the	reality	of	the	two	is	very
different:	in	a	1-of-N	system,	if	the	actor	you're	working	with	at	the	moment	disappears	or	turns	evil,
you	can	just	switch	to	another	one,	whereas	in	a	1-of-1	system	you're	screwed.

Particularly,	note	that	even	the	correctness	of	the	software	you're	running	typically	depends	on	a
"few	of	N"	trust	model	to	ensure	that	if	there's	bugs	in	the	code	someone	will	catch	them.	With	that
fact	in	mind,	trying	really	hard	to	go	from	1	of	N	to	0	of	N	on	some	other	aspect	of	an	application	is
often	like	making	a	reinforced	steel	door	for	your	house	when	the	windows	are	open.

Another	important	distinction	is:	how	does	the	system	fail	if	your	trust	assumption	is	violated?	In
blockchains,	two	most	common	types	of	failure	are	liveness	failure	and	safety	failure.	A	liveness
failure	is	an	event	in	which	you	are	temporarily	unable	to	do	something	you	want	to	do	(eg.	withdraw
coins,	get	a	transaction	included	in	a	block,	read	information	from	the	blockchain).	A	safety	failure	is
an	event	in	which	something	actively	happens	that	the	system	was	meant	to	prevent	(eg.	an	invalid
block	gets	included	in	a	blockchain).

Here	are	a	few	examples	of	trust	models	of	a	few	blockchain	layer	2	protocols.	I	use	"small	N"	to
refer	to	the	set	of	participants	of	the	layer	2	system	itself,	and	"big	N"	to	refer	to	the	participants	of
the	blockchain;	the	assumption	is	always	that	the	layer	2	protocol	has	a	smaller	community	than	the
blockchain	itself.	I	also	limit	my	use	of	the	word	"liveness	failure"	to	cases	where	coins	are	stuck	for
a	significant	amount	of	time;	no	longer	being	able	to	use	the	system	but	being	able	to	near-instantly
withdraw	does	not	count	as	a	liveness	failure.

Channels	(incl	state	channels,	lightning	network):	1	of	1	trust	for	liveness	(your	counterparty
can	temporarily	freeze	your	funds,	though	the	harms	of	this	can	be	mitigated	if	you	split	coins
between	multiple	counterparties),	N/2	of	big-N	trust	for	safety	(a	blockchain	51%	attack	can
steal	your	coins)
Plasma	(assuming	centralized	operator):	1	of	1	trust	for	liveness	(the	operator	can	temporarily
freeze	your	funds),	N/2	of	big-N	trust	for	safety	(blockchain	51%	attack)
Plasma	(assuming	semi-decentralized	operator,	eg.	DPOS):	N/2	of	small-N	trust	for	liveness,
N/2	of	big-N	trust	for	safety
Optimistic	rollup:	1	of	1	or	N/2	of	small-N	trust	for	liveness	(depends	on	operator	type),	N/2	of
big-N	trust	for	safety
ZK	rollup:	1	of	small-N	trust	for	liveness	(if	the	operator	fails	to	include	your	transaction,	you
can	withdraw,	and	if	the	operator	fails	to	include	your	withdrawal	immediately	they	cannot
produce	more	batches	and	you	can	self-withdraw	with	the	help	of	any	full	node	of	the	rollup
system);	no	safety	failure	risks
ZK	rollup	(with	light-withdrawal	enhancement):	no	liveness	failure	risks,	no	safety	failure	risks

Finally,	there	is	the	question	of	incentives:	does	the	actor	you're	trusting	need	to	be	very	altruistic	to
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act	as	expected,	only	slightly	altruistic,	or	is	being	rational	enough?	Searching	for	fraud	proofs	is	"by
default"	slightly	altruistic,	though	just	how	altruistic	it	is	depends	on	the	complexity	of	the
computation	(see	the	verifier's	dilemma),	and	there	are	ways	to	modify	the	game	to	make	it	rational.

Assisting	others	with	withdrawing	from	a	ZK	rollup	is	rational	if	we	add	a	way	to	micro-pay	for	the
service,	so	there	is	really	little	cause	for	concern	that	you	won't	be	able	to	exit	from	a	rollup	with	any
significant	use.	Meanwhile,	the	greater	risks	of	the	other	systems	can	be	alleviated	if	we	agree	as	a
community	to	not	accept	51%	attack	chains	that	revert	too	far	in	history	or	censor	blocks	for	too
long.

Conclusion:	when	someone	says	that	a	system	"depends	on	trust",	ask	them	in	more	detail	what	they
mean!	Do	they	mean	1	of	1,	or	1	of	N,	or	N/2	of	N?	Are	they	demanding	these	participants	be
altruistic	or	just	rational?	If	altruistic,	is	it	a	tiny	expense	or	a	huge	expense?	And	what	if	the
assumption	is	violated	-	do	you	just	need	to	wait	a	few	hours	or	days,	or	do	you	have	assets	that	are
stuck	forever?	Depending	on	the	answers,	your	own	answer	to	whether	or	not	you	want	to	use	that
system	might	be	very	different.
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A	Philosophy	of	Blockchain	Validation

See	also:

A	Proof	of	Stake	Design	Philosophy
The	Meaning	of	Decentralization
Engineering	Security	through	Coordination	Problems

One	of	the	most	powerful	properties	of	a	blockchain	is	the	fact	that	every	single	part	of	the
blockchain's	execution	can	be	independently	validated.	Even	if	a	great	majority	of	a	blockchain's
miners	(or	validators	in	PoS)	get	taken	over	by	an	attacker,	if	that	attacker	tries	to	push	through
invalid	blocks,	the	network	will	simply	reject	them.	Even	those	users	that	were	not	verifying	blocks	at
that	time	can	be	(potentially	automatically)	warned	by	those	who	were,	at	which	point	they	can	check
that	the	attacker's	chain	is	invalid,	and	automatically	reject	it	and	coordinate	on	accepting	a	chain
that	follows	the	rules.

But	how	much	validation	do	we	actually	need?	Do	we	need	a	hundred	independent	validating	nodes,
a	thousand?	Do	we	need	a	culture	where	the	average	person	in	the	world	runs	software	that	checks
every	transaction?	It's	these	questions	that	are	a	challenge,	and	a	very	important	challenge	to
resolve	especially	if	we	want	to	build	blockchains	with	consensus	mechanisms	better	than	the	single-
chain	"Nakamoto"	proof	of	work	that	the	blockchain	space	originally	started	with.

Why	validate?

A	51%	attack	pushing	through	an	invalid	block.	We	want	the	network	to	reject	the	chain!

There	are	two	main	reasons	why	it's	beneficial	for	a	user	to	validate	the	chain.	First,	it	maximizes	the
chance	that	the	node	can	correctly	determine	and	say	on	the	canonical	chain	-	the	chain	that	the
community	accepts	as	legitimate.	Typically,	the	canonical	chain	is	defined	as	something	like	"the
valid	chain	that	has	the	most	miners/validators	supporting	it"	(eg.	the	"longest	valid	chain"	in
Bitcoin).	Invalid	chains	are	rejected	by	definition,	and	if	there	is	a	choice	between	multiple	valid
chains,	the	chain	that	has	the	most	support	from	miners/validators	wins	out.	And	so	if	you	have	a
node	that	verifies	all	the	validity	conditions,	and	hence	detects	which	chains	are	valid	and	which
chains	are	not,	that	maximizes	your	chances	of	correctly	detecting	what	the	canonical	chain	actually
is.

But	there	is	also	another	deeper	reason	why	validating	the	chain	is	beneficial.	Suppose	that	a
powerful	actor	tries	to	push	through	a	change	to	the	protocol	(eg.	changing	the	issuance),	and	has
the	support	of	the	majority	of	miners.	If	no	one	else	validates	the	chain,	this	attack	can	very	easily
succeed:	everyone's	clients	will,	by	default,	accept	the	new	chain,	and	by	the	time	anyone	sees	what
is	going	on,	it	will	be	up	to	the	dissenters	to	try	to	coordinate	a	rejection	of	that	chain.	But	if	average
users	are	validating,	then	the	coordination	problem	falls	on	the	other	side:	it's	now	the	responsibility
of	whoever	is	trying	to	change	the	protocol	to	convince	the	users	to	actively	download	the	software
patch	to	accept	the	protocol	change.

If	enough	users	are	validating,	then	instead	of	defaulting	to	victory,	a	contentious	attempt	to
force	a	change	of	the	protocol	will	default	to	chaos.	Defaulting	to	chaos	still	causes	a	lot	of
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disruption,	and	would	require	out-of-band	social	coordination	to	resolve,	but	it	places	a	much	larger
barrier	in	front	of	the	attacker,	and	makes	attackers	much	less	confident	that	they	will	be	able	to	get
away	with	a	clean	victory,	making	them	much	less	motivated	to	even	try	to	start	an	attack.	If	most
users	are	validating	(directly	or	indirectly),	and	an	attack	has	only	the	support	of	the	majority	of
miners,	then	the	attack	will	outright	default	to	failure	-	the	best	outcome	of	all.

The	definition	view	versus	the	coordination	view
Note	that	this	reasoning	is	very	different	from	a	different	line	of	reasoning	that	we	often	hear:	that	a
chain	that	changes	the	rules	is	somehow	"by	definition"	not	the	correct	chain,	and	that	no	matter
how	many	other	users	accept	some	new	set	of	rules,	what	matters	is	that	you	personally	can	stay	on
the	chain	with	the	old	rules	that	you	favor.

Here	is	one	example	of	the	"by	definition"	perspective	from	Gavin	Andresen:

Here's	another	from	the	Wasabi	wallet;	this	one	comes	even	more	directly	from	the	perspective	of
explaining	why	full	nodes	are	valuable:

Notice	two	core	components	of	this	view:

1.	 A	version	of	the	chain	that	does	not	accept	the	rules	that	you	consider	fundamental	and	non-
negotiable	is	by	definition	not	bitcoin	(or	not	ethereum	or	whatever	other	chain),	not	matter	how
many	other	people	accept	that	chain.

2.	 What	matters	is	that	you	remain	on	a	chain	that	has	rules	that	you	consider	acceptable.

However,	I	believe	this	"individualist"	view	to	be	very	wrong.	To	see	why,	let	us	take	a	look	at	the
scenario	that	we	are	worried	about:	the	vast	majority	of	participants	accept	some	change	to	protocol
rules	that	you	find	unacceptable.	For	example,	imagine	a	future	where	transaction	fees	are	very	low,
and	to	keep	the	chain	secure,	almost	everyone	else	agrees	to	change	to	a	new	set	of	rules	that
increases	issuance.	You	stubbornly	keep	running	a	node	that	continues	to	enforce	the	old	rules,	and
you	fork	off	to	a	different	chain	than	the	majority.
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From	your	point	of	view,	you	still	have	your	coins	in	a	system	that	runs	on	rules	that	you	accept.	But
so	what?	Other	users	will	not	accept	your	coins.	Exchanges	will	not	accept	your	coins.	Public
websites	may	show	the	price	of	the	new	coin	as	being	some	high	value,	but	they're	referring	to	the
coins	on	the	majority	chain;	your	coins	are	valueless.	Cryptocurrencies	and	blockchains	are
fundamentally	social	constructs;	without	other	people	believing	in	them,	they	mean	nothing.

So	what	is	the	alternative	view?	The	core	idea	is	to	look	at	blockchains	as	engineering	security
through	coordination	problems.

Normally,	coordination	problems	in	the	world	are	a	bad	thing:	while	it	would	be	better	for	most
people	if	the	English	language	got	rid	of	its	highly	complex	and	irregular	spelling	system	and	made	a
phonetic	one,	or	if	the	United	States	switched	to	metric,	or	if	we	could	immediately	drop	all	prices
and	wages	by	ten	percent	in	the	event	of	a	recession,	in	practice	this	requires	everyone	to	agree	on
the	switch	at	the	same	time,	and	this	is	often	very	very	hard.

With	blockchain	applications,	however,	we	are	using	coordination	problems	to	our	advantage.	We	are
using	the	friction	that	coordination	problems	create	as	a	bulwark	against	malfeasance	by	centralized
actors.	We	can	build	systems	that	have	property	X,	and	we	can	guarantee	that	they	will	preserve
property	X	because	changing	the	rules	from	X	to	not-X	would	require	a	whole	bunch	of	people	to
agree	to	update	their	software	at	the	same	time.	Even	if	there	is	an	actor	that	could	force	the	change,
doing	so	would	be	hard	-	much	much	harder	than	it	would	be	if	it	were	instead	the	responsibility	of
users	to	actively	coordinate	dissent	to	resist	a	change.

Note	one	particular	consequence	of	this	view:	it's	emphatically	not	the	case	that	the	purpose	of	your
full	node	is	just	to	protect	you,	and	in	the	case	of	a	contentious	hard	fork,	people	with	full	nodes	are
safe	and	people	without	full	nodes	are	vulnerable.	Rather,	the	perspective	here	is	much	more	one	of
herd	immunity:	the	more	people	are	validating,	the	more	safe	everyone	is,	and	even	if	only	some
portion	of	people	are	validating,	everyone	gets	a	high	level	of	protection	as	a	result.

Looking	deeper	into	validation
We	now	get	to	the	next	topic,	and	one	that	is	very	relevant	to	topics	such	as	light	clients	and
sharding:	what	are	we	actually	accomplishing	by	validating?	To	understand	this,	let	us	go	back	to	an
earlier	point.	If	an	attack	happens,	I	would	argue	that	we	have	the	following	preference	order	over
how	the	attack	goes:

default	to	failure	>	default	to	chaos	>	default	to	victory

The	">"	here	of	course	means	"better	than".	The	best	is	if	an	attack	outright	fails;	the	second	best	is
if	an	attack	leads	to	confusion,	with	everyone	disagreeing	on	what	the	correct	chain	is,	and	the	worst
is	if	an	attack	succeeds.	Why	is	chaos	so	much	better	than	victory?	This	is	a	matter	of	incentives:
chaos	raises	costs	for	the	attacker,	and	denies	them	the	certainty	that	they	will	even	win,
discouraging	attacks	from	being	attempted	in	the	first	place.	A	default-to-chaos	environment	means
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that	an	attacker	needs	to	win	both	the	blockchain	war	of	making	a	51%	attack	and	the	"social	war"	of
convincing	the	community	to	follow	along.	This	is	much	more	difficult,	and	much	less	attractive,	than
just	launching	a	51%	attack	and	claiming	victory	right	there.

The	goal	of	validation	is	then	to	move	away	from	default	to	victory	to	(ideally)	default	to	failure	or
(less	ideally)	default	to	chaos.	If	you	have	a	fully	validating	node,	and	an	attacker	tries	to	push
through	a	chain	with	different	rules,	then	the	attack	fails.	If	some	people	have	a	fully	validating	node
but	many	others	don't,	the	attack	leads	to	chaos.	But	now	we	can	think:	are	there	other	ways	of
achieving	the	same	effect?

Light	clients	and	fraud	proofs

One	natural	advancement	in	this	regard	is	light	clients	with	fraud	proofs.	Most	blockchain	light
clients	that	exist	today	work	by	simply	validating	that	the	majority	of	miners	support	a	particular
block,	and	not	bothering	to	check	if	the	other	protocol	rules	are	being	enforced.	The	client	runs	on
the	trust	assumption	that	the	majority	of	miners	is	honest.	If	a	contentious	fork	happens,	the	client
follows	the	majority	chain	by	default,	and	it's	up	to	users	to	take	an	active	step	if	they	want	to	follow
the	minority	chain	with	the	old	rules;	hence,	today's	light	clients	under	attack	default	to	victory.	But
with	fraud	proof	technology,	the	situation	starts	to	look	very	different.

A	fraud	proof	in	its	simplest	form	works	as	follows.	Typically,	a	single	block	in	a	blockchain	only
touches	a	small	portion	of	the	blockchain	"state"	(account	balances,	smart	contract	code....).	If	a	fully
verifying	node	processes	a	block	and	finds	that	it	is	invalid,	they	can	generate	a	package	(the	fraud
proof)	containing	the	block	along	with	just	enough	data	from	the	blockchain	state	to	process	the
block.	They	broadcast	this	package	to	light	clients.	Light	clients	can	then	take	the	package	and	use
that	data	to	verify	the	block	themselves,	even	if	they	have	no	other	data	from	the	chain.

A	single	block	in	a	blockchain	touches	only	a	few	accounts.	A	fraud	proof	would	contain	the	data	in	those	accounts
along	with	Merkle	proofs	proving	that	that	data	is	correct.

This	technique	is	also	sometimes	known	as	stateless	validation:	instead	of	keeping	a	full	database	of
the	blockchain	state,	clients	can	keep	only	the	block	headers,	and	they	can	verify	any	block	in	real
time	by	asking	other	nodes	for	a	Merkle	proof	for	any	desired	state	entries	that	block	validation	is
accessing.

The	power	of	this	technique	is	that	light	clients	can	verify	individual	blocks	only	if	they	hear	an
alarm	(and	alarms	are	verifiable,	so	if	a	light	client	hears	a	false	alarm,	they	can	just	stop	listening	to
alarms	from	that	node).	Hence,	under	normal	circumstances,	the	light	client	is	still	light,	checking
only	which	blocks	are	supported	by	the	majority	of	miners/validators.	But	under	those	exceptional
circumstances	where	the	majority	chain	contains	a	block	that	the	light	client	would	not	accept,	as
long	as	there	is	at	least	one	honest	node	verifying	the	fraudulent	block,	that	node	will	see
that	it	is	invalid,	broadcast	a	fraud	proof,	and	thereby	cause	the	rest	of	the	network	to
reject	it.

Sharding

Sharding	is	a	natural	extension	of	this:	in	a	sharded	system,	there	are	too	many	transactions	in	the
system	for	most	people	to	be	verifying	directly	all	the	time,	but	if	the	system	is	well	designed	then
any	individual	invalid	block	can	be	detected	and	its	invalidity	proven	with	a	fraud	proof,	and	that
proof	can	be	broadcasted	across	the	entire	network.	A	sharded	network	can	be	summarized	as
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everyone	being	a	light	client.	And	as	long	as	each	shard	has	some	minimum	threshold	number	of
participants,	the	network	has	herd	immunity.

In	addition,	the	fact	that	in	a	sharded	system	block	production	(and	not	just	block	verification)	is
highly	accessible	and	can	be	done	even	on	consumer	laptops	is	also	very	important.	The	lack	of
dependence	on	high-performance	hardware	at	the	core	of	the	network	ensures	that	there	is	a	low	bar
on	dissenting	minority	chains	being	viable,	making	it	even	harder	for	a	majority-driven	protocol
change	to	"win	by	default"	and	bully	everyone	else	into	submission.

This	is	what	auditability	usually	means	in	the	real	world:	not	that	everyone	is	verifying	everything	all
the	time,	but	that	(i)	there	are	enough	eyes	on	each	specific	piece	that	if	there	is	an	error	it	will	get
detected,	and	(ii)	when	an	error	is	detected	that	fact	that	be	made	clear	and	visible	to	all.

That	said,	in	the	long	run	blockchains	can	certainly	improve	on	this.	One	particular	source	of
improvements	is	ZK-SNARKs	(or	"validity	proofs"):	efficiently	verifiably	cryptographic	proofs	that
allow	block	producers	to	prove	to	clients	that	blocks	satisfy	some	arbitrarily	complex	validity
conditions.	Validity	proofs	are	stronger	than	fraud	proofs	because	they	do	not	depend	on	an
interactive	game	to	catch	fraud.	Another	important	technology	is	data	availability	checks,	which	can
protect	against	blocks	whose	data	is	not	fully	published.	Data	availability	checks	do	rely	on	a	very
conservative	assumption	that	there	exists	at	least	some	small	number	of	honest	nodes	somewhere	in
the	network	continues	to	apply,	though	the	good	news	is	that	this	minimum	honesty	threshold	is	low,
and	does	not	grow	even	if	there	is	a	very	large	number	of	attackers.

Timing	and	51%	attacks
Now,	let	us	get	to	the	most	powerful	consequence	of	the	"default	to	chaos"	mindset:	51%	attacks
themselves.	The	current	norm	in	many	communities	is	that	if	a	51%	attack	wins,	then	that	51%
attack	is	necessarily	the	valid	chain.	This	norm	is	often	stuck	to	quite	strictly;	and	a	recent	51%
attack	on	Ethereum	Classic	illustrated	this	quite	well.	The	attacker	reverted	more	than	3000	blocks
(stealing	807,260	ETC	in	a	double-spend	in	the	process),	which	pushed	the	chain	farther	back	in
history	than	one	of	the	two	ETC	clients	(OpenEthereum)	was	technically	able	to	revert;	as	a	result,
Geth	nodes	went	with	the	attacker's	chain	but	OpenEthereum	nodes	stuck	with	the	original	chain.

We	can	say	that	the	attack	did	in	fact	default	to	chaos,	though	this	was	an	accident	and	not	a
deliberate	design	decision	of	the	ETC	community.	Unfortunately,	the	community	then	elected	to
accept	the	(longer)	attack	chain	as	canonical,	a	move	described	by	the	eth_classic	twitter	as
"following	Proof	of	Work	as	intended".	Hence,	the	community	norms	actively	helped	the	attacker	win.

But	we	could	instead	agree	on	a	definition	of	the	canonical	chain	that	works	differently:	particularly,
imagine	a	rule	that	once	a	client	has	accepted	a	block	as	part	of	the	canonical	chain,	and	that	block
has	more	than	100	descendants,	the	client	will	from	then	on	never	accept	a	chain	that	does	not
include	that	block.	Alternatively,	in	a	finality-bearing	proof	of	stake	setup	(which	eg.	ethereum	2.0
is),	imagine	a	rule	that	once	a	block	is	finalized	it	can	never	be	reverted.

5	block	revert	limit	only	for	illustration	purposes;	in	reality	the	limit	could	be	something	longer	like	100-1000
blocks.

To	be	clear,	this	introduces	a	significant	change	to	how	canonicalness	is	determined:	instead	of
clients	just	looking	at	the	data	they	receive	by	itself,	clients	also	look	at	when	that	data	was	received.
This	introduces	the	possibility	that,	because	of	network	latency,	clients	disagree:	what	if,	because	of
a	massive	attack,	two	conflicting	blocks	A	and	B	finalize	at	the	same	time,	and	some	clients	see	A
first	and	some	see	B	first?	But	I	would	argue	that	this	is	good:	it	means	that	instead	of	defaulting
to	victory,	even	51%	attacks	that	just	try	to	revert	transactions	default	to	chaos,	and	out-of-
band	emergency	response	can	choose	which	of	the	two	blocks	the	chain	continues	with.	If	the
protocol	is	well-designed,	forcing	an	escalation	to	out-of-band	emergency	response	should	be	very
expensive:	in	proof	of	stake,	such	a	thing	would	require	1/3	of	validators	sacrificing	their	deposits
and	getting	slashed.
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Potentially,	we	could	expand	this	approach.	We	could	try	to	make	51%	attacks	that	censor
transactions	default	to	chaos	too.	Research	on	timeliness	detectors	pushes	things	further	in	the
direction	of	attacks	of	all	types	defaulting	to	failure,	though	a	little	chaos	remains	because	timeliness
detectors	cannot	help	nodes	that	are	not	well-connected	and	online.

For	a	blockchain	community	that	values	immutability,	implementing	revert	limits	of	this
kind	are	arguably	the	superior	path	to	take.	It	is	difficult	to	honestly	claim	that	a	blockchain	is
immutable	when	no	matter	how	long	a	transaction	has	been	accepted	in	a	chain,	there	is	always	the
possibility	that	some	unexpected	activity	by	powerful	actors	can	come	along	and	revert	it.	Of	course,
I	would	claim	that	even	BTC	and	ETC	do	already	have	a	revert	limit	at	the	extremes;	if	there	was	an
attack	that	reverted	weeks	of	activity,	the	community	would	likely	adopt	a	user-activated	soft	fork	to
reject	the	attackers'	chain.	But	more	definitively	agreeing	on	and	formalizing	this	seems	like	a	step
forward.

Conclusion
There	are	a	few	"morals	of	the	story"	here.	First,	if	we	accept	the	legitimacy	of	social	coordination,
and	we	accept	the	legitimacy	of	indirect	validation	involving	"1-of-N"	trust	models	(that	is,	assuming
that	there	exists	one	honest	person	in	the	network	somewhere;	NOT	the	same	as	assuming	that	one
specific	party,	eg.	Infura,	is	honest),	then	we	can	create	blockchains	that	are	much	more	scalable.

Second,	client-side	validation	is	extremely	important	for	all	of	this	to	work.	A	network	where	only	a
few	people	run	nodes	and	everyone	else	really	does	trust	them	is	a	network	that	can	easily	be	taken
over	by	special	interests.	But	avoiding	such	a	fate	does	not	require	going	to	the	opposite	extreme	and
having	everyone	always	validate	everything!	Systems	that	allow	each	individual	block	to	be	verified
in	isolation,	so	users	only	validate	blocks	if	someone	else	raises	an	alarm,	are	totally	reasonable	and
serve	the	same	effect.	But	this	requires	accepting	the	"coordination	view"	of	what	validation	is	for.

Third,	if	we	allow	the	definition	of	canonicalness	includes	timing,	then	we	open	many	doors	in
improving	our	ability	to	reject	51%	attacks.	The	easiest	property	to	gain	is	weak	subjectivity:	the	idea
that	if	clients	are	required	to	log	on	at	least	once	every	eg.	3	months,	and	refuse	to	revert	longer
than	that,	then	we	can	add	slashing	to	proof	of	stake	and	make	attacks	very	expensive.	But	we	can	go
further:	we	can	reject	chains	that	revert	finalized	blocks	and	thereby	protect	immutability,	and	even
protect	against	censorship.	Because	the	network	is	unpredictable,	relying	on	timing	does	imply
attacks	"defaulting	to	chaos"	in	some	cases,	but	the	benefits	are	very	much	worth	it.

With	all	of	these	ideas	in	mind,	we	can	avoid	the	traps	of	(i)	over-centralization,	(ii)	overly	redundant
verification	leading	to	inefficiency	and	(iii)	misguided	norms	accidentally	making	attacks	easier,	and
better	work	toward	building	more	resilient,	performant	and	secure	blockchains.
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Gitcoin	Grants	Round	6	Retrospective

Round	6	of	Gitcoin	Grants	has	just	finished,	with	$227,847	in	contributions	from	1,526	contributors
and	$175,000	in	matched	funds	distributed	across	695	projects.	This	time	around,	we	had	three
categories:	the	two	usual	categories	of	"tech"	and	"community"	(the	latter	renamed	from	"media"	to
reflect	a	desire	for	a	broad	emphasis),	and	the	round-6-special	category	Crypto	For	Black	Lives.

First	of	all,	here	are	the	results,	starting	with	the	tech	and	community	sections:

Stability	of	income

In	the	last	round,	one	concern	I	raised	was	stability	of	income.	People	trying	to	earn	a	livelihood	off
of	quadratic	funding	grants	would	want	to	have	some	guarantee	that	their	income	isn't	going	to
completely	disappear	in	the	next	round	just	because	the	hive	mind	suddenly	gets	excited	about
something	else.

Round	6	had	two	mechanisms	to	try	to	provide	more	stability	of	income:

1.	 A	"shopping	cart"	interface	for	giving	many	contributions,	with	an	explicit	"repeat	your
contributions	from	the	last	round"	feature

2.	 A	rule	that	the	matching	amounts	are	calculated	using	not	just	contributions	from	this	round,
but	also	"carrying	over"	1/3	of	the	contributions	from	the	previous	round	(ie.	if	you	made	a	$10
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grant	in	the	previous	round,	the	matching	formula	would	pretend	you	made	a	$10	grant	in	the
previous	round	and	also	a	$3.33	grant	this	round)

1.	 was	clearly	successful	at	one	goal:	increasing	the	total	number	of	contributions.	But	its	effect	in
ensuring	stability	of	income	is	hard	to	measure.	The	effect	of	(2),	on	the	other	hand,	is	easy	to
measure,	because	we	have	stats	for	the	actual	matching	amount	as	well	as	what	the	matching
amount	"would	have	been"	if	the	1/3	carry-over	rule	was	not	in	place.

First	from	the	tech	category:

Now	from	the	community	category:

Clearly,	the	rule	helps	reduce	volatility,	pretty	much	exactly	as	expected.	That	said,	one	could	argue
that	this	result	is	trivial:	you	could	argue	that	all	that's	going	on	here	is	something	very	similar	to
grabbing	part	of	the	revenue	from	round	N	(eg.	see	how	the	new	EIP-1559	Community	Fund	earned
less	than	it	otherwise	would	have)	and	moving	it	into	round	N+1.	Sure,	numerically	speaking	the
revenues	are	more	"stable",	but	individual	projects	could	have	just	provided	this	stability	to
themselves	by	only	spending	2/3	of	the	pot	from	each	round,	and	using	the	remaining	third	later
when	some	future	round	is	unexpectedly	low.	Why	should	the	quadratic	funding	mechanism
significantly	increase	its	complexity	just	to	achieve	a	gain	in	stability	that	projects	could	simply
provide	for	themselves?

My	instinct	says	that	it	would	be	best	to	try	the	next	round	with	the	"repeat	last	round"	feature	but
without	the	1/3	carryover,	and	see	what	happens.	Particularly,	note	that	the	numbers	seem	to	show
that	the	media	section	would	have	been	"stable	enough"	even	without	the	carryover.	The	tech	section
was	more	volatile,	but	only	because	of	the	sudden	entrance	of	the	EIP	1559	community	fund;	it	would
be	part	of	the	experiment	to	see	just	how	common	that	kind	of	situation	is.

About	that	EIP	1559	Community	fund...

The	big	unexpected	winner	of	this	round	was	the	EIP	1559	community	fund.	EIP	1559	(EIP	here,	FAQ
here,	original	paper	here)	is	a	major	fee	market	reform	proposal	which	far-reaching	consequences;	it
aims	to	improve	the	user	experience	of	sending	Ethereum	transactions,	reduce	economic
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inefficiencies,	provide	an	accurate	in-protocol	gas	price	oracle	and	burn	a	portion	of	fee	revenue.

Many	people	in	the	Ethereum	community	are	very	excited	about	this	proposal,	though	so	far	there
has	been	fairly	little	funding	toward	getting	it	implemented.	This	gitcoin	grant	was	a	large
community	effort	toward	fixing	this.

The	grant	had	quite	a	few	very	large	contributions,	including	roughly	$2,400	each	from	myself	and
Eric	Conner,	early	on.	Early	in	the	round,	one	could	clearly	see	the	EIP	1559	community	grant	having
an	abnormally	low	ratio	of	matched	funds	to	contributed	funds;	it	was	somewhere	around	$4k
matched	to	$20k	contributed.	This	was	because	while	the	amount	contributed	was	large,	it	came
from	relatively	few	wealthier	donors,	and	so	the	matching	amount	was	less	than	it	would	have	been
had	the	same	quantity	of	funds	come	from	more	diverse	sources	-	the	quadratic	funding	formula
working	as	intended.	However,	a	social	media	push	advertising	the	grant	then	led	to	a	large	number
of	smaller	contributors	following	along,	which	then	quickly	raised	the	match	to	its	currently	very	high
value	($35,578).

Quadratic	signaling

Unexpectedly,	this	grant	proved	to	have	a	double	function.	First,	it	provided	$65,473	of	much-needed
funding	to	EIP	1559	implementation.	Second,	it	served	as	a	credible	community	signal	of	the	level	of
demand	for	the	proposal.	The	Ethereum	community	has	long	been	struggling	to	find	effective	ways	to
determine	what	"the	community"	supports,	especially	in	cases	of	controversy.

Coin	votes	have	been	used	in	the	past,	and	have	the	advantage	that	they	come	with	an	answer	to	the
key	problem	of	determining	who	is	a	"real	community	member"	-	the	answer	is,	your	membership	in
the	Ethereum	community	is	proportional	to	how	much	ETH	you	have.	However,	they	are	plutocratic;
in	the	famous	DAO	coin	vote,	a	single	"yes"	voter	voted	with	more	ETH	than	all	"no"	voters	put
together	(~20%	of	the	total).

The	alternative,	looking	at	github,	reddit	and	twitter	comments	and	votes	to	measure	sentiment
(sometimes	derided	as	"proof	of	social	media")	is	egalitarian,	but	it	is	easily	exploitable,	comes	with
no	skin-in-the-game,	and	frequently	falls	under	criticisms	of	"foreign	interference"	(are	those	really
ethereum	community	members	disagreeing	with	the	proposal,	or	just	those	dastardly	bitcoiners
coming	in	from	across	the	pond	to	stir	up	trouble?).

Quadratic	funding	falls	perfectly	in	the	middle:	the	need	to	contribute	monetary	value	to	vote	ensures
that	the	votes	of	those	who	really	care	about	the	project	count	more	than	the	votes	of	less-concerned
outsiders,	and	the	square-root	function	ensures	that	the	votes	of	individual	ultra-wealthy	"whales"
cannot	beat	out	a	poorer,	but	broader,	coalition.

A	diagram	from	my	post	on	quadratic	payments	showing	how	quadratic	payments	is	"in	the	middle"	between	the
extremes	of	voting-like	systems	and	money-like	systems,	and	avoids	the	worst	flaws	of	both.

https://vitalik.ca/general/2017/12/17/voting.html
https://www.etherchain.org/coinvote
https://vitalik.ca/general/2019/12/07/quadratic.html


This	raises	the	question:	might	it	make	sense	to	try	to	use	explicit	quadratic	voting	(with	the	ability
to	vote	"yes"	or	"no"	to	a	proposal)	as	an	additional	signaling	tool	to	determine	community	sentiment
for	ethereum	protocol	proposals?

How	well	are	"guest	categories"	working?

Since	round	5,	Gitcoin	Grants	has	had	three	categories	per	round:	tech,	community	(called	"media"
before),	and	some	"guest"	category	that	appears	only	during	that	specific	round.	In	round	5	this	was
COVID	relief;	in	round	6,	it's	Crypto	For	Black	Lives.

By	far	the	largest	recipient	was	Black	Girls	CODE,	claiming	over	80%	of	the	matching	pot.	My	guess
for	why	this	happened	is	simple:	Black	Girls	CODE	is	an	established	project	that	has	been
participating	in	the	grants	for	several	rounds	already,	whereas	the	other	projects	were	new	entrants
that	few	people	in	the	Ethereum	community	knew	well.	In	addition,	of	course,	the	Ethereum
community	"understands"	the	value	of	helping	people	code	more	than	it	understands	chambers	of
commerce	and	bail	funds.

This	raises	the	question:	is	Gitcoin's	current	approach	of	having	a	guest	category	each	round	actually
working	well?	The	case	for	"no"	is	basically	this:	while	the	individual	causes	(empowering	black
communities,	and	fighting	covid)	are	certainly	admirable,	the	Ethereum	community	is	by	and	large
not	experts	at	these	topics,	and	we're	certainly	not	experts	on	those	specific	projects	working	on
those	challenges.

If	the	goal	is	to	try	to	bring	quadratic	funding	to	causes	beyond	Ethereum,	the	natural	alternative	is	a
separate	funding	round	marketed	specifically	to	those	communities;	https://downtownstimulus.com/
is	a	great	example	of	this.	If	the	goal	is	to	get	the	Ethereum	community	interested	in	other	causes,
then	perhaps	running	more	than	one	round	on	each	cause	would	work	better.	For	example,	"guest
categories"	could	last	for	three	rounds	(~6	months),	with	$8,333	matching	per	round	(and	there
could	be	two	or	three	guest	categories	running	simultaneously).	In	any	case,	it	seems	like	some
revision	of	the	model	makes	sense.

Collusion

Now,	the	bad	news.	This	round	saw	an	unprecedented	amount	of	attempted	collusion	and	other
forms	of	fraud.	Here	are	a	few	of	the	most	egregious	examples.

Blatant	attempted	bribery:

https://downtownstimulus.com/


Impersonation:

Many	contributions	with	funds	clearly	coming	from	a	single	address:



The	big	question	is:	how	much	fraudulent	activity	can	be	prevented	in	a	fully
automated/technological	way,	without	requiring	detailed	analysis	of	each	and	every	case?	If
quadratic	funding	cannot	survive	such	fraud	without	needing	to	resort	to	expensive	case-by-case
judgement,	then	regardless	of	its	virtues	in	an	ideal	world,	in	reality	it	would	not	be	a	very	good
mechanism!

Fortunately,	there	is	a	lot	that	we	can	do	to	reduce	harmful	collusion	and	fraud	that	we	are	not	yet
doing.	Stronger	identity	systems	is	one	example;	in	this	round,	Gitcoin	added	optional	SMS
verification,	and	it	seems	like	the	in	this	round	the	detected	instances	of	collusion	were	mostly
github-verified	accounts	and	not	SMS-verified	accounts.	In	the	next	round,	making	some	form	of
extra	verification	beyond	a	github	account	(whether	SMS	or	something	more	decentralized,	eg.
BrightID)	seems	like	a	good	idea.	To	limit	bribery,	MACI	can	help,	by	making	it	impossible	for	a
briber	to	tell	who	actually	voted	for	any	particular	project.

Impersonation	is	not	really	a	quadratic	funding-specific	challenge;	this	could	be	solved	with	manual
verification,	or	if	one	wishes	for	a	more	decentralized	solution	one	could	try	using	Kleros	or	some
similar	system.	One	could	even	imagine	incentivized	reporting:	anyone	can	lay	down	a	deposit	and
flag	a	project	as	fraudulent,	triggering	an	investigation;	if	the	project	turns	out	to	be	legitimate	the
deposit	is	lost	but	if	the	project	turns	out	to	be	fraudulent,	the	challenger	gets	half	of	the	funds	that
were	sent	to	that	project.

Conclusion

The	best	news	is	the	unmentioned	news:	many	of	the	positive	behaviors	coming	out	of	the	quadratic
funding	rounds	have	stabilized.	We're	seeing	valuable	projects	get	funded	in	the	tech	and	community
categories,	there	has	been	less	social	media	contention	this	round	than	in	previous	rounds,	and
people	are	getting	better	and	better	at	understanding	the	mechanism	and	how	to	participate	in	it.

That	said,	the	mechanism	is	definitely	at	a	scale	where	we	are	seeing	the	kinds	of	attacks	and
challenges	that	we	would	realistically	see	in	a	larger-scale	context.	There	are	some	challenges	that
we	have	not	yet	worked	through	(one	that	I	am	particularly	watching	out	for	is:	matched	grants	going
to	a	project	that	one	part	of	the	community	supports	and	another	part	of	the	community	thinks	is
very	harmful).	That	said,	we've	gotten	as	far	as	we	have	with	fewer	problems	than	even	I	had	been
anticipating.

I	recommend	holding	steady,	focusing	on	security	(and	scalability)	for	the	next	few	rounds,	and
coming	up	with	ways	to	increase	the	size	of	the	matching	pots.	And	I	continue	to	look	forward	to
seeing	valuable	public	goods	get	funded!

https://github.com/appliedzkp/maci
https://kleros.io/
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Exploring	Fully	Homomorphic	Encryption

Special	thanks	to	Karl	Floersch	and	Dankrad	Feist	for	review

Fully	homomorphic	encryption	has	for	a	long	time	been	considered	one	of	the	holy	grails	of
cryptography.	The	promise	of	fully	homomorphic	encryption	(FHE)	is	powerful:	it	is	a	type	of	encryption
that	allows	a	third	party	to	perform	computations	on	encrypted	data,	and	get	an	encrypted	result	that
they	can	hand	back	to	whoever	has	the	decryption	key	for	the	original	data,	without	the	third	party
being	able	to	decrypt	the	data	or	the	result	themselves.

As	a	simple	example,	imagine	that	you	have	a	set	of	emails,	and	you	want	to	use	a	third	party	spam	filter
to	check	whether	or	not	they	are	spam.	The	spam	filter	has	a	desire	for	privacy	of	their	algorithm:	either
the	spam	filter	provider	wants	to	keep	their	source	code	closed,	or	the	spam	filter	depends	on	a	very
large	database	that	they	do	not	want	to	reveal	publicly	as	that	would	make	attacking	easier,	or	both.
However,	you	care	about	the	privacy	of	your	data,	and	don't	want	to	upload	your	unencrypted	emails	to
a	third	party.	So	here's	how	you	do	it:

file:///home/runner/index.html


Fully	homomorphic	encryption	has	many	applications,	including	in	the	blockchain	space.	One	key
example	is	that	can	be	used	to	implement	privacy-preserving	light	clients	(the	light	client	hands	the
server	an	encrypted	index	i,	the	server	computes	and	returns	data[0]	*	(i	=	0)	+	data[1]	*	(i	=	1)	+
...	+	data[n]	*	(i	=	n),	where	data[i]	is	the	i'th	piece	of	data	in	a	block	or	state	along	with	its	Merkle
branch	and	(i	=	k)	is	an	expression	that	returns	1	if	i	=	k	and	otherwise	0;	the	light	client	gets	the	data
it	needs	and	the	server	learns	nothing	about	what	the	light	client	asked).

It	can	also	be	used	for:

More	efficient	stealth	address	protocols,	and	more	generally	scalability	solutions	to	privacy-
preserving	protocols	that	today	require	each	user	to	personally	scan	the	entire	blockchain	for
incoming	transactions
Privacy-preserving	data-sharing	marketplaces	that	let	users	allow	some	specific	computation	to	be
performed	on	their	data	while	keeping	full	control	of	their	data	for	themselves
An	ingredient	in	more	powerful	cryptographic	primitives,	such	as	more	efficient	multi-party
computation	protocols	and	perhaps	eventually	obfuscation

And	it	turns	out	that	fully	homomorphic	encryption	is,	conceptually,	not	that	difficult	to	understand!

Partially,	Somewhat,	Fully	homomorphic	encryption

First,	a	note	on	definitions.	There	are	different	kinds	of	homomorphic	encryption,	some	more	powerful
than	others,	and	they	are	separated	by	what	kinds	of	functions	one	can	compute	on	the	encrypted	data.

Partially	homomorphic	encryption	allows	evaluating	only	a	very	limited	set	of	operations	on
encrypted	data:	either	just	additions	(so	given	encrypt(a)	and	encrypt(b)	you	can	compute
encrypt(a+b)),	or	just	multiplications	(given	encrypt(a)	and	encrypt(b)	you	can	compute
encrypt(a*b)).
Somewhat	homomorphic	encryption	allows	computing	additions	as	well	as	a	limited	number	of
multiplications	(alternatively,	polynomials	up	to	a	limited	degree).	That	is,	if	you	get	encrypt(x1)
...	encrypt(xn)	(assuming	these	are	"original"	encryptions	and	not	already	the	result	of
homomorphic	computation),	you	can	compute	encrypt(p(x1	...	xn)),	as	long	as	p(x1	...	xn)	is	a
polynomial	with	degree	<	D	for	some	specific	degree	bound	D	(D	is	usually	very	low,	think	5-15).
Fully	homomorphic	encryption	allows	unlimited	additions	and	multiplications.	Additions	and
multiplications	let	you	replicate	any	binary	circuit	gates	(AND(x,	y)	=	x*y,	OR(x,	y)	=	x+y-x*y,
XOR(x,	y)	=	x+y-2*x*y	or	just	x+y	if	you	only	care	about	even	vs	odd,	NOT(x)	=	1-x...),	so	this	is
sufficient	to	do	arbitrary	computation	on	encrypted	data.

Partially	homomorphic	encryption	is	fairly	easy;	eg.	RSA	has	a	multiplicative	homomorphism:	\(enc(x)	=
x^e\),	\(enc(y)	=	y^e\),	so	\(enc(x)	*	enc(y)	=	(xy)^e	=	enc(xy)\).	Elliptic	curves	can	offer	similar
properties	with	addition.	Allowing	both	addition	and	multiplication	is,	it	turns	out,	significantly	harder.

A	simple	somewhat-HE	algorithm

Here,	we	will	go	through	a	somewhat-homomorphic	encryption	algorithm	(ie.	one	that	supports	a
limited	number	of	multiplications)	that	is	surprisingly	simple.	A	more	complex	version	of	this	category
of	technique	was	used	by	Craig	Gentry	to	create	the	first-ever	fully	homomorphic	scheme	in	2009.	More
recent	efforts	have	switched	to	using	different	schemes	based	on	vectors	and	matrices,	but	we	will	still
go	through	this	technique	first.

We	will	describe	all	of	these	encryption	schemes	as	secret-key	schemes;	that	is,	the	same	key	is	used	to
encrypt	and	decrypt.	Any	secret-key	HE	scheme	can	be	turned	into	a	public	key	scheme	easily:	a	"public
key"	is	typically	just	a	set	of	many	encryptions	of	zero,	as	well	as	an	encryption	of	one	(and	possibly
more	powers	of	two).	To	encrypt	a	value,	generate	it	by	adding	together	the	appropriate	subset	of	the
non-zero	encryptions,	and	then	adding	a	random	subset	of	the	encryptions	of	zero	to	"randomize"	the
ciphertext	and	make	it	infeasible	to	tell	what	it	represents.

The	secret	key	here	is	a	large	prime,	\(p\)	(think	of	\(p\)	as	having	hundreds	or	even	thousands	of	digits).
The	scheme	can	only	encrypt	0	or	1,	and	"addition"	becomes	XOR,	ie.	1	+	1	=	0.	To	encrypt	a	value	\(m\)
(which	is	either	0	or	1),	generate	a	large	random	value	\(R\)	(this	will	typically	be	even	larger	than	\(p\))
and	a	smaller	random	value	\(r\)	(typically	much	smaller	than	\(p\)),	and	output:

\[enc(m)	=	R	*	p	+	r	*	2	+	m\]

To	decrypt	a	ciphertext	\(ct\),	compute:

\[dec(ct)	=	(ct\	mod\	p)\	mod\	2\]

To	add	two	ciphertexts	\(ct_1\)	and	\(ct_2\),	you	simply,	well,	add	them:	\(ct_1	+	ct_2\).	And	to	multiply
two	ciphertexts,	you	once	again...	multiply	them:	\(ct_1	*	ct_2\).	We	can	prove	the	homomorphic
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property	(that	the	sum	of	the	encryptions	is	an	encryption	of	the	sum,	and	likewise	for	products)	as
follows.

Let:

\[ct_1	=	R_1	*	p	+	r_1	*	2	+	m_1\]	\[ct_2	=	R_2	*	p	+	r_2	*	2	+	m_2\]

We	add:

\[ct_1	+	ct_2	=	R_1	*	p	+	R_2	*	p	+	r_1	*	2	+	r_2	*	2	+	m_1	+	m_2\]

Which	can	be	rewritten	as:

\[(R_1	+	R_2)	*	p	+	(r_1	+	r_2)	*	2	+	(m_1	+	m_2)\]

Which	is	of	the	exact	same	"form"	as	a	ciphertext	of	\(m_1	+	m_2\).	If	you	decrypt	it,	the	first	\(mod\	p\)
removes	the	first	term,	the	second	\(mod\	2\)	removes	the	second	term,	and	what's	left	is	\(m_1	+	m_2\)
(remember	that	if	\(m_1	=	1\)	and	\(m_2	=	1\)	then	the	2	will	get	absorbed	into	the	second	term	and
you'll	be	left	with	zero).	And	so,	voila,	we	have	additive	homomorphism!

Now	let's	check	multiplication:

\[ct_1	*	ct_2	=	(R_1	*	p	+	r_1	*	2	+	m_1)	*	(R_2	*	p	+	r_2	*	2	+	m_2)\]

Or:

\[(R_1	*	R_2	*	p	+	r_1	*	2	+	m_1	+	r_2	*	2	+	m_2)	*	p	+	\]	\[(r_1	*	r_2	*	2	+	r_1	*	m_2	+	r_2	*	m_1)	*	2	+
\]	\[(m_1	*	m_2)\]

This	was	simply	a	matter	of	expanding	the	product	above,	and	grouping	together	all	the	terms	that
contain	\(p\),	then	all	the	remaining	terms	that	contain	\(2\),	and	finally	the	remaining	term	which	is	the
product	of	the	messages.	If	you	decrypt,	then	once	again	the	\(mod\	p\)	removes	the	first	group,	the	\
(mod\	2\)	removes	the	second	group,	and	only	\(m_1	*	m_2\)	is	left.

But	there	are	two	problems	here:	first,	the	size	of	the	ciphertext	itself	grows	(the	length	roughly
doubles	when	you	multiply),	and	second,	the	"noise"	(also	often	called	"error")	in	the	smaller	\(\*	2\)
term	also	gets	quadratically	bigger.	Adding	this	error	into	the	ciphertexts	was	necessary	because	the
security	of	this	scheme	is	based	on	the	approximate	GCD	problem:

Had	we	instead	used	the	"exact	GCD	problem",	breaking	the	system	would	be	easy:	if	you	just	had	a	set
of	expressions	of	the	form	\(p	*	R_1	+	m_1\),	\(p	*	R_2	+	m_2\)...,	then	you	could	use	the	Euclidean
algorithm	to	efficiently	compute	the	greatest	common	divisor	\(p\).	But	if	the	ciphertexts	are	only
approximate	multiples	of	\(p\)	with	some	"error",	then	extracting	\(p\)	quickly	becomes	impractical,	and
so	the	scheme	can	be	secure.

Unfortunately,	the	error	introduces	the	inherent	limitation	that	if	you	multiply	the	ciphertexts	by	each
other	enough	times,	the	error	eventually	grows	big	enough	that	it	exceeds	\(p\),	and	at	that	point	the	\
(mod\	p\)	and	\(mod\	2\)	steps	"interfere"	with	each	other,	making	the	data	unextractable.	This	will	be	an
inherent	tradeoff	in	all	of	these	homomorphic	encryption	schemes:	extracting	information	from
approximate	equations	"with	errors"	is	much	harder	than	extracting	information	from	exact	equations,
but	any	error	you	add	quickly	increases	as	you	do	computations	on	encrypted	data,	bounding	the
amount	of	computation	that	you	can	do	before	the	error	becomes	overwhelming.	And	this	is	why	these
schemes	are	only	"somewhat"	homomorphic.

Bootstrapping
There	are	two	classes	of	solution	to	this	problem.	First,	in	many	somewhat	homomorphic	encryption
schemes,	there	are	clever	tricks	to	make	multiplication	only	increase	the	error	by	a	constant	factor	(eg.
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1000x)	instead	of	squaring	it.	Increasing	the	error	by	1000x	still	sounds	by	a	lot,	but	keep	in	mind	that	if
\(p\)	(or	its	equivalent	in	other	schemes)	is	a	300-digit	number,	that	means	that	you	can	multiply
numbers	by	each	other	100	times,	which	is	enough	to	compute	a	very	wide	class	of	computations.
Second,	there	is	Craig	Gentry's	technique	of	"bootstrapping".

Suppose	that	you	have	a	ciphertext	\(ct\)	that	is	an	encryption	of	some	\(m\)	under	a	key	\(p\),	that	has	a
lot	of	error.	The	idea	is	that	we	"refresh"	the	ciphertext	by	turning	it	into	a	new	ciphertext	of	\(m\)
under	another	key	\(p_2\),	where	this	process	"clears	out"	the	old	error	(though	it	will	introduce	a	fixed
amount	of	new	error).	The	trick	is	quite	clever.	The	holder	of	\(p\)	and	\(p_2\)	provides	a	"bootstrapping
key"	that	consists	of	an	encryption	of	the	bits	of	\(p\)	under	the	key	\(p_2\),	as	well	as	the	public	key	for	\
(p_2\).	Whoever	is	doing	computations	on	data	encrypted	under	\(p\)	would	then	take	the	bits	of	the
ciphertext	\(ct\),	and	individually	encrypt	these	bits	under	\(p_2\).	They	would	then	homomorphically
compute	the	decryption	under	\(p\)	using	these	ciphertexts,	and	get	out	the	single	bit,	which	would	be	\
(m\)	encrypted	under	\(p_2\).

This	is	difficult	to	understand,	so	we	can	restate	it	as	follows.	The	decryption	procedure	\(dec(ct,	p)\)	is
itself	a	computation,	and	so	it	can	itself	be	implemented	as	a	circuit	that	takes	as	input	the	bits	of	\(ct\)
and	the	bits	of	\(p\),	and	outputs	the	decrypted	bit	\(m	\in	{0,	1}\).	If	someone	has	a	ciphertext	\(ct\)
encrypted	under	\(p\),	a	public	key	for	\(p_2\),	and	the	bits	of	\(p\)	encrypted	under	\(p_2\),	then	they	can
compute	\(dec(ct,	p)	=	m\)	"homomorphically",	and	get	out	\(m\)	encrypted	under	\(p_2\).	Notice	that	the
decryption	procedure	itself	washes	away	the	old	error;	it	just	outputs	0	or	1.	The	decryption	procedure
is	itself	a	circuit,	which	contains	additions	or	multiplications,	so	it	will	introduce	new	error,	but	this	new
error	does	not	depend	on	the	amount	of	error	in	the	original	encryption.

(Note	that	we	can	avoid	having	a	distinct	new	key	\(p_2\)	(and	if	you	want	to	bootstrap	multiple	times,	also	a	\(p_3\),	\
(p_4\)...)	by	just	setting	\(p_2	=	p\).	However,	this	introduces	a	new	assumption,	usually	called	"circular	security";	it
becomes	more	difficult	to	formally	prove	security	if	you	do	this,	though	many	cryptographers	think	it's	fine	and	circular
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security	poses	no	significant	risk	in	practice)

But....	there	is	a	catch.	In	the	scheme	as	described	above	(using	circular	security	or	not),	the	error
blows	up	so	quickly	that	even	the	decryption	circuit	of	the	scheme	itself	is	too	much	for	it.	That	is,	the
new	\(m\)	encrypted	under	\(p_2\)	would	already	have	so	much	error	that	it	is	unreadable.	This	is
because	each	AND	gate	doubles	the	bit-length	of	the	error,	so	a	scheme	using	a	\(d\)-bit	modulus	\(p\)
can	only	handle	less	than	\(log(d)\)	multiplications	(in	series),	but	decryption	requires	computing	\(mod\
p\)	in	a	circuit	made	up	of	these	binary	logic	gates,	which	requires...	more	than	\(log(d)\)	multiplications.

Craig	Gentry	came	up	with	clever	techniques	to	get	around	this	problem,	but	they	are	arguably	too
complicated	to	explain;	instead,	we	will	skip	straight	to	newer	work	from	2011	and	2013,	that	solves
this	problem	in	a	different	way.

Learning	with	errors
To	move	further,	we	will	introduce	a	different	type	of	somewhat-homomorphic	encryption	introduced	by
Brakerski	and	Vaikuntanathan	in	2011,	and	show	how	to	bootstrap	it.	Here,	we	will	move	away	from
keys	and	ciphertexts	being	integers,	and	instead	have	keys	and	ciphertexts	be	vectors.	Given	a	key	\(k	=
{k_1,	k_2	....	k_n}\),	to	encrypt	a	message	\(m\),	construct	a	vector	\(c	=	{c_1,	c_2	...	c_n}\)	such	that	the
inner	product	(or	"dot	product")	\(<c,	k>	=	c_1k_1	+	c_2k_1	+	...	+	c_nk_n\),	modulo	some	fixed	number
\(p\),	equals	\(m+2e\)	where	\(m\)	is	the	message	(which	must	be	0	or	1),	and	\(e\)	is	a	small	(much
smaller	than	\(p\))	"error"	term.	A	"public	key"	that	allows	encryption	but	not	decryption	can	be
constructed,	as	before,	by	making	a	set	of	encryptions	of	0;	an	encryptor	can	randomly	combine	a
subset	of	these	equations	and	add	1	if	the	message	they	are	encrypting	is	1.	To	decrypt	a	ciphertext	\(c\)
knowing	the	key	\(k\),	you	would	compute	\(<c,	k>\)	modulo	\(p\),	and	see	if	the	result	is	odd	or	even
(this	is	the	same	"mod	p	mod	2"	trick	we	used	earlier).	Note	that	here	the	\(mod\	p\)	is	typically	a
"symmetric"	mod,	that	is,	it	returns	a	number	between	\(-\frac{p}{2}\)	and	\(\frac{p}{2}\)	(eg.	137	mod
10	=	-3,	212	mod	10	=	2);	this	allows	our	error	to	be	positive	or	negative.	Additionally,	\(p\)	does	not
necessarily	have	to	be	prime,	though	it	does	need	to	be	odd.

Key 3 14 15 92 65
Ciphertext 2 71 82 81 8

The	key	and	the	ciphertext	are	both	vectors,	in	this	example	of	five	elements	each.

In	this	example,	we	set	the	modulus	\(p	=	103\).	The	dot	product	is	3	*	2	+	14	*	71	+	15	*	82	+	92	*	81
+	65	*	8	=	10202,	and	\(10202	=	99	*	103	+	5\).	5	itself	is	of	course	\(2	*	2	+	1\),	so	the	message	is	1.
Note	that	in	practice,	the	first	element	of	the	key	is	often	set	to	\(1\);	this	makes	it	easier	to	generate
ciphertexts	for	a	particular	value	(see	if	you	can	figure	out	why).

The	security	of	the	scheme	is	based	on	an	assumption	known	as	"learning	with	errors"	(LWE)	-	or,	in
more	jargony	but	also	more	understandable	terms,	the	hardness	of	solving	systems	of	equations	with
errors.

https://eprint.iacr.org/2011/344.pdf
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Learning_with_errors


A	ciphertext	can	itself	be	viewed	as	an	equation:	\(k_1c_1	+	....	+	k_nc_n	\approx	0\),	where	the	key	\
(k_1	...	k_n\)	is	the	unknowns,	the	ciphertext	\(c_1	...	c_n\)	is	the	coefficients,	and	the	equality	is	only
approximate	because	of	both	the	message	(0	or	1)	and	the	error	(\(2e\)	for	some	relatively	small	\(e\)).
The	LWE	assumption	ensures	that	even	if	you	have	access	to	many	of	these	ciphertexts,	you	cannot
recover	\(k\).

Note	that	in	some	descriptions	of	LWE,	<c,	k>	can	equal	any	value,	but	this	value	must	be	provided	as	part	of	the
ciphertext.	This	is	mathematically	equivalent	to	the	<c,	k>	=	m+2e	formulation,	because	you	can	just	add	this	answer
to	the	end	of	the	ciphertext	and	add	-1	to	the	end	of	the	key,	and	get	two	vectors	that	when	multiplied	together	just
give	m+2e.	We'll	use	the	formulation	that	requires	<c,	k>	to	be	near-zero	(ie.	just	m+2e)	because	it	is	simpler	to	work
with.

Multiplying	ciphertexts

It	is	easy	to	verify	that	the	encryption	is	additive:	if	\(<ct_1,	k>	=	2e_1	+	m_1\)	and	\(<ct_2,	k>	=	2e_2
+	m_2\),	then	\(<ct_1	+	ct_2,	k>	=	2(e_1	+	e_2)	+	m_1	+	m_2\)	(the	addition	here	is	modulo	\(p\)).	What
is	harder	is	multiplication:	unlike	with	numbers,	there	is	no	natural	way	to	multiply	two	length-n	vectors
into	another	length-n	vector.	The	best	that	we	can	do	is	the	outer	product:	a	vector	containing	the
products	of	each	possible	pair	where	the	first	element	comes	from	the	first	vector	and	the	second
element	comes	from	the	second	vector.	That	is,	\(a	\otimes	b	=	a_1b_1	+	a_2b_1	+	...	+	a_nb_1	+	a_1b_2
+	...	+	a_nb_2	+	...	+	a_nb_n\).	We	can	"multiply	ciphertexts"	using	the	convenient	mathematical
identity	\(<a	\otimes	b,	c	\otimes	d>	=	<a,	c>	*	<b,	d>\).

Given	two	ciphertexts	\(c_1\)	and	\(c_2\),	we	compute	the	outer	product	\(c_1	\otimes	c_2\).	If	both	\
(c_1\)	and	\(c_2\)	were	encrypted	with	\(k\),	then	\(<c_1,	k>	=	2e_1	+	m_1\)	and	\(<c_2,	k>	=	2e_2	+
m_2\).	The	outer	product	\(c_1	\otimes	c_2\)	can	be	viewed	as	an	encryption	of	\(m_1	*	m_2\)	under	\(k
\otimes	k\);	we	can	see	this	by	looking	what	happens	when	we	try	to	decrypt	with	\(k	\otimes	k\):

\[<c_1	\otimes	c_2,	k	\otimes	k>\]	\[=	<c_1,	k>	*	<c_2,	k>\]	\[	=	(2e_1	+	m_1)	*	(2e_2	+	m_2)\]	\[	=
2(e_1m_2	+	e_2m_1	+	2e_1e_2)	+	m_1m_2\]

So	this	outer-product	approach	works.	But	there	is,	as	you	may	have	already	noticed,	a	catch:	the	size	of
the	ciphertext,	and	the	key,	grows	quadratically.

Relinearization

We	solve	this	with	a	relinearization	procedure.	The	holder	of	the	private	key	\(k\)	provides,	as	part	of
the	public	key,	a	"relinearization	key",	which	you	can	think	of	as	"noisy"	encryptions	of	\(k	\otimes	k\)
under	\(k\).	The	idea	is	that	we	provide	these	encrypted	pieces	of	\(k	\otimes	k\)	to	anyone	performing
the	computations,	allowing	them	to	compute	the	equation	\(<c_1	\otimes	c_2,	k	\otimes	k>\)	to	"decrypt"

https://cims.nyu.edu/~regev/papers/lwesurvey.pdf
https://en.wikipedia.org/wiki/Outer_product


the	ciphertext,	but	only	in	such	a	way	that	the	output	comes	back	encrypted	under	\(k\).

It's	important	to	understand	what	we	mean	here	by	"noisy	encryptions".	Normally,	this	encryption
scheme	only	allows	encrypting	\(m	\in	\{0,1\}\),	and	an	"encryption	of	\(m\)"	is	a	vector	\(c\)	such	that	\
(<c,	k>	=	m+2e\)	for	some	small	error	\(e\).	Here,	we're	"encrypting"	arbitrary	\(m	\in	\{0,1,	2....p-1\}\).
Note	that	the	error	means	that	you	can't	fully	recover	\(m\)	from	\(c\);	your	answer	will	be	off	by	some
multiple	of	2.	However,	it	turns	out	that,	for	this	specific	use	case,	this	is	fine.

The	relinearization	key	consists	of	a	set	of	vectors	which,	when	inner-producted	(modulo	\(p\))	with	the
key	\(k\),	give	values	of	the	form	\(k_i	*	k_j	*	2^d	+	2e\)	(mod	\(p\)),	one	such	vector	for	every	possible
triple	\((i,	j,	d)\),	where	\(i\)	and	\(j\)	are	indices	in	the	key	and	\(d\)	is	an	exponent	where	\(2^d	<	p\)
(note:	if	the	key	has	length	\(n\),	there	would	be	\(n^2	*	log(p)\)	values	in	the	relinearization	key;	make
sure	you	understand	why	before	continuing).

Example	assuming	p	=	15	and	k	has	length	2.	Formally,	enc(x)	here	means	"outputs	x+2e	if	inner-producted	with	k".

Now,	let	us	take	a	step	back	and	look	again	at	our	goal.	We	have	a	ciphertext	which,	if	decrypted	with	\
(k	\otimes	k\),	gives	\(m_1	*	m_2\).	We	want	a	ciphertext	which,	if	decrypted	with	\(k\),	gives	\(m_1	*
m_2\).	We	can	do	this	with	the	relinearization	key.	Notice	that	the	decryption	equation	\(<ct_1	\otimes
ct_2,	k	\otimes	k>\)	is	just	a	big	sum	of	terms	of	the	form	\((ct_{1_i}	*	ct_{2_j})	*	k_p	*	k_q\).

And	what	do	we	have	in	our	relinearization	key?	A	bunch	of	elements	of	the	form	\(2^d	*	k_p	*	k_q\),
noisy-encrypted	under	\(k\),	for	every	possible	combination	of	\(p\)	and	\(q\)!	Having	all	the	powers	of
two	in	our	relinearization	key	allows	us	to	generate	any	\((ct_{1_i}	*	ct_{2_j})	*	k_p	*	k_q\)	by	just
adding	up	\(\le	log(p)\)	powers	of	two	(eg.	13	=	8	+	4	+	1)	together	for	each	\((p,	q)\)	pair.

For	example,	if	\(ct_1	=	[1,	2]\)	and	\(ct_2	=	[3,	4]\),	then	\(ct_1	\otimes	ct_2	=	[3,	4,	6,	8]\),	and	\
(enc(<ct_1	\otimes	ct_2,	k	\otimes	k>)	=	enc(3k_1k_1	+	4k_1k_2	+	6k_2k_1	+	8k_2k_2)\)	could	be
computed	via:

\[enc(k_1	*	k_1)	+	enc(k_1	*	k_1	*	2)	+	enc(k_1	*	k_2	*	4)	+	\]

\[enc(k_2	*	k_1	*	2)	+	enc(k_2	*	k_1	*	4)	+	enc(k_2	*	k_2	*	8)	\]

Note	that	each	noisy-encryption	in	the	relinearization	key	has	some	even	error	\(2e\),	and	the	equation	\
(<ct_1	\otimes	ct_2,	k	\otimes	k>\)	itself	has	some	error:	if	\(<ct_1,	k>	=	2e_1	+	m_1\)	and	\(<ct_2	+	k>
=	2e_2	+	m_2\),	then	\(<ct_1	\otimes	ct_2,	k	\otimes	k>	=\)	\(<ct_1,	k>	*	<ct_2	+	k>	=\)	\(2(2e_1e_2	+
e_1m_2	+	e_2m_1)	+	m_1m_2\).	But	this	total	error	is	still	(relatively)	small	(\(2e_1e_2	+	e_1m_2	+
e_2m_1\)	plus	\(n^2	*	log(p)\)	fixed-size	errors	from	the	realinearization	key),	and	the	error	is	even,	and
so	the	result	of	this	calculation	still	gives	a	value	which,	when	inner-producted	with	\(k\),	gives	\(m_1	*
m_2	+	2e'\)	for	some	"combined	error"	\(e'\).

The	broader	technique	we	used	here	is	a	common	trick	in	homomorphic	encryption:	provide	pieces	of
the	key	encrypted	under	the	key	itself	(or	a	different	key	if	you	are	pedantic	about	avoiding	circular
security	assumptions),	such	that	someone	computing	on	the	data	can	compute	the	decryption	equation,
but	only	in	such	a	way	that	the	output	itself	is	still	encrypted.	It	was	used	in	bootstrapping	above,	and
it's	used	here;	it's	best	to	make	sure	you	mentally	understand	what's	going	on	in	both	cases.

This	new	ciphertext	has	considerably	more	error	in	it:	the	\(n^2	*	log(p)\)	different	errors	from	the
portions	of	the	relinearization	key	that	we	used,	plus	the	\(2(2e_1e_2	+	e_1m_2	+	e_2m_1)\)	from	the
original	outer-product	ciphertext.	Hence,	the	new	ciphertext	still	does	have	quadratically	larger	error
than	the	original	ciphertexts,	and	so	we	still	haven't	solved	the	problem	that	the	error	blows	up	too
quickly.	To	solve	this,	we	move	on	to	another	trick...

Modulus	switching

Here,	we	need	to	understand	an	important	algebraic	fact.	A	ciphertext	is	a	vector	\(ct\),	such	that	\(<ct,
k>	=	m+2e\),	where	\(m	\in	\{0,1\}\).	But	we	can	also	look	at	the	ciphertext	from	a	different
"perspective":	consider	\(\frac{ct}{2}\)	(modulo	\(p\)).	\(<\frac{ct}{2},	k>	=	\frac{m}{2}	+	e\),	where
\(\frac{m}{2}	\in	\{0,\frac{p+1}{2}\}\).	Note	that	because	(modulo	\(p\))	\((\frac{p+1}{2})*2	=	p+1	=
1\),	division	by	2	(modulo	\(p\))	maps	\(1\)	to	\(\frac{p+1}{2}\);	this	is	a	very	convenient	fact	for	us.



The	scheme	in	this	section	uses	both	modular	division	(ie.	multiplying	by	the	modular	multiplicative	inverse)	and
regular	"rounded	down"	integer	division;	make	sure	you	understand	how	both	work	and	how	they	are	different	from
each	other.

That	is,	the	operation	of	dividing	by	2	(modulo	\(p\))	converts	small	even	numbers	into	small	numbers,
and	it	converts	1	into	\(\frac{p}{2}\)	(rounded	up).	So	if	we	look	at	\(\frac{ct}{2}\)	(modulo	\(p\))
instead	of	\(ct\),	decryption	involves	computing	\(<\frac{ct}{2},	k>\)	and	seeing	if	it's	closer	to	\(0\)	or	\
(\frac{p}{2}\).	This	"perspective"	is	much	more	robust	to	certain	kinds	of	errors,	where	you	know	the
error	is	small	but	can't	guarantee	that	it's	a	multiple	of	2.

Now,	here	is	something	we	can	do	to	a	ciphertext.

1.	 Start:	\(<ct,	k>	=	\{0\	or\	1\}	+	2e\	(mod\	p)\)
2.	 Divide	\(ct\)	by	2	(modulo	\(p\)):	\(<ct',	k>	=	\{0\	or\	\frac{p}{2}\}	+	e\	(mod\	p)\)
3.	 Multiply	\(ct'\)	by	\(\frac{q}{p}\)	using	"regular	rounded-down	integer	division":	\(<ct'',	k>	=	\{0\
or\	\frac{q}{2}\}	+	e'	+	e_2\	(mod\	q)\)

4.	 Multiply	\(ct''\)	by	2	(modulo	\(q\)):	\(<ct''',	k>	=	\{0\	or\	1\}	+	2e'	+	2e_2\	(mod\	q)\)

Step	3	is	the	crucial	one:	it	converts	a	ciphertext	under	modulus	\(p\)	into	a	ciphertext	under	modulus	\
(q\).	The	process	just	involves	"scaling	down"	each	element	of	\(ct'\)	by	multiplying	by	\(\frac{q}{p}\)
and	rounding	down,	eg.	\(floor(56	*	\frac{15}{103})	=	floor(8.15533..)	=	8\).

The	idea	is	this:	if	\(<ct',	k>	=	m*\frac{p}{2}	+	e\	(mod\	p)\),	then	we	can	interpret	this	as	\(<ct',	k>	=
p(z	+	\frac{m}{2})	+	e\)	for	some	integer	\(z\).	Therefore,	\(<ct'	*	\frac{q}{p},	k>	=	q(z	+	\frac{m}
{2})	+	e*\frac{p}{q}\).	Rounding	adds	error,	but	only	a	little	bit	(specifically,	up	to	the	size	of	the
values	in	\(k\),	and	we	can	make	the	values	in	\(k\)	small	without	sacrificing	security).	Therefore,	we	can
say	\(<ct'	*	\frac{q}{p},	k>	=	m*\frac{q}{2}	+	e'	+	e_2\	(mod\	q)\),	where	\(e'	=	e	*	\frac{q}{p}\),	and
\(e_2\)	is	a	small	error	from	rounding.

What	have	we	accomplished?	We	turned	a	ciphertext	with	modulus	\(p\)	and	error	\(2e\)	into	a
ciphertext	with	modulus	\(q\)	and	error	\(2(floor(e*\frac{p}{q})	+	e_2)\),	where	the	new	error	is	smaller
than	the	original	error.

Let's	go	through	the	above	with	an	example.	Suppose:

\(ct\)	is	just	one	value,	\([5612]\)
\(k	=	[9]\)
\(p	=	9999\)	and	\(q	=	113\)

\(<ct,	k>	=	5612	*	9	=	50508	=	9999	*	5	+	2	*	256	+	1\),	so	\(ct\)	represents	the	bit	1,	but	the	error	is
fairly	large	(\(e	=	256\)).

Step	2:	\(ct'	=	\frac{ct}{2}	=	2806\)	(remember	this	is	modular	division;	if	\(ct\)	were	instead	\(5613\),
then	we	would	have	\(\frac{ct}{2}	=	7806\)).	Checking:	\(<ct',	k>	=	2806	*	9	=	25254	=	9999	*	2.5	+
256.5\)

Step	3:	\(ct''	=	floor(2806	*	\frac{113}{9999})	=	floor(31.7109...)	=	31\).	Checking:	\(<ct'',	k>	=	279	=
113	*	2.5	-	3.5\)

https://en.wikipedia.org/wiki/Modular_multiplicative_inverse


Step	4:	\(ct'''	=	31	*	2	=	62\).	Checking:	\(<ct''',	k>	=	558	=	113	*	5	-	2	*	4	+	1\)

And	so	the	bit	\(1\)	is	preserved	through	the	transformation.	The	crazy	thing	about	this	procedure	is:
none	of	it	requires	knowing	\(k\).	Now,	an	astute	reader	might	notice:	you	reduced	the	absolute	size	of
the	error	(from	256	to	2),	but	the	relative	size	of	the	error	remained	unchanged,	and	even	slightly
increased:	\(\frac{256}{9999}	\approx	2.5\%\)	but	\(\frac{4}{113}	\approx	3.5\%\).	Given	that	it's	the
relative	error	that	causes	ciphertexts	to	break,	what	have	we	gained	here?

The	answer	comes	from	what	happens	to	error	when	you	multiply	ciphertexts.	Suppose	that	we	start
with	a	ciphertext	\(x\)	with	error	100,	and	modulus	\(p	=	10^{16}	-	1\).	We	want	to	repeatedly	square	\
(x\),	to	compute	\((((x^2)^2)^2)^2	=	x^{16}\).	First,	the	"normal	way":

The	error	blows	up	too	quickly	for	the	computation	to	be	possible.	Now,	let's	do	a	modulus	reduction
after	every	multiplication.	We	assume	the	modulus	reduction	is	imperfect	and	increases	error	by	a
factor	of	10,	so	a	1000x	modulo	reduction	only	reduces	error	from	10000	to	100	(and	not	to	10):

The	key	mathematical	idea	here	is	that	the	factor	by	which	error	increases	in	a	multiplication	depends
on	the	absolute	size	of	the	error,	and	not	its	relative	size,	and	so	if	we	keep	doing	modulus	reductions	to
keep	the	error	small,	each	multiplication	only	increases	the	error	by	a	constant	factor.	And	so,	with	a	\
(d\)	bit	modulus	(and	hence	\(\approx	2^d\)	room	for	"error"),	we	can	do	\(O(d)\)	multiplications!	This	is
enough	to	bootstrap.

Another	technique:	matrices

Another	technique	(see	Gentry,	Sahai,	Waters	(2013))	for	fully	homomorphic	encryption	involves
matrices:	instead	of	representing	a	ciphertext	as	\(ct\)	where	\(<ct,	k>	=	2e	+	m\),	a	ciphertext	is	a
matrix,	where	\(k	*	CT	=	k	*	m	+	e\)	(\(k\),	the	key,	is	still	a	vector).	The	idea	here	is	that	\(k\)	is	a
"secret	near-eigenvector"	-	a	secret	vector	which,	if	you	multiply	the	matrix	by	it,	returns	something
very	close	to	either	zero	or	the	key	itself.

The	fact	that	addition	works	is	easy:	if	\(k	*	CT_1	=	m_1	*	k	+	e_1\)	and	\(k	*	CT_2	=	m_2	*	k	+	e_2\),
then	\(k	*	(CT_1	+	CT_2)	=	(m_1	+	m_2)	*	k	+	(e_1	+	e_2)\).	The	fact	that	multiplication	works	is	also
easy:

https://eprint.iacr.org/2013/340.pdf


\(k	*	CT_1	*	CT_2\)	\(=	(m_1	*	k	+	e_1)	*	CT_2\)	\(=	m_1	*	k	*	CT_2	+	e_1	*	CT_2\)	\(=	m_1	*	m_2	*	k	+
m_1	*	e_2	+	e_1	*	CT_2\)

The	first	term	is	the	"intended	term";	the	latter	two	terms	are	the	"error".	That	said,	notice	that	here
error	does	blow	up	quadratically	(see	the	\(e_1	*	CT_2\)	term;	the	size	of	the	error	increases	by	the	size
of	each	ciphertext	element,	and	the	ciphertext	elements	also	square	in	size),	and	you	do	need	some
clever	tricks	for	avoiding	this.	Basically,	this	involves	turning	ciphertexts	into	matrices	containing	their
constituent	bits	before	multiplying,	to	avoid	multiplying	by	anything	higher	than	1;	if	you	want	to	see
how	this	works	in	detail	I	recommend	looking	at	my	code:
https://github.com/vbuterin/research/blob/master/matrix_fhe/matrix_fhe.py#L121

In	addition,	the	code	there,	and	also
https://github.com/vbuterin/research/blob/master/tensor_fhe/homomorphic_encryption.py#L186,
provides	simple	examples	of	useful	circuits	that	you	can	build	out	of	these	binary	logical	operations;	the
main	example	is	for	adding	numbers	that	are	represented	as	multiple	bits,	but	one	can	also	make
circuits	for	comparison	(\(<\),	\(>\),	\(=\)),	multiplication,	division,	and	many	other	operations.

Since	2012-13,	when	these	algorithms	were	created,	there	have	been	many	optimizations,	but	they	all
work	on	top	of	these	basic	frameworks.	Often,	polynomials	are	used	instead	of	integers;	this	is	called
ring	LWE.	The	major	challenge	is	still	efficiency:	an	operation	involving	a	single	bit	involves	multiplying
entire	matrices	or	performing	an	entire	relinearization	computation,	a	very	high	overhead.	There	are
tricks	that	allow	you	to	perform	many	bit	operations	in	a	single	ciphertext	operation,	and	this	is	actively
being	worked	on	and	improved.

We	are	quickly	getting	to	the	point	where	many	of	the	applications	of	homomorphic	encryption	in
privacy-preserving	computation	are	starting	to	become	practical.	Additionally,	research	in	the	more
advanced	applications	of	the	lattice-based	cryptography	used	in	homomorphic	encryption	is	rapidly
progressing.	So	this	is	a	space	where	some	things	can	already	be	done	today,	but	we	can	hopefully	look
forward	to	much	more	becoming	possible	over	the	next	decade.

https://github.com/vbuterin/research/blob/master/matrix_fhe/matrix_fhe.py#L121
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Gitcoin	Grants	Round	5	Retrospective

Special	thanks	to	Kevin	Owocki	and	Frank	Chen	for	help	and	review

Round	5	of	Gitcoin	Grants	has	just	finished,	with	$250,000	of	matching	split	between	tech,	media,	and	the
new	(non-Ethereum-centric)	category	of	"public	health".	In	general,	it	seems	like	the	mechanism	and	the
community	are	settling	down	into	a	regular	rhythm.	People	know	what	it	means	to	contribute,	people	know
what	to	expect,	and	the	results	emerge	in	a	relatively	predictable	pattern	-	even	if	which	specific	grants	get
the	most	funds	is	not	so	easy	to	predict.

Stability	of	income

So	let's	go	straight	into	the	analysis.	One	important	property	worth	looking	at	is	stability	of	income	across
rounds:	do	projects	that	do	well	in	round	N	also	tend	to	do	well	in	round	N+1?	Stability	of	income	is	very
important	if	we	want	to	support	an	ecosystem	of	"quadratic	freelancers":	we	want	people	to	feel	comfortable
relying	on	their	income	knowing	that	it	will	not	completely	disappear	the	next	round.	On	the	other	hand,	it
would	be	harmful	if	some	recipients	became	completely	entrenched,	with	no	opportunity	for	new	projects	to
come	in	and	compete	for	the	pot,	so	there	is	a	need	for	a	balance.

On	the	media	side,	we	do	see	some	balance	between	stability	and	dynamism:
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Week	in	Ethereum	had	the	highest	total	amount	received	in	both	the	previous	round	and	the	current	round.
EthHub	and	Bankless	are	also	near	the	top	in	both	the	current	round	and	the	previous	round.	On	the	other
hand,	Antiprosynthesis,	the	(beloved?	notorious?	famous?)	Twitter	info-warrior,	has	decreased	from	$13,813
to	$5,350,	while	Chris	Blec's	YouTube	channel	has	increased	from	$5,851	to	$12,803.	So	some	churn,	but	also
some	continuity	between	rounds.

On	the	tech	side,	we	see	much	more	churn	in	the	winners,	with	a	less	clear	relationship	between	income	last
round	and	income	this	round:

Last	round,	the	winner	was	Tornado	Cash,	claiming	$30,783;	this	round,	they	are	down	to	$8,154.	This	round,
the	three	roughly-even	winners	are	Samczsun	($4,631	contributions	+	$15,704	match	=	$20,335	total),
Arboreum	($16,084	contributions	+	$9,046	match	=	$25,128	total)	and	1inch.exchange	($58,566
contributions	+	$7,893	match	=	$66,459	total),	in	the	latter	case	the	bulk	coming	from	one	contribution:

In	the	previous	round,	those	three	winners	were	not	even	in	the	top	ten,	and	in	some	cases	not	even	part	of
Gitcoin	Grants	at	all.

These	numbers	show	us	two	things.	First,	large	parts	of	the	Gitcoin	community	seem	to	be	in	the	mindset	of
treating	grants	not	as	a	question	of	"how	much	do	you	deserve	for	your	last	two	months	of	work?",	but	rather
as	a	one-off	reward	for	years	of	contributions	in	the	past.	This	was	one	of	the	strongest	rebuttals	that	I
received	to	my	criticism	of	Antiprosynthesis	receiving	$13,813	in	the	last	round:	that	the	people	who
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contributed	to	that	award	did	not	see	it	as	two	months'	salary,	but	rather	as	a	reward	for	years	of	dedication
and	work	for	the	Ethereum	ecosystem.	In	the	next	round,	contributors	were	content	that	the	debt	was
sufficiently	repaid,	and	so	they	moved	on	to	give	a	similar	gift	of	appreciation	and	gratitude	to	Chris	Blec.

That	said,	not	everyone	contributes	in	this	way.	For	example,	Prysm	got	$7,966	last	round	and	$8,033	this
round,	and	Week	in	Ethereum	is	consistently	well-rewarded	($16,727	previous,	$12,195	current),	and	EthHub
saw	less	stability	but	still	kept	half	its	income	($13,515	previous,	$6,705	current)	even	amid	a	20%	drop	to	the
matching	pool	size	as	some	funds	were	redirected	to	public	health.	So	there	definitely	are	some	contributors
that	are	getting	almost	a	reasonable	monthly	salary	from	Gitcoin	Grants	(yes,	even	these	amounts	are	all
serious	underpayment,	but	remember	that	the	pool	of	funds	Gitcoin	Grants	has	to	distribute	in	the	first	place
is	quite	small,	so	there's	no	allocation	that	would	not	seriously	underpay	most	people;	the	hope	is	that	in	the
future	we	will	find	ways	to	make	the	matching	pot	grow	bigger).

Why	didn't	more	people	use	recurring	contributions?

One	feature	that	was	tested	this	round	to	try	to	improve	stability	was	recurring	contributions:	users	could
choose	to	split	their	contribution	among	multiple	rounds.	However,	the	feature	was	not	used	often:	out	of	over
8,000	total	contributions,	only	120	actually	made	recurring	contributions.	I	can	think	of	three	possible
explanations	for	this:

1.	 People	just	don't	want	to	give	recurring	contributions;	they	genuinely	prefer	to	freshly	rethink	who	they
are	supporting	every	round.

2.	 People	would	be	willing	to	give	more	recurring	contributions,	but	there	is	some	kind	of	"market	failure"
stopping	them;	that	is,	it's	collectively	optimal	for	everyone	to	give	more	recurring	contributions,	but	it's
not	any	individual	contributor's	interest	to	be	the	first	to	do	so.

3.	 There's	some	UI	inconveniences	or	other	"incidental"	obstacles	preventing	recurring	contributions.

In	a	recent	call	with	the	Gitcoin	team,	hypothesis	(3)	was	mentioned	frequently.	A	specific	issue	was	that
people	were	worried	about	making	recurring	contributions	because	they	were	concerned	whether	or	not	the
money	that	they	lock	up	for	a	recurring	contribution	would	be	safe.	Improving	the	payment	system	and
notification	workflow	may	help	with	this.	Another	option	is	to	move	away	from	explicit	"streaming"	and
instead	simply	have	the	UI	provide	an	option	for	repeating	the	last	round's	contributions	and	making	edits
from	there.

Hypothesis	(1)	also	should	be	taken	seriously;	there's	genuine	value	in	preventing	ossification	and	allowing
space	for	new	entrants.	But	I	want	to	zoom	in	particularly	on	hypothesis	(2),	the	coordination	failure
hypothesis.

My	explanation	of	hypothesis	(2)	starts,	interestingly	enough,	with	a	defense	of	(1):	why	ossification	is
genuinely	a	risk.	Suppose	that	there	are	two	projects,	A	and	B,	and	suppose	that	they	are	equal	quality.	But	A
already	has	an	established	base	of	contributors;	B	does	not	(we'll	say	for	illustration	it	only	has	a	few	existing
contributors).	Here's	how	much	matching	you	are	contributing	by	participating	in	each	project:

Contributing	to	A Contributing	to	B

Clearly,	you	have	more	impact	by	supporting	A,	and	so	A	gets	even	more	contributors	and	B	gets	fewer;	the
rich	get	richer.	Even	if	project	B	was	somewhat	better,	the	greater	impact	from	supporting	A	could	still	create
a	lock-in	that	reinforces	A's	position.	The	current	everyone-starts-from-zero-in-each-round	mechanism	greatly
limits	this	type	of	entrenchment,	because,	well,	everyone's	matching	gets	reset	and	starts	from	zero.

However,	a	very	similar	effect	also	is	the	cause	behind	the	market	failure	preventing	stable	recurring
contributions,	and	the	every-round-reset	actually	exacerbates	it.	Look	at	the	same	picture	above,	except
instead	of	thinking	of	A	and	B	as	two	different	projects,	think	of	them	as	the	same	project	in	the	current	round
and	in	the	next	round.

We	simplify	the	model	as	follows.	An	individual	has	two	choices:	contribute	$10	in	the	current	round,	or
contribute	$5	in	the	current	round	and	$5	in	the	next	round.	If	the	matchings	in	the	two	rounds	were	equal,
then	the	latter	option	would	actually	be	more	favorable:	because	the	matching	is	proportional	to	the	square
root	of	the	donation	size,	the	former	might	give	you	eg.	a	$200	match	now,	but	the	latter	would	give	you	$141
in	the	current	round	+	$141	in	the	next	round	=	$282.	But	if	you	see	a	large	mass	of	people	contributing	in
the	current	round,	and	you	expect	much	fewer	people	to	contribute	in	the	second	round,	then	the	choice	is
not	$200	versus	$141	+	$141,	it	might	be	$200	versus	$141	+	$5.	And	so	you're	better	off	joining	the	current



round's	frenzy.	We	can	mathematically	analyze	the	equilibrium:

So	there	is	a	substantial	region	within	which	the	bad	equilibrium	of	everyone	concentrating	is	sticky:	if	more
than	about	3/4	of	contributors	are	expected	to	concentrate,	it	seems	in	your	interest	to	also	concentrate.	A
mathematically	astute	reader	may	note	that	there	is	always	some	intermediate	strategy	that	involves	splitting
but	at	a	ratio	different	from	50/50,	which	you	can	prove	performs	better	than	either	full	concentrating	or	the
even	split,	but	here	we	get	back	to	hypothesis	(3)	above:	the	UI	doesn't	offer	such	a	complex	menu	of	choices,
it	just	offers	the	choice	of	a	one-time	contribution	or	a	recurring	contribution,	so	people	pick	one	or	the	other.

How	might	we	fix	this?	One	option	is	to	add	a	bit	of	continuity	to	matching	ratios:	when	computing	pairwise
matches,	match	against	not	just	the	current	round's	contributors	but,	say,	1/3	of	the	previous	round's
contributors	as	well:

This	makes	some	philosophical	sense:	the	objective	of	quadratic	funding	is	to	subsidize	contributions	to
projects	that	are	detected	to	be	public	goods	because	multiple	people	have	contributed	to	them,	and
contributions	in	the	previous	round	are	certainly	also	evidence	of	a	project's	value,	so	why	not	reuse	those?
So	here,	moving	away	from	everyone-starts-from-zero	toward	this	partial	carryover	of	matching	ratios	would
mitigate	the	round	concentration	effect	-	but,	of	course,	it	would	exacerbate	the	risk	of	entrenchment.	Hence,
some	experimentation	and	balance	may	be	in	order.	A	broader	philosophical	question	is,	is	there	really	a	deep
inherent	tradeoff	between	risk	of	entrenchment	and	stability	of	income,	or	is	there	some	way	we	could	get
both?

Responses	to	negative	contributions

This	round	also	introduced	negative	contributions,	a	feature	proposed	in	my	review	of	the	previous	round.	But
as	with	recurring	contributions,	very	few	people	made	negative	contributions,	to	the	point	where	their	impact
on	the	results	was	negligible.	Also,	there	was	active	opposition	to	negative	contributions:
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Source:	honestly	I	have	no	idea,	someone	else	sent	it	to	me	and	they	forgot	where	they	found	it.	Sorry	:(

The	main	source	of	opposition	was	basically	what	I	predicted	in	the	previous	round.	Adding	a	mechanism	that
allows	people	to	penalize	others,	even	if	deservedly	so,	can	have	tricky	and	easily	harmful	social
consequences.	Some	people	even	opposed	the	negative	contribution	mechanism	to	the	point	where	they	took
care	to	give	positive	contributions	to	everyone	who	received	a	negative	contribution.

How	do	we	respond?	To	me	it	seems	clear	that,	in	the	long	run,	some	mechanism	of	filtering	out	bad	projects,
and	ideally	compensating	for	overexcitement	into	good	projects,	will	have	to	exist.	It	doesn't	necessarily	need
to	be	integrated	as	a	symmetric	part	of	the	QF,	but	there	does	need	to	be	a	filter	of	some	form.	And	this
mechanism,	whatever	form	it	will	take,	invariably	opens	up	the	possibility	of	the	same	social	dynamics.	So
there	is	a	challenge	that	will	have	to	be	solved	no	matter	how	we	do	it.

One	approach	would	be	to	hide	more	information:	instead	of	just	hiding	who	made	a	negative	contribution,
outright	hide	the	fact	that	a	negative	contribution	was	made.	Many	opponents	of	negative	contributions
explicitly	indicated	that	they	would	be	okay	(or	at	least	more	okay)	with	such	a	model.	And	indeed	(see	the
next	section),	this	is	a	direction	we	will	have	to	go	anyway.	But	it	would	come	at	a	cost	-	effectively	hiding
negative	contributions	would	mean	not	giving	as	much	real-time	feedback	into	what	projects	got	how	much
funds.

Stepping	up	the	fight	against	collusion

This	round	saw	much	larger-scale	attempts	at	collusion:



It	does	seem	clear	that,	at	current	scales,	stronger	protections	against	manipulation	are	goingto	be	required.
The	first	thing	that	can	be	done	is	adding	a	stronger	identity	verification	layer	than	Github	accounts;	this	is
something	that	the	Gitcoin	team	is	already	working	on.	There	is	definitely	a	complex	tradeoff	between
security	and	inclusiveness	to	be	worked	through,	but	it	is	not	especially	difficult	to	implement	a	first	version.
And	if	the	identity	problem	is	solved	to	a	reasonable	extent,	that	will	likely	be	enough	to	prevent	collusion	at
current	scales.	But	in	the	longer	term,	we	are	going	to	need	protection	not	just	against	manipulating	the
system	by	making	many	fake	accounts,	but	also	against	collusion	via	bribes	(explicit	and	implicit).

MACI	is	the	solution	that	I	proposed	(and	Barry	Whitehat	and	co	are	implementing)	to	solve	this	problem.
Essentially,	MACI	is	a	cryptographic	construction	that	allows	for	contributions	to	projects	to	happen	on-chain
in	a	privacy-preserving,	encrypted	form,	that	allows	anyone	to	cryptographically	verify	that	the	mechanism	is
being	implemented	correctly,	but	prevents	participants	from	being	able	to	prove	to	a	third	party	that	they
made	any	particular	contribution.	Unprovability	means	that	if	someone	tries	to	bribe	others	to	contribute	to
their	project,	the	bribe	recipients	would	have	no	way	to	prove	that	they	actually	contributed	to	that	project,
making	the	bribe	unenforceable.	Benign	"collusion"	in	the	form	of	friends	and	family	supporting	each	other
would	still	happen,	as	people	would	not	easily	lie	to	each	other	at	such	small	scales,	but	any	broader	collusion
would	be	very	difficult	to	maintain.

However,	we	do	need	to	think	through	some	of	the	second-order	consequences	that	integrating	MACI	would
introduce.	The	biggest	blessing,	and	curse,	of	using	MACI	is	that	contributions	become	hidden.	Identities
necessarily	become	hidden,	but	even	the	exact	timing	of	contributions	would	need	to	be	hidden	to	prevent
deanonymization	through	timing	(to	prove	that	you	contributed,	make	the	total	amount	jump	up	between
17:40	and	17:42	today).	Instead,	for	example,	totals	could	be	provided	and	updated	once	per	day.	Note	that	as
a	corollary	negative	contributions	would	be	hidden	as	well;	they	would	only	appear	if	they	exceeded	all
positive	contributions	for	an	entire	day	(and	if	even	that	is	not	desired	then	the	mechanism	for	when	balances
are	updated	could	be	tweaked	to	further	hide	downward	changes).

The	challenge	with	hiding	contributions	is	that	we	lose	the	"social	proof"	motivator	for	contributing:	if
contributions	are	unprovable	you	can't	as	easily	publicly	brag	about	a	contribution	you	made.	My	best
proposal	for	solving	this	is	for	the	mechanism	to	publish	one	extra	number:	the	total	amount	that	a	particular
participant	contributed	(counting	only	projects	that	have	received	at	least	10	contributors	to	prevent	inflating
one's	number	by	self-dealing).	Individuals	would	then	have	a	generic	"proof-of-generosity"	that	they
contributed	some	specific	total	amount,	and	could	publicly	state	(without	proof)	what	projects	it	was	that	they
supported.	But	this	is	all	a	significant	change	to	the	user	experience	that	will	require	multiple	rounds	of
experimentation	to	get	right.

Conclusions

All	in	all,	Gitcoin	Grants	is	establishing	itself	as	a	significant	pillar	of	the	Ethereum	ecosystem	that	more	and
more	projects	are	relying	on	for	some	or	all	of	their	support.	While	it	has	a	relatively	low	amount	of	funding	at
present,	and	so	inevitably	underfunds	almost	everything	it	touches,	we	hope	that	over	time	we'll	continue	to
see	larger	sources	of	funding	for	the	matching	pools	appear.	One	option	is	MEV	auctions,	another	is	that	new
or	existing	token	projects	looking	to	do	airdrops	could	provide	the	tokens	to	a	matching	pool.	A	third	is
transaction	fees	of	various	applications.	With	larger	amounts	of	funding,	Gitcoin	Grants	could	serve	as	a	more
significant	funding	stream	-	though	to	get	to	that	point,	further	iteration	and	work	on	fine-tuning	the
mechanism	will	be	required.
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Additionally,	this	round	saw	Gitcoin	Grants'	first	foray	into	applications	beyond	Ethereum	with	the	health
section.	There	is	growing	interest	in	quadratic	funding	from	local	government	bodies	and	other	non-
blockchain	groups,	and	it	would	be	very	valuable	to	see	quadratic	funding	more	broadly	deployed	in	such
contexts.	That	said,	there	are	unique	challenges	there	too.	First,	there's	issues	around	onboarding	people	who
do	not	already	have	cryptocurrency.	Second,	the	Ethereum	community	is	naturally	expert	in	the	needs	of	the
Ethereum	community,	but	neither	it	nor	average	people	are	expert	in,	eg.	medical	support	for	the	coronavirus
pandemic.	We	should	expect	quadratic	funding	to	perform	worse	when	the	participants	are	not	experts	in	the
domain	they're	being	asked	to	contribute	to.	Will	non-blockchain	uses	of	QF	focus	on	domains	where	there's	a
clear	local	community	that's	expert	in	its	own	needs,	or	will	people	try	larger-scale	deployments	soon?	If	we
do	see	larger-scale	deployments,	how	will	those	turn	out?	There's	still	a	lot	of	questions	to	be	answered.
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A	Quick	Garbled	Circuits	Primer

Special	thanks	to	Dankrad	Feist	for	review

Garbled	circuits	are	a	quite	old,	and	surprisingly	simple,	cryptographic	primitive;	they	are	quite
possibly	the	simplest	form	of	general-purpose	"multi-party	computation"	(MPC)	to	wrap	your	head
around.

Here	is	the	usual	setup	for	the	scheme:

Suppose	that	there	are	two	parties,	Alice	and	Bob,	who	want	to	compute	some	function
f(alice_inputs,	bob_inputs),	which	takes	inputs	from	both	parties.	Alice	and	Bob	want	to	both
learn	the	result	of	computing	f,	but	Alice	does	not	want	Bob	to	learn	her	inputs,	and	Bob	does
not	want	Alice	to	learn	his	inputs.	Ideally,	they	would	both	learn	nothing	except	for	just	the
output	of	f.
Alice	performs	a	special	procedure	("garbling")	to	encrypt	a	circuit	(meaning,	a	set	of	AND,
OR...	gates)	which	evaluates	the	function	f.	She	passes	along	inputs,	also	encrypted	in	a	way
that's	compatible	with	the	encrypted	circuit,	to	Bob.
Bob	uses	a	technique	called	"1-of-2	oblivious	transfer"	to	learn	the	encrypted	form	of	his	own
inputs,	without	letting	Alice	know	which	inputs	he	obtained.
Bob	runs	the	encrypted	circuit	on	the	encrypted	data	and	gets	the	answer,	and	passes	it	along
to	Alice.

Extra	cryptographic	wrappings	can	be	used	to	protect	the	scheme	against	Alice	and	Bob	sending
wrong	info	and	giving	each	other	an	incorrect	answer;	we	won't	go	into	those	here	for	simplicity,
though	it	suffices	to	say	"wrap	a	ZK-SNARK	around	everything"	is	one	(quite	heavy	duty	and
suboptimal!)	solution	that	works	fine.

So	how	does	the	basic	scheme	work?	Let's	start	with	a	circuit:

This	is	one	of	the	simplest	examples	of	a	not-completely-trivial	circuit	that	actually	does	something:
it's	a	two-bit	adder.	It	takes	as	input	two	numbers	in	binary,	each	with	two	bits,	and	outputs	the
three-bit	binary	number	that	is	the	sum.
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Now,	let's	encrypt	the	circuit.	First,	for	every	input,	we	randomly	generate	two	"labels"	(think:	256-
bit	numbers):	one	to	represent	that	input	being	0	and	the	other	to	represent	that	input	being	1.	Then
we	also	do	the	same	for	every	intermediate	wire,	not	including	the	output	wires.	Note	that	this	data
is	not	part	of	the	"garbling"	that	Alice	sends	to	Bob;	so	far	this	is	just	setup.

Now,	for	every	gate	in	the	circuit,	we	do	the	following.	For	every	combination	of	inputs,	we	include	in
the	"garbling"	that	Alice	provides	to	Bob	the	label	of	the	output	(or	if	the	label	of	the	output	is	a
"final"	output,	the	output	directly)	encrypted	with	a	key	generated	by	hashing	the	input	labels	that
lead	to	that	output	together.	For	simplicity,	our	encryption	algorithm	can	just	be	enc(out,	in1,	in2)
=	out	+	hash(k,	in1,	in2)	where	k	is	the	index	of	the	gate	(is	it	the	first	gate	in	the	circuit,	the
second,	the	third?).	If	you	know	the	labels	of	both	inputs,	and	you	have	the	garbling,	then	you	can
learn	the	label	of	the	corresponding	output,	because	you	can	just	compute	the	corresponding	hash
and	subtract	it	out.

Here's	the	garbling	of	the	first	XOR	gate:

Inputs Output Encoding	of	output
00 0 0	+	hash(1,	6816,	6529)
01 1 1	+	hash(1,	6816,	4872)
10 1 1	+	hash(1,	8677,	6529)
11 0 0	+	hash(1,	8677,	4872)

Notice	that	we	are	including	the	(encrypted	forms	of)	0	and	1	directly,	because	this	XOR	gate's
outputs	are	directly	final	outputs	of	the	program.	Now,	let's	look	at	the	leftmost	AND	gate:

Inputs Output Encoding	of	output
00 0 5990	+	hash(2,	6816,	6529)
01 0 5990	+	hash(2,	6816,	4872)
10 0 5990	+	hash(2,	8677,	6529)
11 1 1921	+	hash(2,	8677,	4872)

Here,	the	gate's	outputs	are	just	used	as	inputs	to	other	gates,	so	we	use	labels	instead	of	bits	to	hide
these	intermediate	bits	from	the	evaluator.

The	"garbling"	that	Alice	would	provide	to	Bob	is	just	everything	in	the	third	column	for	each	gate,
with	the	rows	of	each	gate	re-ordered	(to	avoid	revealing	whether	a	given	row	corresponds	to	a	0	or
a	1	in	any	wire).	To	help	Bob	learn	which	value	to	decrypt	for	each	gate,	we'll	use	a	particular	order:
for	each	gate,	the	first	row	becomes	the	row	where	both	input	labels	are	even,	in	the	second	row	the



second	label	is	odd,	in	the	third	row	the	first	label	is	odd,	and	in	the	fourth	row	both	labels	are	odd
(we	deliberately	chose	labels	earlier	so	that	each	gate	would	have	an	even	label	for	one	output	and
an	odd	label	for	the	other).	We	garble	every	other	gate	in	the	circuit	in	the	same	way.

All	in	all,	Alice	sends	to	Bob	four	~256	bit	numbers	for	each	gate	in	the	circuit.	It	turns	out	that	four
is	far	from	optimal;	see	here	for	some	optimizations	on	how	to	reduce	this	to	three	or	even	two
numbers	for	an	AND	gate	and	zero	(!!)	for	an	XOR	gate.	Note	that	these	optimizations	do	rely	on
some	changes,	eg.	using	XOR	instead	of	addition	and	subtraction,	though	this	should	be	done	anyway
for	security.

When	Bob	receives	the	circuit,	he	asks	Alice	for	the	labels	corresponding	to	her	input,	and	he	uses	a
protocol	called	"1-of-2	oblivious	transfer"	to	ask	Alice	for	the	labels	corresponding	to	his	own	input
without	revealing	to	Alice	what	his	input	is.	He	then	goes	through	the	gates	in	the	circuit	one	by	one,
uncovering	the	output	wires	of	each	intermediate	gate.

Suppose	Alice's	input	is	the	two	left	wires	and	she	gives	(0,	1),	and	Bob's	input	is	the	two	right	wires
and	he	gives	(1,	1).	Here's	the	circuit	with	labels	again:

At	the	start,	Bob	knows	the	labels	6816,	3621,	4872,	5851
Bob	evaluates	the	first	gate.	He	knows	6816	and	4872,	so	he	can	extract	the	output	value
corresponding	to	(1,	6816,	4872)	(see	the	table	above)	and	extracts	the	first	output	bit,	1
Bob	evaluates	the	second	gate.	He	knows	6816	and	4872,	so	he	can	extract	the	output	value
corresponding	to	(2,	6816,	4872)	(see	the	table	above)	and	extracts	the	label	5990
Bob	evaluates	the	third	gate	(XOR).	He	knows	3621	and	5851,	and	learns	7504
Bob	evaluates	the	fourth	gate	(OR).	He	knows	3621	and	5851,	and	learns	6638
Bob	evaluates	the	fifth	gate	(AND).	He	knows	3621	and	5851,	and	learns	7684
Bob	evaluates	the	sixth	gate	(XOR).	He	knows	5990	and	7504,	and	learns	the	second	output	bit,
0
Bob	evaluates	the	seventh	gate	(AND).	He	knows	5990	and	6638,	and	learns	8674
Bob	evaluates	the	eighth	gate	(OR).	He	knows	8674	and	7684,	and	learns	the	third	output	bit,	1

And	so	Bob	learns	the	output:	101.	And	in	binary	10	+	11	actually	equals	101	(the	input	and	output
bits	are	both	given	in	smallest-to-greatest	order	in	the	circuit,	which	is	why	Alice's	input	10	is
represented	as	(0,	1)	in	the	circuit),	so	it	worked!

Note	that	addition	is	a	fairly	pointless	use	of	garbled	circuits,	because	Bob	knowing	101	can	just
subtract	out	his	own	input	and	get	101	-	11	=	10	(Alice's	input),	breaking	privacy.	However,	in
general	garbled	circuits	can	be	used	for	computations	that	are	not	reversible,	and	so	don't	break
privacy	in	this	way	(eg.	one	might	imagine	a	computation	where	Alice's	input	and	Bob's	input	are
their	answers	to	a	personality	quiz,	and	the	output	is	a	single	bit	that	determines	whether	or	not	the
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algorithm	thinks	they	are	compatible;	that	one	bit	of	information	won't	let	Alice	or	Bob	know
anything	about	each	other's	individual	quiz	answers).

1	of	2	Oblivious	Transfer

Now	let	us	talk	more	about	1-of-2	oblivious	transfer,	this	technique	that	Bob	used	to	obtain	the	labels
from	Alice	corresponding	to	his	own	input.	The	problem	is	this.	Focusing	on	Bob's	first	input	bit	(the
algorithm	for	the	second	input	bit	is	the	same),	Alice	has	a	label	corresponding	to	0	(6529),	and	a
label	corresponding	to	1	(4872).	Bob	has	his	desired	input	bit:	1.	Bob	wants	to	learn	the	correct	label
(4872)	without	letting	Alice	know	that	his	input	bit	is	1.	The	trivial	solution	(Alice	just	sends	Bob	both
6529	and	4872)	doesn't	work	because	Alice	only	wants	to	give	up	one	of	the	two	input	labels;	if	Bob
receives	both	input	labels	this	could	leak	data	that	Alice	doesn't	want	to	give	up.

Here	is	a	fairly	simple	protocol	using	elliptic	curves:

1.	 Alice	generates	a	random	elliptic	curve	point,	H.
2.	 Bob	generates	two	points,	P1	and	P2,	with	the	requirement	that	P1	+	P2	sums	to	H.	Bob	chooses

either	P1	or	P2	to	be	G	*	k	(ie.	a	point	that	he	knows	the	corresponding	private	key	for).	Note
that	the	requirement	that	P1	+	P2	=	H	ensures	that	Bob	has	no	way	to	generate	P1	and	P2	such
that	he	knows	the	corresponding	private	key	for.	This	is	because	if	P1	=	G	*	k1	and	P2	=	G	*	k2
where	Bob	knows	both	k1	and	k2,	then	H	=	G	*	(k1	+	k2),	so	that	would	imply	Bob	can	extract
the	discrete	logarithm	(or	"corresponding	private	key")	for	H,	which	would	imply	all	of	elliptic
curve	cryptography	is	broken.

3.	 Alice	confirms	P1	+	P2	=	H,	and	encrypts	v1	under	P1	and	v2	under	P2	using	some	standard	public
key	encryption	scheme	(eg.	El-Gamal).	Bob	is	only	able	to	decrypt	one	of	the	two	values,
because	he	knows	the	private	key	corresponding	to	at	most	one	of	(P1,	P2),	but	Alice	does	not
know	which	one.

This	solves	the	problem;	Bob	learns	one	of	the	two	wire	labels	(either	6529	or	4872),	depending	on
what	his	input	bit	is,	and	Alice	does	not	know	which	label	Bob	learned.

Applications

Garbled	circuits	are	potentially	useful	for	many	more	things	than	just	2-of-2	computation.	For
example,	you	can	use	them	to	make	multi-party	computations	of	arbitrary	complexity	with	an
arbitrary	number	of	participants	providing	inputs,	that	can	run	in	a	constant	number	of	rounds	of
interaction.	Generating	a	garbled	circuit	is	completely	parallelizable;	you	don't	need	to	finish
garbling	one	gate	before	you	can	start	garbling	gates	that	depend	on	it.	Hence,	you	can	simply	have
a	large	multi-party	computation	with	many	participants	compute	a	garbling	of	all	gates	of	a	circuit
and	publish	the	labels	corresponding	to	their	inputs.	The	labels	themselves	are	random	and	so	reveal
nothing	about	the	inputs,	but	anyone	can	then	execute	the	published	garbled	circuit	and	learn	the
output	"in	the	clear".	See	here	for	a	recent	example	of	an	MPC	protocol	that	uses	garbling	as	an
ingredient.

Multi-party	computation	is	not	the	only	context	where	this	technique	of	splitting	up	a	computation
into	a	parallelizable	part	that	operates	on	secret	data	followed	by	a	sequential	part	that	can	be	run	in
the	clear	is	useful,	and	garbled	circuits	are	not	the	only	technique	for	accomplishing	this.	In	general,
the	literature	on	randomized	encodings	includes	many	more	sophisticated	techniques.	This	branch	of
math	is	also	useful	in	technologies	such	as	functional	encryption	and	obfuscation.
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Review	of	Gitcoin	Quadratic	Funding	Round	4

Round	4	of	Gitcoin	Grants	quadratic	funding	has	just	completed,	and	here	are	the	results:

The	main	distinction	between	round	3	and	round	4	was	that	while	round	3	had	only	one	category,	with	mostly	tech	projects
and	a	few	outliers	such	as	EthHub,	in	round	4	there	were	two	separate	categories,	one	with	a	$125,000	matching	pool	for
tech	projects,	and	the	other	with	a	$75,000	matching	pool	for	"media"	projects.	Media	could	include	documentation,
translation,	community	activities,	news	reporting,	theoretically	pretty	much	anything	in	that	category.	And	while	the	tech
section	went	about	largely	without	incident,	in	the	new	media	section	the	results	proved	to	be	much	more	interesting
than	I	could	have	possibly	imagined,	shedding	a	new	light	on	deep	questions	in	institutional	design	and
political	science.

Tech:	quadratic	funding	worked	great	as	usual

In	the	tech	section,	the	main	changes	that	we	see	compared	to	round	3	are	(i)	the	rise	of	Tornado	Cash	and	(ii)	the	decline
in	importance	of	eth2	clients	and	the	rise	of	"utility	applications"	of	various	forms.	Tornado	Cash	is	a	trustless	smart
contract-based	Ethereum	mixer.	It	became	popular	quickly	in	recent	months,	as	the	Ethereum	community	was	swept	by
worries	about	the	blockchain's	current	low	levels	of	privacy	and	wanted	solutions.	Tornado	Cash	amassed	an	incredible
$31,200.	If	they	continue	receiving	such	an	amount	every	two	months	then	this	would	allow	them	to	pay	two	people	$7,800
per	month	each	-	meaning	that	the	hoped-for	milestone	of	seeing	the	first	"quadratic	freelancer"	may	have	already	been
reached!	The	other	major	winners	included	tools	like	Dappnode,	a	software	package	to	help	people	run	nodes,	Sablier,	a
payment	streaming	service,	and	DefiZap,	which	makes	DeFi	services	easy	to	use.	The	Gitcoin	Sustainability	Fund	got	over
$13,000,	conclusively	resolving	my	complaint	from	last	round	that	they	were	under-supported.	All	in	all,	valuable	grants	for
valuable	projects	that	provide	services	that	the	community	genuinely	needs.

We	can	see	one	major	shift	this	round	compared	to	the	previous	rounds.	Whereas	in	previous	rounds,	the	grants	went
largely	to	projects	like	eth2	clients	that	were	already	well-supported,	this	time	the	largest	grants	shifted	toward	having	a
different	focus	from	the	grants	given	by	the	Ethereum	Foundation.	The	EF	has	not	given	grants	to	tornado.cash,	and
generally	limits	its	grants	to	application-specific	tools,	Uniswap	being	a	notable	exception.	The	Gitcoin	Grants	quadratic
fund,	on	the	other	hand,	is	supporting	DeFiZap,	Sablier,	and	many	other	tools	that	are	valuable	to	the	community.	This	is
arguably	a	positive	development,	as	it	allows	Gitcoin	Grants	and	the	Ethereum	Foundation	to	complement	each	other
rather	than	focusing	on	the	same	things.

The	one	proposed	change	to	the	quadratic	funding	implementation	for	tech	that	I	would	favor	is	a	user	interface	change,
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that	makes	it	easier	for	users	to	commit	funds	for	multiple	rounds.	This	would	increase	the	stability	of	contributions,
thereby	increasing	the	stability	of	projects'	income	-	very	important	if	we	want	"quadratic	freelancer"	to	actually	be	a	viable
job	category!

Media:	The	First	Quadratic	Twitter	Freelancer

Now,	we	get	to	the	new	media	section.	In	the	first	few	days	of	the	round,	the	leading	recipient	of	the	grants	was
"@antiprosynth	Twitter	account	activity":	an	Ethereum	community	member	who	is	very	active	on	twitter	promoting
Ethereum	and	refuting	misinformation	from	Bitcoin	maximalists,	asking	for	help	from	the	Gitcoin	QF	crowd	to....	fund	his
tweeting	activities.	At	its	peak,	the	projected	matching	going	to	@antiprosynth	exceeded	$20,000.	This	naturally	proved	to
be	controversial,	with	many	criticizing	this	move	and	questioning	whether	or	not	a	Twitter	account	is	a	legitimate	public
good:

On	the	surface,	it	does	indeed	seem	like	someone	getting	paid	$20,000	for	operating	a	Twitter	account	is	ridiculous.	But	it's
worth	digging	in	and	questioning	exactly	what,	if	anything,	is	actually	wrong	with	this	outcome.	After	all,	maybe	this	is
what	effective	marketing	in	2020	actually	looks	like,	and	it's	our	expectations	that	need	to	adapt.

There	are	two	main	objections	that	I	heard,	and	both	lead	to	interesting	criticisms	of	quadratic	funding	in	its	current
implementation.	First,	there	was	criticism	of	overpayment.	Twittering	is	a	fairly	"trivial"	activity;	it	does	not	require	that
much	work,	lots	of	people	do	it	for	free,	and	it	doesn't	provide	nearly	as	much	long-term	value	as	something	more
substantive	like	EthHub	or	the	Zero	Knowledge	Podcast.	Hence,	it	feels	wrong	to	pay	a	full-time	salary	for	it.
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Examples	of	@antiprosynth's	recent	tweets	

If	we	accept	the	metaphor	of	quadratic	funding	as	being	like	a	market	for	public	goods,	then	one	could	simply	extend	the
metaphor,	and	reply	to	the	concern	with	the	usual	free-market	argument.	People	voluntarily	paid	their	own	money	to
support	@antiprosynth's	twitter	activity,	and	that	itself	signals	that	it's	valuable.	Why	should	we	trust	you	with	your	mere
words	and	protestations	over	a	costly	signal	of	real	money	on	the	table	from	dozens	of	people?

The	most	plausible	answer	is	actually	quite	similar	to	one	that	you	often	hear	in	discussions	about	financial	markets:
markets	can	give	skewed	results	when	you	can	express	an	opinion	in	favor	of	something	but	cannot	express	an	opinion
against	it.	When	short	selling	is	not	possible,	financial	markets	are	often	much	more	inefficient,	because	instead	of
reflecting	the	average	opinion	on	an	asset's	true	value,	a	market	may	instead	reflect	the	inflated	expectations	of	an	asset's
few	rabid	supporters.	In	this	version	of	quadratic	funding,	there	too	is	an	asymmetry,	as	you	can	donate	in	support	of
a	project	but	you	cannot	donate	to	oppose	it.	Might	this	be	the	root	of	the	problem?

One	can	go	further	and	ask,	why	might	overpayment	happen	to	this	particular	project,	and	not	others?	I	have	heard	a
common	answer:	twitter	accounts	already	have	a	high	exposure.	A	client	development	team	like	Nethermind	does	not	gain
much	publicity	through	their	work	directly,	so	they	need	to	separately	market	themselves,	whereas	a	twitter	account's
"work"	is	self-marketing	by	its	very	nature.	Furthermore,	the	most	prominent	twitterers	get	quadratically	more	matching
out	of	their	exposure,	amplifying	their	outsized	advantage	further	-	a	problem	I	alluded	to	in	my	review	of	round	3.

Interestingly,	in	the	case	of	vanilla	quadratic	voting	there	was	an	argument	made	by	Glen	Weyl	for	why	economies-of-scale
effects	of	traditional	voting,	such	as	Duverger's	law,	don't	apply	to	quadratic	voting:	a	project	becoming	more	prominent
increases	the	incentive	to	give	it	both	positive	and	negative	votes,	so	on	net	the	effects	cancel	out.	But	notice	once	again,
that	this	argument	relies	on	negative	votes	being	a	possibility.

Good	for	the	tribe,	but	is	it	good	for	the	world?

The	particular	story	of	@antiprosynth	had	what	is	in	my	opinion	a	happy	ending:	over	the	next	ten	days,	more	contributions
came	in	to	other	candidates,	and	@antiprosynth's	match	reduced	to	$11,316,	still	a	respectably	high	amount	but	on	par
with	EthHub	and	below	Week	in	Ethereum.	However,	even	a	quadratic	matching	grant	of	this	size	still	raises	to	the	next
criticism:	is	twittering	a	public	good	or	public	bad	anyway?

Traditionally,	public	goods	of	the	type	that	Gitcoin	Grants	quadratic	funding	is	trying	to	support	were	selected	and	funded
by	governments.	The	motivation	of	@antiprosynth's	tweets	is	"aggregating	Ethereum-related	news,	fighting	information
asymmetry	and	fine-tuning/signaling	a	consistent	narrative	for	Ethereum	(and	ETH)":	essentially,	fighting	the	good	fight
against	anti-Ethereum	misinformation	by	bitcoin	maximalists.	And,	lo	and	behold,	governments	too	have	a	rich	history	of
sponsoring	social	media	participants	to	argue	on	their	behalf.	And	it	seems	likely	that	most	of	these	governments	see
themselves	as	"fighting	the	good	fight	against	anti-[X]	misinformation	by	[Y]	{extremists,	imperialists,	totalitarians}",	just
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as	the	Ethereum	community	feels	a	need	to	fight	the	good	fight	against	maximalist	trolls.	From	the	inside	view	of	each
individual	country	(and	in	our	case	the	Ethereum	community)	organized	social	media	participation	seems	to	be	a	clear
public	good	(ignoring	the	possibility	of	blowback	effects,	which	are	real	and	important).	But	from	the	outside	view	of	the
entire	world,	it	can	be	viewed	as	a	zero-sum	game.

This	is	actually	a	common	pattern	to	see	in	politics,	and	indeed	there	are	many	instances	of	larger-scale	coordination	that
are	precisely	intended	to	undermine	smaller-scale	coordination	that	is	seen	as	"good	for	the	tribe	but	bad	for	the	world":
antitrust	law,	free	trade	agreements,	state-level	pre-emption	of	local	zoning	codes,	anti-militarization	agreements...	the	list
goes	on.	A	broad	environment	where	public	subsidies	are	generally	viewed	suspiciously	also	does	quite	a	good	job	of
limiting	many	kinds	of	malign	local	coordination.	But	as	public	goods	become	more	important,	and	we	discover	better	and
better	ways	for	communities	to	coordinate	on	producing	them,	that	strategy's	efficacy	becomes	more	limited,	and	properly
grappling	with	these	discrepancies	between	what	is	good	for	the	tribe	and	what	is	good	for	the	world	becomes	more
important.

That	said,	internet	marketing	and	debate	is	not	a	zero-sum	game,	and	there	are	plenty	of	ways	to	engage	in
internet	marketing	and	debate	that	are	good	for	the	world.	Internet	debate	in	general	serves	to	help	the	public	learn
what	things	are	true,	what	things	are	not	true,	what	causes	to	support,	and	what	causes	to	oppose.	Some	tactics	are	clearly
not	truth-favoring,	but	other	tactics	are	quite	truth-favoring.	Some	tactics	are	clearly	offensive,	but	others	are	defensive.
And	in	the	ethereum	community,	there	is	widespread	sentiment	that	there	is	not	enough	resources	going	into	marketing	of
some	kind,	and	I	personally	agree	with	this	sentiment.

What	kind	of	marketing	is	positive-sum	(good	for	tribe	and	good	for	world)	and	what	kind	of	marketing	is	zero-sum	(good
for	tribe	but	bad	for	world)	is	another	question,	and	one	that's	worth	the	community	debating.	I	naturally	hope	that	the
Ethereum	community	continues	to	value	maintaining	a	moral	high	ground.	Regarding	the	case	of	@antiprosynth	himself,	I
cannot	find	any	tactics	that	I	would	classify	as	bad-for-world,	especially	when	compared	to	outright	misinformation	("it's
impossible	to	run	a	full	node")	that	we	often	see	used	against	Ethereum	-	but	I	am	pro-ethereum	and	hence	biased,	hence
the	need	to	be	careful.

Universal	mechanisms,	particular	goals

The	story	has	another	plot	twist,	which	reveals	yet	another	feature	(or	bug?)	or	quadratic	funding.	Quadratic	funding	was
originally	described	as	"Formal	Rules	for	a	Society	Neutral	among	Communities",	the	intention	being	to	use	it	at	a	very
large,	potentially	even	global,	scale.	Anyone	can	participate	as	a	project	or	as	a	participant,	and	projects	that	support
public	goods	that	are	good	for	any	"public"	would	be	supported.	In	the	case	of	Gitcoin	Grants,	however,	the	matching	funds
are	coming	from	Ethereum	organizations,	and	so	there	is	an	expectation	that	the	system	is	there	to	support	Ethereum
projects.	But	there	is	nothing	in	the	rules	of	quadratic	funding	that	privileges	Ethereum	projects	and	prevents,	say,
Ethereum	Classic	projects	from	seeking	funding	using	the	same	platform!	And,	of	course,	this	is	exactly	what	happened:
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So	now	the	result	is,	$24	of	funding	from	Ethereum	organizations	will	be	going	toward	supporting	an	Ethereum	Classic
promoter's	twitter	activity.	To	give	people	outside	of	the	crypto	space	a	feeling	for	what	this	is	like,	imagine	the	USA
holding	a	quadratic	funding	raise,	using	government	funding	to	match	donations,	and	the	result	is	that	some	of	the	funding
goes	to	someone	explicitly	planning	to	use	the	money	to	talk	on	Twitter	about	how	great	Russia	is	(or	vice	versa).	The
matching	funds	are	coming	from	Ethereum	sources,	and	there's	an	implied	expectation	that	the	funds	should	support
Ethereum,	but	nothing	actually	prevents,	or	even	discourages,	non-Ethereum	projects	from	organizing	to	get	a	share	of	the
matched	funds	on	the	platform!

Solutions

There	are	two	solutions	to	these	problems.	One	is	to	modify	the	quadratic	funding	mechanism	to	support	negative	votes	in
addition	to	positive	votes.	The	mathematical	theory	behind	quadratic	voting	already	implies	that	it	is	the	"right	thing"	to	do
to	allow	such	a	possibility	(every	positive	number	has	a	negative	square	root	as	well	as	a	positive	square	root).	On	the	other
hand,	there	are	social	concerns	that	allowing	for	negative	voting	would	cause	more	animosity	and	lead	to	other	kinds	of
harms.	After	all,	mob	mentality	is	at	its	worst	when	it	is	against	something	rather	than	for	something.	Hence,	it's	my	view
that	it's	not	certain	that	allowing	negative	contributions	will	work	out	well,	but	there	is	enough	evidence	that	it	might	that
it	is	definitely	worth	trying	out	in	a	future	round.

The	second	solution	is	to	use	two	separate	mechanisms	for	identifying	relative	goodness	of	good	projects	and	for	screening
out	bad	projects.	For	example,	one	could	use	a	challenge	mechanism	followed	by	a	majority	ETH	coin	vote,	or	even	at	first
just	a	centralized	appointed	board,	to	screen	out	bad	projects,	and	then	use	quadratic	funding	as	before	to	choose	between
good	projects.	This	is	less	mathematically	elegant,	but	it	would	solve	the	problem,	and	it	would	at	the	same	time	provide	an
opportunity	to	mix	in	a	separate	mechanism	to	ensure	that	chosen	projects	benefit	Ethereum	specifically.

But	even	if	we	adopt	the	first	solution,	defining	boundaries	for	the	quadratic	funding	itself	may	also	be	a	good	idea.	There	is
intellectual	precedent	for	this.	In	Elinor	Ostrom's	eight	principles	for	governing	the	commons,	defining	clear	boundaries
about	who	has	the	right	to	access	the	commons	is	the	first	one.	Without	clear	boundaries,	Ostrom	writes,	"local
appropriators	face	the	risk	that	any	benefits	they	produce	by	their	efforts	will	be	reaped	by	others	who	have	not
contributed	to	those	efforts."	In	the	case	of	Gitcoin	Grants	quadratic	funding,	one	possibility	would	be	to	set	the	maximum
matching	coefficient	for	any	pair	of	users	to	be	proportional	to	the	geometric	average	of	their	ETH	holdings,	using	that	as	a
proxy	for	measuring	membership	in	the	Ethereum	community	(note	that	this	avoids	being	plutocratic	because	1000	users
with	1	ETH	each	would	have	a	maximum	matching	of	\(\approx	k	*	500,000\)	ETH,	whereas	2	users	with	500	ETH	each
would	only	have	a	maximum	matching	of	\(k	*	1,000\)	ETH).

Collusion
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Another	issue	that	came	to	the	forefront	this	round	was	the	issue	of	collusion.	The	math	behind	quadratic	funding,	which
compensates	for	tragedies	of	the	commons	by	magnifying	individual	contributions	based	on	the	total	number	and	size	of
other	contributions	to	the	same	project,	only	works	if	there	is	an	actual	tragedy	of	the	commons	limiting	natural	donations
to	the	project.	If	there	is	a	"quid	pro	quo",	where	people	get	something	individually	in	exchange	for	their	contributions,	the
mechanism	can	easily	over-compensate.	The	long-run	solution	to	this	is	something	like	MACI,	a	cryptographic	system	that
ensures	that	contributors	have	no	way	to	prove	their	contributions	to	third	parties,	so	any	such	collusion	would	have	to	be
done	by	honor	system.	In	the	short	run,	however,	the	rules	and	enforcement	has	not	yet	been	set,	and	this	has	led	to
vigorous	debate	about	what	kinds	of	quid	pro	quo	are	legitimate:

[Update	2020.01.29:	the	above	was	ultimately	a	result	of	a	miscommunication	from	Gitcoin;	a	member	of	the	Gitcoin	team
had	okayed	Richard	Burton's	proposal	to	give	rewards	to	donors	without	realizing	the	implications.	So	Richard	himself	is
blameless	here;	though	the	broader	point	that	we	underestimated	the	need	for	explicit	guidance	about	what	kinds	of	quid
pro	quos	are	acceptable	is	very	much	real.]

Currently,	the	position	is	that	quid	pro	quos	are	disallowed,	though	there	is	a	more	nuanced	feeling	that	informal	social
quid	pro	quos	("thank	yous"	of	different	forms)	are	okay,	whereas	formal	and	especially	monetary	or	product	rewards	are	a
no-no.	This	seems	like	a	reasonable	approach,	though	it	does	put	Gitcoin	further	into	the	uncomfortable	position	of	being	a
central	arbiter,	compromising	credible	neutrality	somewhat.	One	positive	byproduct	of	this	whole	discussion	is	that	it	has
led	to	much	more	awareness	in	the	Ethereum	community	of	what	actually	is	a	public	good	(as	opposed	to	a	"private	good"
or	a	"club	good"),	and	more	generally	brought	public	goods	much	further	into	the	public	discourse.

Conclusions

Whereas	round	3	was	the	first	round	with	enough	participants	to	have	any	kind	of	interesting	effects,	round	4	felt	like	a
true	"coming-out	party"	for	the	cause	of	decentralized	public	goods	funding.	The	round	attracted	a	large	amount	of
attention	from	the	community,	and	even	from	outside	actors	such	as	the	Bitcoin	community.	It	is	part	of	a	broader	trend	in
the	last	few	months	where	public	goods	funding	has	become	a	dominant	part	of	the	crypto	community	discourse.	Along
with	this,	we	have	also	seen	much	more	discussion	of	strategies	about	long-term	sources	of	funding	for	quadratic	matching
pools	of	larger	sizes.

Discussions	about	funding	will	be	important	going	forward:	donations	from	large	Ethereum	organizations	are	enough	to
sustain	quadratic	matching	at	its	current	scale,	but	not	enough	to	allow	it	to	grow	much	further,	to	the	point	where	we	can
have	hundreds	of	quadratic	freelancers	instead	of	about	five.	At	those	scales,	sources	of	funding	for	Ethereum	public	goods
must	rely	on	network	effect	lockin	to	some	extent,	or	else	they	will	have	little	more	staying	power	than	individual
donations,	but	there	are	strong	reasons	not	to	embed	these	funding	sources	too	deeply	into	Ethereum	(eg.	into	the	protocol
itself,	a	la	the	recent	BCH	proposal),	to	avoid	risking	the	protocol's	neutrality.

Approaches	based	on	capturing	transaction	fees	at	layer	2	are	surprisingly	viable:	currently,	there	are	about	$50,000-
100,000	per	day	(~$18-35m	per	year)	of	transaction	fees	happening	on	Ethereum,	roughly	equal	to	the	entire	budget	of	the
Ethereum	Foundation.	And	there	is	evidence	that	miner-extractable	value	is	even	higher.	There	are	all	discussions	that	we
need	to	have,	and	challenges	that	we	need	to	address,	if	we	want	the	Ethereum	community	to	be	a	leader	in	implementing
decentralized,	credibly	neutral	and	market-based	solutions	to	public	goods	funding	challenges.
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Base	Layers	And	Functionality	Escape
Velocity

One	common	strand	of	thinking	in	blockchain	land	goes	as	follows:	blockchains	should	be	maximally
simple,	because	they	are	a	piece	of	infrastructure	that	is	difficult	to	change	and	would	lead	to	great
harms	if	it	breaks,	and	more	complex	functionality	should	be	built	on	top,	in	the	form	of	layer	2
protocols:	state	channels,	Plasma,	rollup,	and	so	forth.	Layer	2	should	be	the	site	of	ongoing
innovation,	layer	1	should	be	the	site	of	stability	and	maintenance,	with	large	changes	only	in
emergencies	(eg.	a	one-time	set	of	serious	breaking	changes	to	prevent	the	base	protocol's
cryptography	from	falling	to	quantum	computers	would	be	okay).

This	kind	of	layer	separation	is	a	very	nice	idea,	and	in	the	long	term	I	strongly	support	this	idea.
However,	this	kind	of	thinking	misses	an	important	point:	while	layer	1	cannot	be	too	powerful,	as
greater	power	implies	greater	complexity	and	hence	greater	brittleness,	layer	1	must	also	be
powerful	enough	for	the	layer	2	protocols-on-top	that	people	want	to	build	to	actually	be	possible	in
the	first	place.	Once	a	layer	1	protocol	has	achieved	a	certain	level	of	functionality,	which	I	will	term
"functionality	escape	velocity",	then	yes,	you	can	do	everything	else	on	top	without	further	changing
the	base.	But	if	layer	1	is	not	powerful	enough,	then	you	can	talk	about	filling	in	the	gap	with	layer	2
systems,	but	the	reality	is	that	there	is	no	way	to	actually	build	those	systems,	without	reintroducing
a	whole	set	of	trust	assumptions	that	the	layer	1	was	trying	to	get	away	from.	This	post	will	talk
about	some	of	what	this	minimal	functionality	that	constitutes	"functionality	escape	velocity"	is.

A	programming	language

It	must	be	possible	to	execute	custom	user-generated	scripts	on-chain.	This	programming	language
can	be	simple,	and	actually	does	not	need	to	be	high-performance,	but	it	needs	to	at	least	have	the
level	of	functionality	required	to	be	able	to	verify	arbitrary	things	that	might	need	to	be	verified.	This
is	important	because	the	layer	2	protocols	that	are	going	to	be	built	on	top	need	to	have	some	kind	of
verification	logic,	and	this	verification	logic	must	be	executed	by	the	blockchain	somehow.

You	may	have	heard	of	Turing	completeness;	the	"layman's	intuition"	for	the	term	being	that	if	a
programming	language	is	Turing	complete	then	it	can	do	anything	that	a	computer	theoretically
could	do.	Any	program	in	one	Turing-complete	language	can	be	translated	into	an	equivalent
program	in	any	other	Turing-complete	language.	However,	it	turns	out	that	we	only	need	something
slightly	lighter:	it's	okay	to	restrict	to	programs	without	loops,	or	programs	which	are	guaranteed	to
terminate	in	a	specific	number	of	steps.

Rich	Statefulness

It	doesn't	just	matter	that	a	programming	language	exists,	it	also	matters	precisely	how	that
programming	language	is	integrated	into	the	blockchain.	Among	the	more	constricted	ways	that	a
language	could	be	integrated	is	if	it	is	used	for	pure	transaction	verification:	when	you	send	coins	to
some	address,	that	address	represents	a	computer	program	P	which	would	be	used	to	verify	a
transaction	that	sends	coins	from	that	address.	That	is,	if	you	send	a	transaction	whose	hash	is	h,
then	you	would	supply	a	signature	S,	and	the	blockchain	would	run	P(h,	S),	and	if	that	outputs	TRUE
then	the	transaction	is	valid.	Often,	P	is	a	verifier	for	a	cryptographic	signature	scheme,	but	it	could
do	more	complex	operations.	Note	particularly	that	in	this	model	P	does	not	have	access	to	the
destination	of	the	transaction.

However,	this	"pure	function"	approach	is	not	enough.	This	is	because	this	pure	function-based
approach	is	not	powerful	enough	to	implement	many	kinds	of	layer	2	protocols	that	people	actually
want	to	implement.	It	can	do	channels	(and	channel-based	systems	like	the	Lightning	Network),	but
it	cannot	implement	other	scaling	techniques	with	stronger	properties,	it	cannot	be	used	to	bootstrap
systems	that	do	have	more	complicated	notions	of	state,	and	so	forth.

To	give	a	simple	example	of	what	the	pure	function	paradigm	cannot	do,	consider	a	savings	account
with	the	following	feature:	there	is	a	cryptographic	key	k	which	can	initiate	a	withdrawal,	and	if	a
withdrawal	is	initiated,	within	the	next	24	hours	that	same	key	k	can	cancel	the	withdrawal.	If	a
withdrawal	remains	uncancelled	within	24	hours,	then	anyone	can	"poke"	the	account	to	finalize	that
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withdrawal.	The	goal	is	that	if	the	key	is	stolen,	the	account	holder	can	prevent	the	thief	from
withdrawing	the	funds.	The	thief	could	of	course	prevent	the	legitimate	owner	from	getting	the
funds,	but	the	attack	would	not	be	profitable	for	the	thief	and	so	they	would	probably	not	bother	with
it	(see	the	original	paper	for	an	explanation	of	this	technique).

Unfortunately	this	technique	cannot	be	implemented	with	just	pure	functions.	The	problem	is	this:
there	needs	to	be	some	way	to	move	coins	from	a	"normal"	state	to	an	"awaiting	withdrawal"	state.
But	the	program	P	does	not	have	access	to	the	destination!	Hence,	any	transaction	that	could
authorize	moving	the	coins	to	an	awaiting	withdrawal	state	could	also	authorize	just	stealing	those
coins	immediately;	P	can't	tell	the	difference.	The	ability	to	change	the	state	of	coins,	without
completely	setting	them	free,	is	important	to	many	kinds	of	applications,	including	layer	2	protocols.
Plasma	itself	fits	into	this	"authorize,	finalize,	cancel"	paradigm:	an	exit	from	Plasma	must	be
approved,	then	there	is	a	7	day	challenge	period,	and	within	that	challenge	period	the	exit	could	be
cancelled	if	the	right	evidence	is	provided.	Rollup	also	needs	this	property:	coins	inside	a	rollup	must
be	controlled	by	a	program	that	keeps	track	of	a	state	root	R,	and	changes	from	R	to	R'	if	some
verifier	P(R,	R',	data)	returns	TRUE	-	but	it	only	changes	the	state	to	R'	in	that	case,	it	does	not	set
the	coins	free.

This	ability	to	authorize	state	changes	without	completely	setting	all	coins	in	an	account	free,	is	what
I	mean	by	"rich	statefulness".	It	can	be	implemented	in	many	ways,	some	UTXO-based,	but	without	it
a	blockchain	is	not	powerful	enough	to	implement	most	layer	2	protocols,	without	including	trust
assumptions	(eg.	a	set	of	functionaries	who	are	collectively	trusted	to	execute	those	richly-stateful
programs).

Note:	yes,	I	know	that	if	P	has	access	to	h	then	you	can	just	include	the	destination	address	as	part	of	S	and	check	it
against	h,	and	restrict	state	changes	that	way.	But	it	is	possible	to	have	a	programming	language	that	is	too
resource-limited	or	otherwise	restricted	to	actually	do	this;	and	surprisingly	this	often	actually	is	the	case	in
blockchain	scripting	languages.

Sufficient	data	scalability	and	low	latency

It	turns	out	that	plasma	and	channels,	and	other	layer	2	protocols	that	are	fully	off-chain	have	some
fundamental	weaknesses	that	prevent	them	from	fully	replicating	the	capabilities	of	layer	1.	I	go	into
this	in	detail	here;	the	summary	is	that	these	protocols	need	to	have	a	way	of	adjudicating	situations
where	some	parties	maliciously	fail	to	provide	data	that	they	promised	to	provide,	and	because	data
publication	is	not	globally	verifiable	(you	don't	know	when	data	was	published	unless	you	already
downloaded	it	yourself)	these	adjudication	games	are	not	game-theoretically	stable.	Channels	and
Plasma	cleverly	get	around	this	instability	by	adding	additional	assumptions,	particularly	assuming
that	for	every	piece	of	state,	there	is	a	single	actor	that	is	interested	in	that	state	not	being
incorrectly	modified	(usually	because	it	represents	coins	that	they	own)	and	so	can	be	trusted	to	fight
on	its	behalf.	However,	this	is	far	from	general-purpose;	systems	like	Uniswap,	for	example,	include	a
large	"central"	contract	that	is	not	owned	by	anyone,	and	so	they	cannot	effectively	be	protected	by
this	paradigm.

There	is	one	way	to	get	around	this,	which	is	layer	2	protocols	that	publish	very	small	amounts	of
data	on-chain,	but	do	computation	entirely	off-chain.	If	data	is	guaranteed	to	be	available,	then
computation	being	done	off-chain	is	okay,	because	games	for	adjudicating	who	did	computation
correctly	and	who	did	it	incorrectly	are	game-theoretically	stable	(or	could	be	replaced	entirely	by
SNARKs	or	STARKs).	This	is	the	logic	behind	ZK	rollup	and	optimistic	rollup.	If	a	blockchain	allows
for	the	publication	and	guarantees	the	availability	of	a	reasonably	large	amount	of	data,	even	if	its
capacity	for	computation	remains	very	limited,	then	the	blockchain	can	support	these	layer-2
protocols	and	achieve	a	high	level	of	scalability	and	functionality.

Just	how	much	data	does	the	blockchain	need	to	be	able	to	process	and	guarantee?	Well,	it	depends
on	what	TPS	you	want.	With	a	rollup,	you	can	compress	most	activity	to	~10-20	bytes	per
transaction,	so	1	kB/sec	gives	you	50-100	TPS,	1	MB/sec	gives	you	50,000-100,000	TPS,	and	so	forth.
Fortunately,	internet	bandwidth	continues	to	grow	quickly,	and	does	not	seem	to	be	slowing	down
the	way	Moore's	law	for	computation	is,	so	increasing	scaling	for	data	without	increasing
computational	load	is	quite	a	viable	path	for	blockchains	to	take!

Note	also	that	it	is	not	just	data	capacity	that	matters,	it	is	also	data	latency	(ie.	having	low	block
times).	Layer	2	protocols	like	rollup	(or	for	that	matter	Plasma)	only	give	any	guarantees	of	security
when	the	data	actually	is	published	to	chain;	hence,	the	time	it	takes	for	data	to	be	reliably	included
(ideally	"finalized")	on	chain	is	the	time	that	it	takes	between	when	Alice	sends	Bob	a	payment	and
Bob	can	be	confident	that	this	payment	will	be	included.	The	block	time	of	the	base	layer	sets	the
latency	for	anything	whose	confirmation	depends	things	being	included	in	the	base	layer.	This	could
be	worked	around	with	on-chain	security	deposits,	aka	"bonds",	at	the	cost	of	high	capital
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inefficiency,	but	such	an	approach	is	inherently	imperfect	because	a	malicious	actor	could	trick	an
unlimited	number	of	different	people	by	sacrificing	one	deposit.

Conclusions

"Keep	layer	1	simple,	make	up	for	it	on	layer	2"	is	NOT	a	universal	answer	to	blockchain	scalability
and	functionality	problems,	because	it	fails	to	take	into	account	that	layer	1	blockchains	themselves
must	have	a	sufficient	level	of	scalability	and	functionality	for	this	"building	on	top"	to	actually	be
possible	(unless	your	so-called	"layer	2	protocols"	are	just	trusted	intermediaries).	However,	it	is	true
that	beyond	a	certain	point,	any	layer	1	functionality	can	be	replicated	on	layer	2,	and	in	many	cases
it's	a	good	idea	to	do	this	to	improve	upgradeability.	Hence,	we	need	layer	1	development	in	parallel
with	layer	2	development	in	the	short	term,	and	more	focus	on	layer	2	in	the	long	term.

https://vitalik.ca/general/2018/08/26/layer_1.html
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Christmas	Special

Since	it's	Christmas	time	now,	and	we're	theoretically	supposed	to	be	enjoying	ourselves	and
spending	time	with	our	families	instead	of	waging	endless	holy	wars	on	Twitter,	this	blog	post	will
offer	some	games	that	you	can	play	with	your	friends	that	will	help	you	have	fun	and	at	the	same
time	understand	some	spooky	mathematical	concepts!

1.58	dimensional	chess

This	is	a	variant	of	chess	where	the	board	is	set	up	like	this:
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The	board	is	still	a	normal	8x8	board,	but	there	are	only	27	open	squares.	The	other	37	squares
should	be	covered	up	by	checkers	or	Go	pieces	or	anything	else	to	denote	that	they	are	inaccessible.
The	rules	are	the	same	as	chess,	with	a	few	exceptions:

White	pawns	move	up,	black	pawns	move	left.	White	pawns	take	going	left-and-up	or	right-and-
up,	black	pawns	take	going	left-and-down	or	left-and-up.	White	pawns	promote	upon	reaching
the	top,	black	pawns	promote	upon	reaching	the	left.
No	en	passant,	castling,	or	two-step-forward	pawn	jumps.
Chess	pieces	cannot	move	onto	or	through	the	37	covered	squares.	Knights	cannot	move	onto
the	37	covered	squares,	but	don't	care	what	they	move	"through".

The	game	is	called	1.58	dimensional	chess	because	the	27	open	squares	are	chosen	according	to	a
pattern	based	on	the	Sierpinski	triangle.	You	start	off	with	a	single	open	square,	and	then	every	time
you	double	the	width,	you	take	the	shape	at	the	end	of	the	previous	step,	and	copy	it	to	the	top	left,
top	right	and	bottom	left	corners,	but	leave	the	bottom	right	corner	inaccessible.	Whereas	in	a	one-
dimensional	structure,	doubling	the	width	increases	the	space	by	2x,	and	in	a	two-dimensional
structure,	doubling	the	width	increases	the	space	by	4x	(4	=	22),	and	in	a	three-dimensional
structure,	doubling	the	width	increases	the	space	by	8x	(8	=	23),	here	doubling	the	width	increases
the	space	by	3x	(3	=	21.58496),	hence	"1.58	dimensional"	(see	Hausdorff	dimension	for	details).

The	game	is	substantially	simpler	and	more	"tractable"	than	full-on	chess,	and	it's	an	interesting
exercise	in	showing	how	in	lower-dimensional	spaces	defense	becomes	much	easier	than	offense.
Note	that	the	relative	value	of	different	pieces	may	change	here,	and	new	kinds	of	endings	become
possible	(eg.	you	can	checkmate	with	just	a	bishop).

3	dimensional	tic	tac	toe
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The	goal	here	is	to	get	4	in	a	straight	line,	where	the	line	can	go	in	any	direction,	along	an	axis	or
diagonal,	including	between	planes.	For	example	in	this	configuration	X	wins:

It's	considerably	harder	than	traditional	2D	tic	tac	toe,	and	hopefully	much	more	fun!

Modular	tic-tac-toe

Here,	we	go	back	down	to	having	two	dimensions,	except	we	allow	lines	to	wrap	around:

X	wins

Note	that	we	allow	diagonal	lines	with	any	slope,	as	long	as	they	pass	through	all	four	points.
Particularly,	this	means	that	lines	with	slope	+/-	2	and	+/-	1/2	are	admissible:

Mathematically,	the	board	can	be	interpreted	as	a	2-dimensional	vector	space	over	integers	modulo
4,	and	the	goal	being	to	fill	in	a	line	that	passes	through	four	points	over	this	space.	Note	that	there
exists	at	least	one	line	passing	through	any	two	points.

Tic	tac	toe	over	the	4-element	binary	field
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Here,	we	have	the	same	concept	as	above,	except	we	use	an	even	spookier	mathematical	structure,
the	4-element	field	of	polynomials	over	\(Z_2\)	modulo	\(x^2	+	x	+	1\).	This	structure	has	pretty	much
no	reasonable	geometric	interpretation,	so	I'll	just	give	you	the	addition	and	multiplication	tables:

OK	fine,	here	are	all	possible	lines,	excluding	the	horizontal	and	the	vertical	lines	(which	are	also
admissible)	for	brevity:

The	lack	of	geometric	interpretation	does	make	the	game	harder	to	play;	you	pretty	much	have	to
memorize	the	twenty	winning	combinations,	though	note	that	they	are	basically	rotations	and
reflections	of	the	same	four	basic	shapes	(axial	line,	diagonal	line,	diagonal	line	starting	in	the
middle,	that	weird	thing	that	doesn't	look	like	a	line).

Now	play	1.77	dimensional	connect	four.	I	dare	you.

https://en.wikipedia.org/wiki/Finite_field#Field_with_four_elements


Modular	poker

Everyone	is	dealt	five	(you	can	use	whatever	variant	poker	rules	you	want	here	in	terms	of	how	these
cards	are	dealt	and	whether	or	not	players	have	the	right	to	swap	cards	out).	The	cards	are
interpreted	as:	jack	=	11,	queen	=	12,	king	=	0,	ace	=	1.	A	hand	is	stronger	than	another	hand,	if	it
contains	a	longer	sequence,	with	any	constant	difference	between	consecutive	cards	(allowing
wraparound),	than	the	other	hand.

Mathametically,	this	can	be	represented	as,	a	hand	is	stronger	if	the	player	can	come	up	with	a	line	\
(L(x)	=	mx+b\)	such	that	they	have	cards	for	the	numbers	\(L(0)\),	\(L(1)\)	...	\(L(k)\)	for	the	highest	\
(k\).

Example	of	a	full	five-card	winning	hand.	y	=	4x	+	5.

To	break	ties	between	equal	maximum-length	sequences,	count	the	number	of	distinct	length-three
sequences	they	have;	the	hand	with	more	distinct	length-three	sequences	wins.



This	hand	has	four	length-three	sequences:	K	2	4,	K	4	8,	2	3	4,	3	8	K.	This	is	rare.

Only	consider	lines	of	length	three	or	higher.	If	a	hand	has	three	or	more	of	the	same	denomination,
that	counts	as	a	sequence,	but	if	a	hand	has	two	of	the	same	denomination,	any	sequences	passing
through	that	denomination	only	count	as	one	sequence.

This	hand	has	no	length-three	sequences.

If	two	hands	are	completely	tied,	the	hand	with	the	higher	highest	card	(using	J	=	11,	Q	=	12,	K	=	0,
A	=	1	as	above)	wins.

Enjoy!
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Quadratic	Payments:	A	Primer

Special	thanks	to	Karl	Floersch	and	Jinglan	Wang	for	feedback

If	you	follow	applied	mechanism	design	or	decentralized	governance	at	all,	you	may	have	recently	heard	one	of	a	few
buzzwords:	quadratic	voting,	quadratic	funding	and	quadratic	attention	purchase.	These	ideas	have	been	gaining
popularity	rapidly	over	the	last	few	years,	and	small-scale	tests	have	already	been	deployed:	the	Taiwanese	presidential
hackathon	used	quadratic	voting	to	vote	on	winning	projects,	Gitcoin	Grants	used	quadratic	funding	to	fund	public	goods
in	the	Ethereum	ecosystem,	and	the	Colorado	Democratic	party	also	experimented	with	quadratic	voting	to	determine
their	party	platform.

To	the	proponents	of	these	voting	schemes,	this	is	not	just	another	slight	improvement	to	what	exists.	Rather,	it's	an
initial	foray	into	a	fundamentally	new	class	of	social	technology	which,	has	the	potential	to	overturn	how	we	make	many
public	decisions,	large	and	small.	The	ultimate	effect	of	these	schemes	rolled	out	in	their	full	form	could	be	as	deeply
transformative	as	the	industrial-era	advent	of	mostly-free	markets	and	constitutional	democracy.	But	now,	you	may	be
thinking:	"These	are	large	promises.	What	do	these	new	governance	technologies	have	that	justifies	such	claims?"

Private	goods,	private	markets...

To	understand	what	is	going	on,	let	us	first	consider	an	existing	social	technology:	money,	and	property	rights	-	the
invisible	social	technology	that	generally	hides	behind	money.	Money	and	private	property	are	extremely	powerful	social
technologies,	for	all	the	reasons	classical	economists	have	been	stating	for	over	a	hundred	years.	If	Bob	is	producing
apples,	and	Alice	wants	to	buy	apples,	we	can	economically	model	the	interaction	between	the	two,	and	the	results	seem
to	make	sense:

Alice	keeps	buying	apples	until	the	marginal	value	of	the	next	apple	to	her	is	less	than	the	cost	of	producing	it,	which	is
pretty	much	exactly	the	optimal	thing	that	could	happen.	This	is	all	formalized	in	results	such	as	the	"fundamental
theorems	of	welfare	economics".	Now,	those	of	you	who	have	learned	some	economics	may	be	screaming,	but	what	about
imperfect	competition?	Asymmetric	information?	Economic	inequality?	Public	goods?	Externalities?	Many	activities	in	the
real	world,	including	those	that	are	key	to	the	progress	of	human	civilization,	benefit	(or	harm)	many	people	in
complicated	ways.	These	activities	and	the	consequences	that	arise	from	them	often	cannot	be	neatly	decomposed	into
sequences	of	distinct	trades	between	two	parties.

But	since	when	do	we	expect	a	single	package	of	technologies	to	solve	every	problem	anyway?	"What	about	oceans?"
isn't	an	argument	against	cars,	it's	an	argument	against	car	maximalism,	the	position	that	we	need	cars	and	nothing	else.
Much	like	how	private	property	and	markets	deal	with	private	goods,	can	we	try	to	use	economic	means	to	deduce	what
kind	of	social	technologies	would	work	well	for	encouraging	production	of	the	public	goods	that	we	need?

...	Public	goods,	public	markets

Private	goods	(eg.	apples)	and	public	goods	(eg.	public	parks,	air	quality,	scientific	research,	this	article...)	are	different
in	some	key	ways.	When	we	are	talking	about	private	goods,	production	for	multiple	people	(eg.	the	same	farmer	makes
apples	for	both	Alice	and	Bob)	can	be	decomposed	into	(i)	the	farmer	making	some	apples	for	Alice,	and	(ii)	the	farmer
making	some	other	apples	for	Bob.	If	Alice	wants	apples	but	Bob	does	not,	then	the	farmer	makes	Alice's	apples,	collects
payment	from	Alice,	and	leaves	Bob	alone.	Even	complex	collaborations	(the	"I,	Pencil"	essay	popular	in	libertarian
circles	comes	to	mind)	can	be	decomposed	into	a	series	of	such	interactions.	When	we	are	talking	about	public	goods,
however,	this	kind	of	decomposition	is	not	possible.	When	I	write	this	blog	article,	it	can	be	read	by	both	Alice	and	Bob
(and	everyone	else).	I	could	put	it	behind	a	paywall,	but	if	it's	popular	enough	it	will	inevitably	get	mirrored	on	third-
party	sites,	and	paywalls	are	in	any	case	annoying	and	not	very	effective.	Furthermore,	making	an	article	available	to	ten
people	is	not	ten	times	cheaper	than	making	the	article	available	to	a	hundred	people;	rather,	the	cost	is	exactly	the
same.	So	I	either	produce	the	article	for	everyone,	or	I	do	not	produce	it	for	anyone	at	all.

So	here	comes	the	challenge:	how	do	we	aggregate	together	people's	preferences?	Some	private	and	public	goods	are
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worth	producing,	others	are	not.	In	the	case	of	private	goods,	the	question	is	easy,	because	we	can	just	decompose	it	into
a	series	of	decisions	for	each	individual.	Whatever	amount	each	person	is	willing	to	pay	for,	that	much	gets	produced	for
them;	the	economics	is	not	especially	complex.	In	the	case	of	public	goods,	however,	you	cannot	"decompose",	and	so	we
need	to	add	up	people's	preferences	in	a	different	way.

First	of	all,	let's	see	what	happens	if	we	just	put	up	a	plain	old	regular	market:	I	offer	to	write	an	article	as	long	as	at
least	$1000	of	money	gets	donated	to	me	(fun	fact:	I	literally	did	this	back	in	2011).	Every	dollar	donated	increases	the
probability	that	the	goal	will	be	reached	and	the	article	will	be	published;	let	us	call	this	"marginal	probability"	p.	At	a
cost	of	$k,	you	can	increase	the	probability	that	the	article	will	be	published	by	k	*	p	(though	eventually	the	gains	will
decrease	as	the	probability	approaches	100%).	Let's	say	to	you	personally,	the	article	being	published	is	worth	$V.	Would
you	donate?	Well,	donating	a	dollar	increases	the	probability	it	will	be	published	by	p,	and	so	gives	you	an	expected	$p	*
V	of	value.	If	p	*	V	>	1,	you	donate,	and	quite	a	lot,	and	if	p	*	V	<	1	you	don't	donate	at	all.

Phrased	less	mathematically,	either	you	value	the	article	enough	(and/or	are	rich	enough)	to	pay,	and	if	that's	the	case
it's	in	your	interest	to	keep	paying	(and	influencing)	quite	a	lot,	or	you	don't	value	the	article	enough	and	you	contribute
nothing.	Hence,	the	only	blog	articles	that	get	published	would	be	articles	where	some	single	person	is	willing	to
basically	pay	for	it	themselves	(in	my	experiment	in	2011,	this	prediction	was	experimentally	verified:	in	most	rounds,
over	half	of	the	total	contribution	came	from	a	single	donor).

Note	that	this	reasoning	applies	for	any	kind	of	mechanism	that	involves	"buying	influence"	over	matters	of	public
concern.	This	includes	paying	for	public	goods,	shareholder	voting	in	corporations,	public	advertising,	bribing	politicians,
and	much	more.	The	little	guy	has	too	little	influence	(not	quite	zero,	because	in	the	real	world	things	like	altruism	exist)
and	the	big	guy	has	too	much.	If	you	had	an	intuition	that	markets	work	great	for	buying	apples,	but	money	is	corrupting
in	"the	public	sphere",	this	is	basically	a	simplified	mathematical	model	that	shows	why.

We	can	also	consider	a	different	mechanism:	one-person-one-vote.	Let's	say	you	can	either	vote	that	I	deserve	a	reward
for	writing	this	article,	or	you	can	vote	that	I	don't,	and	my	reward	is	proportional	to	the	number	of	votes	in	my	favor.	We
can	interpret	this	as	follows:	your	first	"contribution"	costs	only	a	small	amount	of	effort,	so	you'll	support	an	article	if
you	care	about	it	enough,	but	after	that	point	there	is	no	more	room	to	contribute	further;	your	second	contribution
"costs"	infinity.

Now,	you	might	notice	that	neither	of	the	graphs	above	look	quite	right.	The	first	graph	over-privileges	people	who	care	a
lot	(or	are	wealthy),	the	second	graph	over-privileges	people	who	care	only	a	little,	which	is	also	a	problem.	The	single
sheep's	desire	to	live	is	more	important	than	the	two	wolves'	desire	to	have	a	tasty	dinner.

But	what	do	we	actually	want?	Ultimately,	we	want	a	scheme	where	how	much	influence	you	"buy"	is	proportional	to	how
much	you	care.	In	the	mathematical	lingo	above,	we	want	your	k	to	be	proportional	to	your	V.	But	here's	the	problem:
your	V	determines	how	much	you're	willing	to	pay	for	one	unit	of	influence.	If	Alice	were	willing	to	pay	$100	for	the
article	if	she	had	to	fund	it	herself,	then	she	would	be	willing	to	pay	$1	for	an	increased	1%	chance	it	will	get	written,	and
if	Bob	were	only	willing	to	pay	$50	for	the	article	then	he	would	only	be	willing	to	pay	$0.5	for	the	same	"unit	of
influence".

So	how	do	we	match	these	two	up?	The	answer	is	clever:	your	n'th	unit	of	influence	costs	you	$n	.	That	is,	for	example,
you	could	buy	your	first	vote	for	$0.01,	but	then	your	second	would	cost	$0.02,	your	third	$0.03,	and	so	forth.	Suppose
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you	were	Alice	in	the	example	above;	in	such	a	system	she	would	keep	buying	units	of	influence	until	the	cost	of	the	next
one	got	to	$1,	so	she	would	buy	100	units.	Bob	would	similarly	buy	until	the	cost	got	to	$0.5,	so	he	would	buy	50	units.
Alice's	2x	higher	valuation	turned	into	2x	more	units	of	influence	purchased.

Let's	draw	this	as	a	graph:

Now	let's	look	at	all	three	beside	each	other:

One	dollar	one	vote Quadratic	voting One	person	one	vote

Notice	that	only	quadratic	voting	has	this	nice	property	that	the	amount	of	influence	you	purchase	is	proportional	to	how
much	you	care;	the	other	two	mechanisms	either	over-privilege	concentrated	interests	or	over-privilege	diffuse	interests.

Now,	you	might	ask,	where	does	the	quadratic	come	from?	Well,	the	marginal	cost	of	the	n'th	vote	is	$n	(or	$0.01	*	n),
but	the	total	cost	of	n	votes	is	\(\approx	\frac{n^2}{2}\).	You	can	view	this	geometrically	as	follows:

The	total	cost	is	the	area	of	a	triangle,	and	you	probably	learned	in	math	class	that	area	is	base	*	height	/	2.	And	since
here	base	and	height	are	proportionate,	that	basically	means	that	total	cost	is	proportional	to	number	of	votes	squared	-
hence,	"quadratic".	But	honestly	it's	easier	to	think	"your	n'th	unit	of	influence	costs	$n".

Finally,	you	might	notice	that	above	I've	been	vague	about	what	"one	unit	of	influence"	actually	means.	This	is	deliberate;
it	can	mean	different	things	in	different	contexts,	and	the	different	"flavors"	of	quadratic	payments	reflect	these	different
perspectives.

Quadratic	Voting

See	also	the	original	paper:	https://papers.ssrn.com/sol3/papers.cfm?abstract%5fid=2003531

Let	us	begin	by	exploring	the	first	"flavor"	of	quadratic	payments:	quadratic	voting.	Imagine	that	some	organization	is

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2003531


trying	to	choose	between	two	choices	for	some	decision	that	affects	all	of	its	members.	For	example,	this	could	be	a
company	or	a	nonprofit	deciding	which	part	of	town	to	make	a	new	office	in,	or	a	government	deciding	whether	or	not	to
implement	some	policy,	or	an	internet	forum	deciding	whether	or	not	its	rules	should	allow	discussion	of	cryptocurrency
prices.	Within	the	context	of	the	organization,	the	choice	made	is	a	public	good	(or	public	bad,	depending	on	whom	you
talk	to):	everyone	"consumes"	the	results	of	the	same	decision,	they	just	have	different	opinions	about	how	much	they
like	the	result.

This	seems	like	a	perfect	target	for	quadratic	voting.	The	goal	is	that	option	A	gets	chosen	if	in	total	people	like	A	more,
and	option	B	gets	chosen	if	in	total	people	like	B	more.	With	simple	voting	("one	person	one	vote"),	the	distinction
between	stronger	vs	weaker	preferences	gets	ignored,	so	on	issues	where	one	side	is	of	very	high	value	to	a	few	people
and	the	other	side	is	of	low	value	to	more	people,	simple	voting	is	likely	to	give	wrong	answers.	With	a	private-goods
market	mechanism	where	people	can	buy	as	many	votes	as	they	want	at	the	same	price	per	vote,	the	individual	with	the
strongest	preference	(or	the	wealthiest)	carries	everything.	Quadratic	voting,	where	you	can	make	n	votes	in	either
direction	at	a	cost	of	n2,	is	right	in	the	middle	between	these	two	extremes,	and	creates	the	perfect	balance.

Note	that	in	the	voting	case,	we're	deciding	two	options,	so	different	people	will	favor	A	over	B	or	B	over	A;	hence,	unlike	the	graphs	we
saw	earlier	that	start	from	zero,	here	voting	and	preference	can	both	be	positive	or	negative	(which	option	is	considered	positive	and

which	is	negative	doesn't	matter;	the	math	works	out	the	same	way)

As	shown	above,	because	the	n'th	vote	has	a	cost	of	n,	the	number	of	votes	you	make	is	proportional	to	how	much	you
value	one	unit	of	influence	over	the	decision	(the	value	of	the	decision	multiplied	by	the	probability	that	one	vote	will	tip
the	result),	and	hence	proportional	to	how	much	you	care	about	A	being	chosen	over	B	or	vice	versa.	Hence,	we	once
again	have	this	nice	clean	"preference	adding"	effect.

We	can	extend	quadratic	voting	in	multiple	ways.	First,	we	can	allow	voting	between	more	than	two	options.	While
traditional	voting	schemes	inevitably	fall	prey	to	various	kinds	of	"strategic	voting"	issues	because	of	Arrow's	theorem
and	Duverger's	law,	quadratic	voting	continues	to	be	optimal	in	contexts	with	more	than	two	choices.

The	intuitive	argument	for	those	interested:	suppose	there	are	established	candidates	A	and	B	and	new
candidate	C.	Some	people	favor	C	>	A	>	B	but	others	C	>	B	>	A.	in	a	regular	vote,	if	both	sides	think	C	stands
no	chance,	they	decide	may	as	well	vote	their	preference	between	A	and	B,	so	C	gets	no	votes,	and	C's	failure
becomes	a	self-fulfilling	prophecy.	In	quadratic	voting	the	former	group	would	vote	[A	+10,	B	-10,	C	+1]	and
the	latter	[A	-10,	B	+10,	C	+1],	so	the	A	and	B	votes	cancel	out	and	C's	popularity	shines	through.

Second,	we	can	look	not	just	at	voting	between	discrete	options,	but	also	at	voting	on	the	setting	of	a	thermostat:	anyone
can	push	the	thermostat	up	or	down	by	0.01	degrees	n	times	by	paying	a	cost	of	n2.

Plot	twist:	the	side	wanting	it	colder	only	wins	when	they	convince	the	other	side	that	"C"	stands	for	"caliente".

Quadratic	funding

See	also	the	original	paper:	https://papers.ssrn.com/sol3/papers.cfm?abstract%5fid=3243656

Quadratic	voting	is	optimal	when	you	need	to	make	some	fixed	number	of	collective	decisions.	But	one	weakness	of
quadratic	voting	is	that	it	doesn't	come	with	a	built-in	mechanism	for	deciding	what	goes	on	the	ballot	in	the	first	place.

https://en.wikipedia.org/wiki/Arrow%27s_impossibility_theorem
https://en.wikipedia.org/wiki/Duverger%27s_law
http://www.econ.msu.edu/seminars/docs/QuadMultAltshort19.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3243656


Proposing	votes	is	potentially	a	source	of	considerable	power	if	not	handled	with	care:	a	malicious	actor	in	control	of	it
can	repeatedly	propose	some	decision	that	a	majority	weakly	approves	of	and	a	minority	strongly	disapproves	of,	and
keep	proposing	it	until	the	minority	runs	out	of	voting	tokens	(if	you	do	the	math	you'll	see	that	the	minority	would	burn
through	tokens	much	faster	than	the	majority).	Let's	consider	a	flavor	of	quadratic	payments	that	does	not	run	into	this
issue,	and	makes	the	choice	of	decisions	itself	endogenous	(ie.	part	of	the	mechanism	itself).	In	this	case,	the	mechanism
is	specialized	for	one	particular	use	case:	individual	provision	of	public	goods.

Let	us	consider	an	example	where	someone	is	looking	to	produce	a	public	good	(eg.	a	developer	writing	an	open	source
software	program),	and	we	want	to	figure	out	whether	or	not	this	program	is	worth	funding.	But	instead	of	just	thinking
about	one	single	public	good,	let's	create	a	mechanism	where	anyone	can	raise	funds	for	what	they	claim	to	be	a	public
good	project.	Anyone	can	make	a	contribution	to	any	project;	a	mechanism	keeps	track	of	these	contributions	and	then	at
the	end	of	some	period	of	time	the	mechanism	calculates	a	payment	to	each	project.	The	way	that	this	payment	is
calculated	is	as	follows:	for	any	given	project,	take	the	square	root	of	each	contributor's	contribution,	add	these	values
together,	and	take	the	square	of	the	result.	Or	in	math	speak:

\[(\sum_{i=1}^n	\sqrt{c_i})^2\]

If	that	sounds	complicated,	here	it	is	graphically:

In	any	case	where	there	is	more	than	one	contributor,	the	computed	payment	is	greater	than	the	raw	sum	of
contributions;	the	difference	comes	out	of	a	central	subsidy	pool	(eg.	if	ten	people	each	donate	$1,	then	the	sum-of-
square-roots	is	$10,	and	the	square	of	that	is	$100,	so	the	subsidy	is	$90).	Note	that	if	the	subsidy	pool	is	not	big	enough
to	make	the	full	required	payment	to	every	project,	we	can	just	divide	the	subsidies	proportionately	by	whatever	constant
makes	the	totals	add	up	to	the	subsidy	pool's	budget;	you	can	prove	that	this	solves	the	tragedy-of-the-commons
problem	as	well	as	you	can	with	that	subsidy	budget.

There	are	two	ways	to	intuitively	interpret	this	formula.	First,	one	can	look	at	it	through	the	"fixing	market	failure"	lens,	a
surgical	fix	to	the	tragedy	of	the	commons	problem.	In	any	situation	where	Alice	contributes	to	a	project	and	Bob	also
contributes	to	that	same	project,	Alice	is	making	a	contribution	to	something	that	is	valuable	not	only	to	herself,	but	also
to	Bob.	When	deciding	how	much	to	contribute,	Alice	was	only	taking	into	account	the	benefit	to	herself,	not	Bob,	whom
she	most	likely	does	not	even	know.	The	quadratic	funding	mechanism	adds	a	subsidy	to	compensate	for	this	effect,
determining	how	much	Alice	"would	have"	contributed	if	she	also	took	into	account	the	benefit	her	contribution	brings	to
Bob.	Furthermore,	we	can	separately	calculate	the	subsidy	for	each	pair	of	people	(nb.	if	there	are	N	people	there	are	N	*
(N-1)	/	2	pairs),	and	add	up	all	of	these	subsidies	together,	and	give	Bob	the	combined	subsidy	from	all	pairs.	And	it
turns	out	that	this	gives	exactly	the	quadratic	funding	formula.

Second,	one	can	look	at	the	formula	through	a	quadratic	voting	lens.	We	interpret	the	quadratic	funding	as	being	a
special	case	of	quadratic	voting,	where	the	contributors	to	a	project	are	voting	for	that	project	and	there	is	one	imaginary
participant	voting	against	it:	the	subsidy	pool.	Every	"project"	is	a	motion	to	take	money	from	the	subsidy	pool	and	give	it
to	that	project's	creator.	Everyone	sending	\(c_i\)	of	funds	is	making	\(\sqrt{c_i}\)	votes,	so	there's	a	total	of	\
(\sum_{i=1}^n	\sqrt{c_i}\)	votes	in	favor	of	the	motion.	To	kill	the	motion,	the	subsidy	pool	would	need	to	make	more
than	\(\sum_{i=1}^n	\sqrt{c_i}\)	votes	against	it,	which	would	cost	it	more	than	\((\sum_{i=1}^n	\sqrt{c_i})^2\).	Hence,
\((\sum_{i=1}^n	\sqrt{c_i})^2\)	is	the	maximum	transfer	from	the	subsidy	pool	to	the	project	that	the	subsidy	pool
would	not	vote	to	stop.

Quadratic	funding	is	starting	to	be	explored	as	a	mechanism	for	funding	public	goods	already;	Gitcoin	grants	for	funding
public	goods	in	the	Ethereum	ecosystem	is	currently	the	biggest	example,	and	the	most	recent	round	led	to	results	that,
in	my	own	view,	did	a	quite	good	job	of	making	a	fair	allocation	to	support	projects	that	the	community	deems	valuable.

https://en.wikipedia.org/wiki/Tragedy_of_the_commons
https://vitalik.ca/general/2019/10/24/gitcoin.html


Numbers	in	white	are	raw	contribution	totals;	numbers	in	green	are	the	extra	subsidies.

Quadratic	attention	payments

See	also	the	original	post:	https://kortina.nyc/essays/speech-is-free-distribution-is-not-a-tax-on-the-purchase-of-human-
attention-and-political-power/

One	of	the	defining	features	of	modern	capitalism	that	people	love	to	hate	is	ads.	Our	cities	have	ads:

Source:	https://www.flickr.com/photos/argonavigo/36657795264

Our	subway	turnstiles	have	ads:

Source:	https://commons.wikimedia.org/wiki/File:NYC,_subway_ad_on_Prince_St.jpg

Our	politics	are	dominated	by	ads:

https://kortina.nyc/essays/speech-is-free-distribution-is-not-a-tax-on-the-purchase-of-human-attention-and-political-power/
https://www.flickr.com/photos/argonavigo/36657795264
https://commons.wikimedia.org/wiki/File:NYC,_subway_ad_on_Prince_St.jpg


Source:
https://upload.wikimedia.org/wikipedia/commons/e/e3/Billboard_Challenging_the_validity_of_Barack_Obama%27s_Birth_Certificate.JPG

And	even	the	rivers	and	the	skies	have	ads.	Now,	there	are	some	places	that	seem	to	not	have	this	problem:

But	really	they	just	have	a	different	kind	of	ads:

Now,	recently	there	are	attempts	to	move	beyond	this	in	some	cities.	And	on	Twitter.	But	let's	look	at	the	problem
systematically	and	try	to	see	what's	going	wrong.	The	answer	is	actually	surprisingly	simple:	public	advertising	is	the	evil
twin	of	public	goods	production.	In	the	case	of	public	goods	production,	there	is	one	actor	that	is	taking	on	an
expenditure	to	produce	some	product,	and	this	product	benefits	a	large	number	of	people.	Because	these	people	cannot
effectively	coordinate	to	pay	for	the	public	goods	by	themselves,	we	get	much	less	public	goods	than	we	need,	and	the
ones	we	do	get	are	those	favored	by	wealthy	actors	or	centralized	authorities.	Here,	there	is	one	actor	that	reaps	a	large
benefit	from	forcing	other	people	to	look	at	some	image,	and	this	action	harms	a	large	number	of	people.	Because	these
people	cannot	effectively	coordinate	to	buy	out	the	slots	for	the	ads,	we	get	ads	we	don't	want	to	see,	that	are	favored

https://upload.wikimedia.org/wikipedia/commons/e/e3/Billboard_Challenging_the_validity_of_Barack_Obama%27s_Birth_Certificate.JPG
https://newyork.cbslocal.com/2018/11/13/are-led-boat-advertisements-on-the-hudson-river-going-a-step-too-far/
https://www.theguardian.com/cities/2015/aug/11/can-cities-kick-ads-ban-urban-billboards
https://twitter.com/jack/status/1189634360472829952


by...	wealthy	actors	or	centralized	authorities.

So	how	do	we	solve	this	dark	mirror	image	of	public	goods	production?	With	a	bright	mirror	image	of	quadratic	funding:
quadratic	fees!	Imagine	a	billboard	where	anyone	can	pay	$1	to	put	up	an	ad	for	one	minute,	but	if	they	want	to	do	this
multiple	times	the	prices	go	up:	$2	for	the	second	minute,	$3	for	the	third	minute,	etc.	Note	that	you	can	pay	to	extend
the	lifetime	of	someone	else's	ad	on	the	billboard,	and	this	also	costs	you	only	$1	for	the	first	minute,	even	if	other	people
already	paid	to	extend	the	ad's	lifetime	many	times.	We	can	once	again	interpret	this	as	being	a	special	case	of	quadratic
voting:	it's	basically	the	same	as	the	"voting	on	a	thermostat"	example	above,	but	where	the	thermostat	in	question	is	the
number	of	seconds	an	ad	stays	up.

This	kind	of	payment	model	could	be	applied	in	cities,	on	websites,	at	conferences,	or	in	many	other	contexts,	if	the	goal
is	to	optimize	for	putting	up	things	that	people	want	to	see	(or	things	that	people	want	other	people	to	see,	but	even	here
it's	much	more	democratic	than	simply	buying	space)	rather	than	things	that	wealthy	people	and	centralized	institutions
want	people	to	see.

Complexities	and	caveats

Perhaps	the	biggest	challenge	to	consider	with	this	concept	of	quadratic	payments	is	the	practical	implementation	issue
of	identity	and	bribery/collusion.	Quadratic	payments	in	any	form	require	a	model	of	identity	where	individuals	cannot
easily	get	as	many	identities	as	they	want:	if	they	could,	then	they	could	just	keep	getting	new	identities	and	keep	paying
$1	to	influence	some	decision	as	many	times	as	they	want,	and	the	mechanism	collapses	into	linear	vote-buying.	Note
that	the	identity	system	does	not	need	to	be	airtight	(in	the	sense	of	preventing	multiple-identity	acquisition),	and	indeed
there	are	good	civil-liberties	reasons	why	identity	systems	probably	should	not	try	to	be	airtight.	Rather,	it	just	needs	to
be	robust	enough	that	manipulation	is	not	worth	the	cost.

Collusion	is	also	tricky.	If	we	can't	prevent	people	from	selling	their	votes,	the	mechanisms	once	again	collapse	into	one-
dollar-one-vote.	We	don't	just	need	votes	to	be	anonymous	and	private	(while	still	making	the	final	result	provable	and
public);	we	need	votes	to	be	so	private	that	even	the	person	who	made	the	vote	can't	prove	to	anyone	else	what
they	voted	for.	This	is	difficult.	Secret	ballots	do	this	well	in	the	offline	world,	but	secret	ballots	are	a	nineteenth
century	technology,	far	too	inefficient	for	the	sheer	amount	of	quadratic	voting	and	funding	that	we	want	to	see	in	the
twenty	first	century.

Fortunately,	there	are	technological	means	that	can	help,	combining	together	zero-knowledge	proofs,	encryption	and
other	cryptographic	technologies	to	achieve	the	precise	desired	set	of	privacy	and	verifiability	properties.	There's	also
proposed	techniques	to	verify	that	private	keys	actually	are	in	an	individual's	possession	and	not	in	some	hardware	or
cryptographic	system	that	can	restrict	how	they	use	those	keys.	However,	these	techniques	are	all	untested	and	require
quite	a	bit	of	further	work.

Another	challenge	is	that	quadratic	payments,	being	a	payment-based	mechanism,	continues	to	favor	people	with	more
money.	Note	that	because	the	cost	of	votes	is	quadratic,	this	effect	is	dampened:	someone	with	100	times	more	money
only	has	10	times	more	influence,	not	100	times,	so	the	extent	of	the	problem	goes	down	by	90%	(and	even	more	for
ultra-wealthy	actors).	That	said,	it	may	be	desirable	to	mitigate	this	inequality	of	power	further.	This	could	be	done	either
by	denominating	quadratic	payments	in	a	separate	token	of	which	everyone	gets	a	fixed	number	of	units,	or	giving	each
person	an	allocation	of	funds	that	can	only	be	used	for	quadratic-payments	use	cases:	this	is	basically	Andrew	Yang's
"democracy	dollars"	proposal.

A	third	challenge	is	the	"rational	ignorance"	and	"rational	irrationality"	problems,	which	is	that	decentralized	public
decisions	have	the	weakness	that	any	single	individual	has	very	little	effect	on	the	outcome,	and	so	little	motivation	to
make	sure	they	are	supporting	the	decision	that	is	best	for	the	long	term;	instead,	pressures	such	as	tribal	affiliation	may
dominate.	There	are	many	strands	of	philosophy	that	emphasize	the	ability	of	large	crowds	to	be	very	wrong	despite	(or
because	of!)	their	size,	and	quadratic	payments	in	any	form	do	little	to	address	this.

Quadratic	payments	do	better	at	mitigating	this	problem	than	one-person-one-vote	systems,	and	these	problems	can	be
expected	to	be	less	severe	for	medium-scale	public	goods	than	for	large	decisions	that	affect	many	millions	of	people,	so
it	may	not	be	a	large	challenge	at	first,	but	it's	certainly	an	issue	worth	confronting.	One	approach	is	combining
quadratic	voting	with	elements	of	sortition.	Another,	potentially	more	long-term	durable,	approach	is	to	combine
quadratic	voting	with	another	economic	technology	that	is	much	more	specifically	targeted	toward	rewarding	the
"correct	contrarianism"	that	can	dispel	mass	delusions:	prediction	markets.	A	simple	example	would	be	a	system	where
quadratic	funding	is	done	retrospectively,	so	people	vote	on	which	public	goods	were	valuable	some	time	ago	(eg.	even	2
years),	and	projects	are	funded	up-front	by	selling	shares	of	the	results	of	these	deferred	votes;	by	buying	shares	people
would	be	both	funding	the	projects	and	betting	on	which	project	would	be	viewed	as	successful	in	2	years'	time.	There	is
a	large	design	space	to	experiment	with	here.

https://vitalik.ca/general/2019/04/03/collusion.html
https://ethresear.ch/t/minimal-anti-collusion-infrastructure/5413
https://twitter.com/phildaian/status/1181822995993681921
https://www.yang2020.com/policies/democracydollars/
https://en.wikipedia.org/wiki/Rational_ignorance
https://en.wikipedia.org/wiki/Rational_irrationality
https://ethresear.ch/t/quadratic-voting-with-sortition/6065
https://en.wikipedia.org/wiki/Prediction_market


Conclusion

As	I	mentioned	at	the	beginning,	quadratic	payments	do	not	solve	every	problem.	They	solve	the	problem	of	governing
resources	that	affect	large	numbers	of	people,	but	they	do	not	solve	many	other	kinds	of	problems.	A	particularly
important	one	is	information	asymmetry	and	low	quality	of	information	in	general.	For	this	reason,	I	am	a	fan	of
techniques	such	as	prediction	markets	(see	electionbettingodds.com	for	one	example)	to	solve	information-gathering
problems,	and	many	applications	can	be	made	most	effective	by	combining	different	mechanisms	together.

One	particular	cause	dear	to	me	personally	is	what	I	call	"entrepreneurial	public	goods":	public	goods	that	in	the	present
only	a	few	people	believe	are	important	but	in	the	future	many	more	people	will	value.	In	the	19th	century,	contributing
to	abolition	of	slavery	may	have	been	one	example;	in	the	21st	century	I	can't	give	examples	that	will	satisfy	every	reader
because	it's	the	nature	of	these	goods	that	their	importance	will	only	become	common	knowledge	later	down	the	road,
but	I	would	point	to	life	extension	and	AI	risk	research	as	two	possible	examples.

That	said,	we	don't	need	to	solve	every	problem	today.	Quadratic	payments	are	an	idea	that	has	only	become	popular	in
the	last	few	years;	we	still	have	not	seen	more	than	small-scale	trials	of	quadratic	voting	and	funding,	and	quadratic
attention	payments	have	not	been	tried	at	all!	There	is	still	a	long	way	to	go.	But	if	we	can	get	these	mechanisms	off	the
ground,	there	is	a	lot	that	these	mechanisms	have	to	offer!

https://electionbettingodds.com/
https://www.sens.org/
https://intelligence.org/
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Hard	Problems	in	Cryptocurrency:	Five	Years
Later

Special	thanks	to	Justin	Drake	and	Jinglan	Wang	for	feedback

In	2014,	I	made	a	post	and	a	presentation	with	a	list	of	hard	problems	in	math,	computer	science	and
economics	that	I	thought	were	important	for	the	cryptocurrency	space	(as	I	then	called	it)	to	be	able
to	reach	maturity.	In	the	last	five	years,	much	has	changed.	But	exactly	how	much	progress	on	what
we	thought	then	was	important	has	been	achieved?	Where	have	we	succeeded,	where	have	we	failed,
and	where	have	we	changed	our	minds	about	what	is	important?	In	this	post,	I'll	go	through	the	16
problems	from	2014	one	by	one,	and	see	just	where	we	are	today	on	each	one.	At	the	end,	I'll	include
my	new	picks	for	hard	problems	of	2019.

The	problems	are	broken	down	into	three	categories:	(i)	cryptographic,	and	hence	expected	to	be
solvable	with	purely	mathematical	techniques	if	they	are	to	be	solvable	at	all,	(ii)	consensus	theory,
largely	improvements	to	proof	of	work	and	proof	of	stake,	and	(iii)	economic,	and	hence	having	to	do
with	creating	structures	involving	incentives	given	to	different	participants,	and	often	involving	the
application	layer	more	than	the	protocol	layer.	We	see	significant	progress	in	all	categories,	though
some	more	than	others.

Cryptographic	problems

1.	 Blockchain	Scalability

One	of	the	largest	problems	facing	the	cryptocurrency	space	today	is	the	issue	of	scalability
...	The	main	concern	with	[oversized	blockchains]	is	trust:	if	there	are	only	a	few	entities
capable	of	running	full	nodes,	then	those	entities	can	conspire	and	agree	to	give
themselves	a	large	number	of	additional	bitcoins,	and	there	would	be	no	way	for	other
users	to	see	for	themselves	that	a	block	is	invalid	without	processing	an	entire	block
themselves.	Problem:	create	a	blockchain	design	that	maintains	Bitcoin-like	security
guarantees,	but	where	the	maximum	size	of	the	most	powerful	node	that	needs	to	exist	for
the	network	to	keep	functioning	is	substantially	sublinear	in	the	number	of	transactions.

Status:	Great	theoretical	progress,	pending	more	real-world	evaluation.

Scalability	is	one	technical	problem	that	we	have	had	a	huge	amount	of	progress	on	theoretically.
Five	years	ago,	almost	no	one	was	thinking	about	sharding;	now,	sharding	designs	are	commonplace.
Aside	from	ethereum	2.0,	we	have	OmniLedger,	LazyLedger,	Zilliqa	and	research	papers	seemingly
coming	out	every	month.	In	my	own	view,	further	progress	at	this	point	is	incremental.
Fundamentally,	we	already	have	a	number	of	techniques	that	allow	groups	of	validators	to	securely
come	to	consensus	on	much	more	data	than	an	individual	validator	can	process,	as	well	as	techniques
allow	clients	to	indirectly	verify	the	full	validity	and	availability	of	blocks	even	under	51%	attack
conditions.

These	are	probably	the	most	important	technologies:

Random	sampling,	allowing	a	small	randomly	selected	committee	to	statistically	stand	in	for
the	full	validator	set:	https://github.com/ethereum/wiki/wiki/Sharding-FAQ#how-can-we-solve-
the-single-shard-takeover-attack-in-an-uncoordinated-majority-model
Fraud	proofs,	allowing	individual	nodes	that	learn	of	an	error	to	broadcast	its	presence	to
everyone	else:	https://bitcoin.stackexchange.com/questions/49647/what-is-a-fraud-proof
Proofs	of	custody,	allowing	validators	to	probabilistically	prove	that	they	individually
downloaded	and	verified	some	piece	of	data:	https://ethresear.ch/t/1-bit-aggregation-friendly-
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custody-bonds/2236
Data	availability	proofs,	allowing	clients	to	detect	when	the	bodies	of	blocks	that	they	have
headers	for	are	unavailable:	https://arxiv.org/abs/1809.09044.	See	also	the	newer	coded	Merkle
trees	proposal.

There	are	also	other	smaller	developments	like	Cross-shard	communication	via	receipts	as	well	as
"constant-factor"	enhancements	such	as	BLS	signature	aggregation.

That	said,	fully	sharded	blockchains	have	still	not	been	seen	in	live	operation	(the	partially	sharded
Zilliqa	has	recently	started	running).	On	the	theoretical	side,	there	are	mainly	disputes	about	details
remaining,	along	with	challenges	having	to	do	with	stability	of	sharded	networking,	developer
experience	and	mitigating	risks	of	centralization;	fundamental	technical	possibility	no	longer	seems
in	doubt.	But	the	challenges	that	do	remain	are	challenges	that	cannot	be	solved	by	just	thinking
about	them;	only	developing	the	system	and	seeing	ethereum	2.0	or	some	similar	chain	running	live
will	suffice.

2.	 Timestamping

Problem:	create	a	distributed	incentive-compatible	system,	whether	it	is	an	overlay	on	top
of	a	blockchain	or	its	own	blockchain,	which	maintains	the	current	time	to	high	accuracy.
All	legitimate	users	have	clocks	in	a	normal	distribution	around	some	"real"	time	with
standard	deviation	20	seconds	...	no	two	nodes	are	more	than	20	seconds	apart	The
solution	is	allowed	to	rely	on	an	existing	concept	of	"N	nodes";	this	would	in	practice	be
enforced	with	proof-of-stake	or	non-sybil	tokens	(see	#9).	The	system	should	continuously
provide	a	time	which	is	within	120s	(or	less	if	possible)	of	the	internal	clock	of	>99%	of
honestly	participating	nodes.	External	systems	may	end	up	relying	on	this	system;	hence,	it
should	remain	secure	against	attackers	controlling	<	25%	of	nodes	regardless	of
incentives.

Status:	Some	progress.

Ethereum	has	actually	survived	just	fine	with	a	13-second	block	time	and	no	particularly	advanced
timestamping	technology;	it	uses	a	simple	technique	where	a	client	does	not	accept	a	block	whose
stated	timestamp	is	earlier	than	the	client's	local	time.	That	said,	this	has	not	been	tested	under
serious	attacks.	The	recent	network-adjusted	timestamps	proposal	tries	to	improve	on	the	status	quo
by	allowing	the	client	to	determine	the	consensus	on	the	time	in	the	case	where	the	client	does	not
locally	know	the	current	time	to	high	accuracy;	this	has	not	yet	been	tested.	But	in	general,
timestamping	is	not	currently	at	the	foreground	of	perceived	research	challenges;	perhaps	this	will
change	once	more	proof	of	stake	chains	(including	Ethereum	2.0	but	also	others)	come	online	as	real
live	systems	and	we	see	what	the	issues	are.

3.	 Arbitrary	Proof	of	Computation

Problem:	create	programs	POC_PROVE(P,I)	->	(O,Q)	and	POC_VERIFY(P,O,Q)	->	{	0,	1	}	such
that	POC_PROVE	runs	program	P	on	input	I	and	returns	the	program	output	O	and	a	proof-of-
computation	Q	and	POC_VERIFY	takes	P,	O	and	Q	and	outputs	whether	or	not	Q	and	O	were
legitimately	produced	by	the	POC_PROVE	algorithm	using	P.

Status:	Great	theoretical	and	practical	progress.

This	is	basically	saying,	build	a	SNARK	(or	STARK,	or	SHARK,	or...).	And	we've	done	it!	SNARKs	are
now	increasingly	well	understood,	and	are	even	already	being	used	in	multiple	blockchains	today
(including	tornado.cash	on	Ethereum).	And	SNARKs	are	extremely	useful,	both	as	a	privacy
technology	(see	Zcash	and	tornado.cash)	and	as	a	scalability	technology	(see	ZK	Rollup,	STARKDEX
and	STARKing	erasure	coded	data	roots).
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There	are	still	challenges	with	efficiency;	making	arithmetization-friendly	hash	functions	(see	here
and	here	for	bounties	for	breaking	proposed	candidates)	is	a	big	one,	and	efficiently	proving	random
memory	accesses	is	another.	Furthermore,	there's	the	unsolved	question	of	whether	the	O(n	*	log(n))
blowup	in	prover	time	is	a	fundamental	limitation	or	if	there	is	some	way	to	make	a	succinct	proof
with	only	linear	overhead	as	in	bulletproofs	(which	unfortunately	take	linear	time	to	verify).	There
are	also	ever-present	risks	that	the	existing	schemes	have	bugs.	In	general,	the	problems	are	in	the
details	rather	than	the	fundamentals.

4.	 Code	Obfuscation

The	holy	grail	is	to	create	an	obfuscator	O,	such	that	given	any	program	P	the	obfuscator
can	produce	a	second	program	O(P)	=	Q	such	that	P	and	Q	return	the	same	output	if	given
the	same	input	and,	importantly,	Q	reveals	no	information	whatsoever	about	the	internals
of	P.	One	can	hide	inside	of	Q	a	password,	a	secret	encryption	key,	or	one	can	simply	use	Q
to	hide	the	proprietary	workings	of	the	algorithm	itself.

Status:	Slow	progress.

In	plain	English,	the	problem	is	saying	that	we	want	to	come	up	with	a	way	to	"encrypt"	a	program	so
that	the	encrypted	program	would	still	give	the	same	outputs	for	the	same	inputs,	but	the	"internals"
of	the	program	would	be	hidden.	An	example	use	case	for	obfuscation	is	a	program	containing	a
private	key	where	the	program	only	allows	the	private	key	to	sign	certain	messages.

A	solution	to	code	obfuscation	would	be	very	useful	to	blockchain	protocols.	The	use	cases	are	subtle,
because	one	must	deal	with	the	possibility	that	an	on-chain	obfuscated	program	will	be	copied	and
run	in	an	environment	different	from	the	chain	itself,	but	there	are	many	possibilities.	One	that
personally	interests	me	is	the	ability	to	remove	the	centralized	operator	from	collusion-resistance
gadgets	by	replacing	the	operator	with	an	obfuscated	program	that	contains	some	proof	of	work,
making	it	very	expensive	to	run	more	than	once	with	different	inputs	as	part	of	an	attempt	to
determine	individual	participants'	actions.

Unfortunately	this	continues	to	be	a	hard	problem.	There	is	continuing	ongoing	work	in	attacking	the
problem,	one	side	making	constructions	(eg.	this)	that	try	to	reduce	the	number	of	assumptions	on
mathematical	objects	that	we	do	not	know	practically	exist	(eg.	general	cryptographic	multilinear
maps)	and	another	side	trying	to	make	practical	implementations	of	the	desired	mathematical
objects.	However,	all	of	these	paths	are	still	quite	far	from	creating	something	viable	and	known	to
be	secure.	See	https://eprint.iacr.org/2019/463.pdf	for	a	more	general	overview	to	the	problem.

5.	 Hash-Based	Cryptography

Problem:	create	a	signature	algorithm	relying	on	no	security	assumption	but	the	random
oracle	property	of	hashes	that	maintains	160	bits	of	security	against	classical	computers
(ie.	80	vs.	quantum	due	to	Grover's	algorithm)	with	optimal	size	and	other	properties.

Status:	Some	progress.

There	have	been	two	strands	of	progress	on	this	since	2014.	SPHINCS,	a	"stateless"	(meaning,	using
it	multiple	times	does	not	require	remembering	information	like	a	nonce)	signature	scheme,	was
released	soon	after	this	"hard	problems"	list	was	published,	and	provides	a	purely	hash-based
signature	scheme	of	size	around	41	kB.	Additionally,	STARKs	have	been	developed,	and	one	can
create	signatures	of	similar	size	based	on	them.	The	fact	that	not	just	signatures,	but	also	general-
purpose	zero	knowledge	proofs,	are	possible	with	just	hashes	was	definitely	something	I	did	not
expect	five	years	ago;	I	am	very	happy	that	this	is	the	case.	That	said,	size	continues	to	be	an	issue,
and	ongoing	progress	(eg.	see	the	very	recent	DEEP	FRI)	is	continuing	to	reduce	the	size	of	proofs,
though	it	looks	like	further	progress	will	be	incremental.
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The	main	not-yet-solved	problem	with	hash-based	cryptography	is	aggregate	signatures,	similar	to
what	BLS	aggregation	makes	possible.	It's	known	that	we	can	just	make	a	STARK	over	many
Lamport	signatures,	but	this	is	inefficient;	a	more	efficient	scheme	would	be	welcome.	(In	case	you're
wondering	if	hash-based	public	key	encryption	is	possible,	the	answer	is,	no,	you	can't	do	anything
with	more	than	a	quadratic	attack	cost)

Consensus	theory	problems

6.	 ASIC-Resistant	Proof	of	Work

One	approach	at	solving	the	problem	is	creating	a	proof-of-work	algorithm	based	on	a	type
of	computation	that	is	very	difficult	to	specialize	...	For	a	more	in-depth	discussion	on	ASIC-
resistant	hardware,	see	https://blog.ethereum.org/2014/06/19/mining/.

Status:	Solved	as	far	as	we	can.

About	six	months	after	the	"hard	problems"	list	was	posted,	Ethereum	settled	on	its	ASIC-resistant
proof	of	work	algorithm:	Ethash.	Ethash	is	known	as	a	memory-hard	algorithm.	The	theory	is	that
random-access	memory	in	regular	computers	is	well-optimized	already	and	hence	difficult	to	improve
on	for	specialized	applications.	Ethash	aims	to	achieve	ASIC	resistance	by	making	memory	access
the	dominant	part	of	running	the	PoW	computation.	Ethash	was	not	the	first	memory-hard	algorithm,
but	it	did	add	one	innovation:	it	uses	pseudorandom	lookups	over	a	two-level	DAG,	allowing	for	two
ways	of	evaluating	the	function.	First,	one	could	compute	it	quickly	if	one	has	the	entire	(~2	GB)
DAG;	this	is	the	memory-hard	"fast	path".	Second,	one	can	compute	it	much	more	slowly	(still	fast
enough	to	check	a	single	provided	solution	quickly)	if	one	only	has	the	top	level	of	the	DAG;	this	is
used	for	block	verification.

Ethash	has	proven	remarkably	successful	at	ASIC	resistance;	after	three	years	and	billions	of	dollars
of	block	rewards,	ASICs	do	exist	but	are	at	best	2-5	times	more	power	and	cost-efficient	than	GPUs.
ProgPoW	has	been	proposed	as	an	alternative,	but	there	is	a	growing	consensus	that	ASIC-resistant
algorithms	will	inevitably	have	a	limited	lifespan,	and	that	ASIC	resistance	has	downsides	because	it
makes	51%	attacks	cheaper	(eg.	see	the	51%	attack	on	Ethereum	Classic).

I	believe	that	PoW	algorithms	that	provide	a	medium	level	of	ASIC	resistance	can	be	created,	but
such	resistance	is	limited-term	and	both	ASIC	and	non-ASIC	PoW	have	disadvantages;	in	the	long
term	the	better	choice	for	blockchain	consensus	is	proof	of	stake.

7.	 Useful	Proof	of	Work

making	the	proof	of	work	function	something	which	is	simultaneously	useful;	a	common
candidate	is	something	like	Folding@home,	an	existing	program	where	users	can	download
software	onto	their	computers	to	simulate	protein	folding	and	provide	researchers	with	a
large	supply	of	data	to	help	them	cure	diseases.

Status:	Probably	not	feasible,	with	one	exception.

The	challenge	with	useful	proof	of	work	is	that	a	proof	of	work	algorithm	requires	many	properties:

Hard	to	compute
Easy	to	verify
Does	not	depend	on	large	amounts	of	external	data
Can	be	efficiently	computed	in	small	"bite-sized"	chunks

Unfortunately,	there	are	not	many	computations	that	are	useful	that	preserve	all	of	these	properties,
and	most	computations	that	do	have	all	of	those	properties	and	are	"useful"	are	only	"useful"	for	far
too	short	a	time	to	build	a	cryptocurrency	around	them.

However,	there	is	one	possible	exception:	zero-knowledge-proof	generation.	Zero	knowledge	proofs
of	aspects	of	blockchain	validity	(eg.	data	availability	roots	for	a	simple	example)	are	difficult	to
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compute,	and	easy	to	verify.	Furthermore,	they	are	durably	difficult	to	compute;	if	proofs	of	"highly
structured"	computation	become	too	easy,	one	can	simply	switch	to	verifying	a	blockchain's	entire
state	transition,	which	becomes	extremely	expensive	due	to	the	need	to	model	the	virtual	machine
and	random	memory	accesses.

Zero-knowledge	proofs	of	blockchain	validity	provide	great	value	to	users	of	the	blockchain,	as	they
can	substitute	the	need	to	verify	the	chain	directly;	Coda	is	doing	this	already,	albeit	with	a	simplified
blockchain	design	that	is	heavily	optimized	for	provability.	Such	proofs	can	significantly	assist	in
improving	the	blockchain's	safety	and	scalability.	That	said,	the	total	amount	of	computation	that
realistically	needs	to	be	done	is	still	much	less	than	the	amount	that's	currently	done	by	proof	of
work	miners,	so	this	would	at	best	be	an	add-on	for	proof	of	stake	blockchains,	not	a	full-on
consensus	algorithm.

8.	 Proof	of	Stake

Another	approach	to	solving	the	mining	centralization	problem	is	to	abolish	mining
entirely,	and	move	to	some	other	mechanism	for	counting	the	weight	of	each	node	in	the
consensus.	The	most	popular	alternative	under	discussion	to	date	is	"proof	of	stake"	-	that
is	to	say,	instead	of	treating	the	consensus	model	as	"one	unit	of	CPU	power,	one	vote"	it
becomes	"one	currency	unit,	one	vote".

Status:	Great	theoretical	progress,	pending	more	real-world	evaluation.

Near	the	end	of	2014,	it	became	clear	to	the	proof	of	stake	community	that	some	form	of	"weak
subjectivity"	is	unavoidable.	To	maintain	economic	security,	nodes	need	to	obtain	a	recent	checkpoint
extra-protocol	when	they	sync	for	the	first	time,	and	again	if	they	go	offline	for	more	than	a	few
months.	This	was	a	difficult	pill	to	swallow;	many	PoW	advocates	still	cling	to	PoW	precisely	because
in	a	PoW	chain	the	"head"	of	the	chain	can	be	discovered	with	the	only	data	coming	from	a	trusted
source	being	the	blockchain	client	software	itself.	PoS	advocates,	however,	were	willing	to	swallow
the	pill,	seeing	the	added	trust	requirements	as	not	being	large.	From	there	the	path	to	proof	of
stake	through	long-duration	security	deposits	became	clear.

Most	interesting	consensus	algorithms	today	are	fundamentally	similar	to	PBFT,	but	replace	the	fixed
set	of	validators	with	a	dynamic	list	that	anyone	can	join	by	sending	tokens	into	a	system-level	smart
contract	with	time-locked	withdrawals	(eg.	a	withdrawal	might	in	some	cases	take	up	to	4	months	to
complete).	In	many	cases	(including	ethereum	2.0),	these	algorithms	achieve	"economic	finality"	by
penalizing	validators	that	are	caught	performing	actions	that	violate	the	protocol	in	certain	ways	(see
here	for	a	philosophical	view	on	what	proof	of	stake	accomplishes).

As	of	today,	we	have	(among	many	other	algorithms):

Casper	FFG:	https://arxiv.org/abs/1710.09437
Tendermint:	https://tendermint.com/docs/spec/consensus/consensus.html
HotStuff:	https://arxiv.org/abs/1803.05069
Casper	CBC:	https://vitalik.ca/general/2018/12/05/cbc_casper.html

There	continues	to	be	ongoing	refinement	(eg.	here	and	here)	.	Eth2	phase	0,	the	chain	that	will
implement	FFG,	is	currently	under	implementation	and	enormous	progress	has	been	made.
Additionally,	Tendermint	has	been	running,	in	the	form	of	the	Cosmos	chain	for	several	months.
Remaining	arguments	about	proof	of	stake,	in	my	view,	have	to	do	with	optimizing	the	economic
incentives,	and	further	formalizing	the	strategy	for	responding	to	51%	attacks.	Additionally,	the
Casper	CBC	spec	could	still	use	concrete	efficiency	improvements.

9.	 Proof	of	Storage

A	third	approach	to	the	problem	is	to	use	a	scarce	computational	resource	other	than
computational	power	or	currency.	In	this	regard,	the	two	main	alternatives	that	have	been
proposed	are	storage	and	bandwidth.	There	is	no	way	in	principle	to	provide	an	after-the-
fact	cryptographic	proof	that	bandwidth	was	given	or	used,	so	proof	of	bandwidth	should
most	accurately	be	considered	a	subset	of	social	proof,	discussed	in	later	problems,	but
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proof	of	storage	is	something	that	certainly	can	be	done	computationally.	An	advantage	of
proof-of-storage	is	that	it	is	completely	ASIC-resistant;	the	kind	of	storage	that	we	have	in
hard	drives	is	already	close	to	optimal.

Status:	A	lot	of	theoretical	progress,	though	still	a	lot	to	go,	as	well	as	more	real-world
evaluation.

There	are	a	number	of	blockchains	planning	to	use	proof	of	storage	protocols,	including	Chia	and
Filecoin.	That	said,	these	algorithms	have	not	been	tested	in	the	wild.	My	own	main	concern	is
centralization:	will	these	algorithms	actually	be	dominated	by	smaller	users	using	spare	storage
capacity,	or	will	they	be	dominated	by	large	mining	farms?

Economics

10.	 Stable-value	cryptoassets

One	of	the	main	problems	with	Bitcoin	is	the	issue	of	price	volatility	...	Problem:	construct	a
cryptographic	asset	with	a	stable	price.

Status:	Some	progress.	<img	src="../../../../images/progress-files/happy_face2.png"
style="width:50px;	height:	50px"	]class="transparent"	/>

MakerDAO	is	now	live,	and	has	been	holding	stable	for	nearly	two	years.	It	has	survived	a	93%	drop
in	the	value	of	its	underlying	collateral	asset	(ETH),	and	there	is	now	more	than	$100	million	in	DAI
issued.	It	has	become	a	mainstay	of	the	Ethereum	ecosystem,	and	many	Ethereum	projects	have	or
are	integrating	with	it.	Other	synthetic	token	projects,	such	as	UMA,	are	rapidly	gaining	steam	as
well.

However,	while	the	MakerDAO	system	has	survived	tough	economic	conditions	in	2019,	the
conditions	were	by	no	means	the	toughest	that	could	happen.	In	the	past,	Bitcoin	has	fallen	by	75%
over	the	course	of	two	days;	the	same	may	happen	to	ether	or	any	other	collateral	asset	some	day.
Attacks	on	the	underlying	blockchain	are	an	even	larger	untested	risk,	especially	if	compounded	by
price	decreases	at	the	same	time.	Another	major	challenge,	and	arguably	the	larger	one,	is	that	the
stability	of	MakerDAO-like	systems	is	dependent	on	some	underlying	oracle	scheme.	Different
attempts	at	oracle	systems	do	exist	(see	#16),	but	the	jury	is	still	out	on	how	well	they	can	hold	up
under	large	amounts	of	economic	stress.	So	far,	the	collateral	controlled	by	MakerDAO	has	been
lower	than	the	value	of	the	MKR	token;	if	this	relationship	reverses	MKR	holders	may	have	a
collective	incentive	to	try	to	"loot"	the	MakerDAO	system.	There	are	ways	to	try	to	protect	against
such	attacks,	but	they	have	not	been	tested	in	real	life.

11.	 Decentralized	Public	Goods	Incentivization

One	of	the	challenges	in	economic	systems	in	general	is	the	problem	of	"public	goods".	For
example,	suppose	that	there	is	a	scientific	research	project	which	will	cost	$1	million	to
complete,	and	it	is	known	that	if	it	is	completed	the	resulting	research	will	save	one	million
people	$5	each.	In	total,	the	social	benefit	is	clear	...	[but]	from	the	point	of	view	of	each
individual	person	contributing	does	not	make	sense	...	So	far,	most	problems	to	public
goods	have	involved	centralization	Additional	Assumptions	And	Requirements:	A	fully
trustworthy	oracle	exists	for	determining	whether	or	not	a	certain	public	good	task	has
been	completed	(in	reality	this	is	false,	but	this	is	the	domain	of	another	problem)

Status:	Some	progress.

The	problem	of	funding	public	goods	is	generally	understood	to	be	split	into	two	problems:	the
funding	problem	(where	to	get	funding	for	public	goods	from)	and	the	preference	aggregation
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problem	(how	to	determine	what	is	a	genuine	public	good,	rather	than	some	single	individual's	pet
project,	in	the	first	place).	This	problem	focuses	specifically	on	the	former,	assuming	the	latter	is
solved	(see	the	"decentralized	contribution	metrics"	section	below	for	work	on	that	problem).

In	general,	there	haven't	been	large	new	breakthroughs	here.	There's	two	major	categories	of
solutions.	First,	we	can	try	to	elicit	individual	contributions,	giving	people	social	rewards	for	doing
so.	My	own	proposal	for	charity	through	marginal	price	discrimination	is	one	example	of	this;
another	is	the	anti-malaria	donation	badges	on	Peepeth.	Second,	we	can	collect	funds	from
applications	that	have	network	effects.	Within	blockchain	land	there	are	several	options	for	doing
this:

Issuing	coins
Taking	a	portion	of	transaction	fees	at	protocol	level	(eg.	through	EIP	1559)
Taking	a	portion	of	transaction	fees	from	some	layer-2	application	(eg.	Uniswap,	or	some	scaling
solution,	or	even	state	rent	in	an	execution	environment	in	ethereum	2.0)
Taking	a	portion	of	other	kinds	of	fees	(eg.	ENS	registration)

Outside	of	blockchain	land,	this	is	just	the	age-old	question	of	how	to	collect	taxes	if	you're	a
government,	and	charge	fees	if	you're	a	business	or	other	organization.

12.	 Reputation	systems

Problem:	design	a	formalized	reputation	system,	including	a	score	rep(A,B)	->	V	where	V
is	the	reputation	of	B	from	the	point	of	view	of	A,	a	mechanism	for	determining	the
probability	that	one	party	can	be	trusted	by	another,	and	a	mechanism	for	updating	the
reputation	given	a	record	of	a	particular	open	or	finalized	interaction.

Status:	Slow	progress.

There	hasn't	really	been	much	work	on	reputation	systems	since	2014.	Perhaps	the	best	is	the	use	of
token	curated	registries	to	create	curated	lists	of	trustable	entities/objects;	the	Kleros	ERC20	TCR
(yes,	that's	a	token-curated	registry	of	legitimate	ERC20	tokens)	is	one	example,	and	there	is	even	an
alternative	interface	to	Uniswap	(http://uniswap.ninja)	that	uses	it	as	the	backend	to	get	the	list	of
tokens	and	ticker	symbols	and	logos	from.	Reputation	systems	of	the	subjective	variety	have	not
really	been	tried,	perhaps	because	there	is	just	not	enough	information	about	the	"social	graph"	of
people's	connections	to	each	other	that	has	already	been	published	to	chain	in	some	form.	If	such
information	starts	to	exist	for	other	reasons,	then	subjective	reputation	systems	may	become	more
popular.

13.	 Proof	of	excellence

One	interesting,	and	largely	unexplored,	solution	to	the	problem	of	[token]	distribution
specifically	(there	are	reasons	why	it	cannot	be	so	easily	used	for	mining)	is	using	tasks
that	are	socially	useful	but	require	original	human-driven	creative	effort	and	talent.	For
example,	one	can	come	up	with	a	"proof	of	proof"	currency	that	rewards	players	for	coming
up	with	mathematical	proofs	of	certain	theorems

Status:	No	progress,	problem	is	largely	forgotten.

The	main	alternative	approach	to	token	distribution	that	has	instead	become	popular	is	airdrops;
typically,	tokens	are	distributed	at	launch	either	proportionately	to	existing	holdings	of	some	other
token,	or	based	on	some	other	metric	(eg.	as	in	the	Handshake	airdrop).	Verifying	human	creativity
directly	has	not	really	been	attempted,	and	with	recent	progress	on	AI	the	problem	of	creating	a	task
that	only	humans	can	do	but	computers	can	verify	may	well	be	too	difficult.
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15	[sic].	Anti-Sybil	systems

A	problem	that	is	somewhat	related	to	the	issue	of	a	reputation	system	is	the	challenge	of
creating	a	"unique	identity	system"	-	a	system	for	generating	tokens	that	prove	that	an
identity	is	not	part	of	a	Sybil	attack	...	However,	we	would	like	to	have	a	system	that	has
nicer	and	more	egalitarian	features	than	"one-dollar-one-vote";	arguably,	one-person-one-
vote	would	be	ideal.

Status:	Some	progress.

There	have	been	quite	a	few	attempts	at	solving	the	unique-human	problem.	Attempts	that	come	to
mind	include	(incomplete	list!):

HumanityDAO:	https://www.humanitydao.org/
Pseudonym	parties:	https://bford.info/pub/net/sybil.pdf
POAP	("proof	of	attendance	protocol"):	https://www.poap.xyz/
BrightID:	https://www.brightid.org/

With	the	growing	interest	in	techniques	like	quadratic	voting	and	quadratic	funding,	the	need	for
some	kind	of	human-based	anti-sybil	system	continues	to	grow.	Hopefully,	ongoing	development	of
these	techniques	and	new	ones	can	come	to	meet	it.

14	[sic].	Decentralized	contribution	metrics

Incentivizing	the	production	of	public	goods	is,	unfortunately,	not	the	only	problem	that
centralization	solves.	The	other	problem	is	determining,	first,	which	public	goods	are	worth
producing	in	the	first	place	and,	second,	determining	to	what	extent	a	particular	effort
actually	accomplished	the	production	of	the	public	good.	This	challenge	deals	with	the
latter	issue.

Status:	Some	progress,	some	change	in	focus.

More	recent	work	on	determining	value	of	public-good	contributions	does	not	try	to	separate
determining	tasks	and	determining	quality	of	completion;	the	reason	is	that	in	practice	the	two	are
difficult	to	separate.	Work	done	by	specific	teams	tends	to	be	non-fungible	and	subjective	enough
that	the	most	reasonable	approach	is	to	look	at	relevance	of	task	and	quality	of	performance	as	a
single	package,	and	use	the	same	technique	to	evaluate	both.

Fortunately,	there	has	been	great	progress	on	this,	particularly	with	the	discovery	of	quadratic
funding.	Quadratic	funding	is	a	mechanism	where	individuals	can	make	donations	to	projects,	and
then	based	on	the	number	of	people	who	donated	and	how	much	they	donated,	a	formula	is	used	to
calculate	how	much	they	would	have	donated	if	they	were	perfectly	coordinated	with	each	other	(ie.
took	each	other's	interests	into	account	and	did	not	fall	prey	to	the	tragedy	of	the	commons).	The
difference	between	amount	would-have-donated	and	amount	actually	donated	for	any	given	project	is
given	to	that	project	as	a	subsidy	from	some	central	pool	(see	#11	for	where	the	central	pool	funding
could	come	from).	Note	that	this	mechanism	focuses	on	satisfying	the	values	of	some	community,	not
on	satisfying	some	given	goal	regardless	of	whether	or	not	anyone	cares	about	it.	Because	of	the
complexity	of	values	problem,	this	approach	is	likely	to	be	much	more	robust	to	unknown	unknowns.

Quadratic	funding	has	even	been	tried	in	real	life	with	considerable	success	in	the	recent	gitcoin
quadratic	funding	round.	There	has	also	been	some	incremental	progress	on	improving	quadratic
funding	and	similar	mechanisms;	particularly,	pairwise-bounded	quadratic	funding	to	mitigate
collusion.	There	has	also	been	work	on	specification	and	implementation	of	bribe-resistant	voting
technology,	preventing	users	from	proving	to	third	parties	who	they	voted	for;	this	prevents	many
kinds	of	collusion	and	bribe	attacks.
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16.	 Decentralized	success	metrics

Problem:	come	up	with	and	implement	a	decentralized	method	for	measuring	numerical
real-world	variables	...	the	system	should	be	able	to	measure	anything	that	humans	can
currently	reach	a	rough	consensus	on	(eg.	price	of	an	asset,	temperature,	global	CO2
concentration)

Status:	Some	progress.

This	is	now	generally	just	called	"the	oracle	problem".	The	largest	known	instance	of	a	decentralized
oracle	running	is	Augur,	which	has	processed	outcomes	for	millions	of	dollars	of	bets.	Token	curated
registries	such	as	the	Kleros	TCR	for	tokens	are	another	example.	However,	these	systems	still	have
not	seen	a	real-world	test	of	the	forking	mechanism	(search	for	"subjectivocracy"	here)	either	due	to
a	highly	controversial	question	or	due	to	an	attempted	51%	attack.	There	is	also	research	on	the
oracle	problem	happening	outside	of	the	blockchain	space	in	the	form	of	the	"peer	prediction"
literature;	see	here	for	a	very	recent	advancement	in	the	space.

Another	looming	challenge	is	that	people	want	to	rely	on	these	systems	to	guide	transfers	of
quantities	of	assets	larger	than	the	economic	value	of	the	system's	native	token.	In	these	conditions,
token	holders	in	theory	have	the	incentive	to	collude	to	give	wrong	answers	to	steal	the	funds.	In
such	a	case,	the	system	would	fork	and	the	original	system	token	would	likely	become	valueless,	but
the	original	system	token	holders	would	still	get	away	with	the	returns	from	whatever	asset	transfer
they	misdirected.	Stablecoins	(see	#10)	are	a	particularly	egregious	case	of	this.	One	approach	to
solving	this	would	be	a	system	that	assumes	that	altruistically	honest	data	providers	do	exist,	and
creating	a	mechanism	to	identify	them,	and	only	allowing	them	to	churn	slowly	so	that	if	malicious
ones	start	getting	voted	in	the	users	of	systems	that	rely	on	the	oracle	can	first	complete	an	orderly
exit.	In	any	case,	more	development	of	oracle	tech	is	very	much	an	important	problem.

New	problems

If	I	were	to	write	the	hard	problems	list	again	in	2019,	some	would	be	a	continuation	of	the	above
problems,	but	there	would	be	significant	changes	in	emphasis,	as	well	as	significant	new	problems.
Here	are	a	few	picks:

Cryptographic	obfuscation:	same	as	#4	above
Ongoing	work	on	post-quantum	cryptography:	both	hash-based	as	well	as	based	on	post-
quantum-secure	"structured"	mathematical	objects,	eg.	elliptic	curve	isogenies,	lattices...
Anti-collusion	infrastructure:	ongoing	work	and	refinement	of	https://ethresear.ch/t/minimal-
anti-collusion-infrastructure/5413,	including	adding	privacy	against	the	operator,	adding	multi-
party	computation	in	a	maximally	practical	way,	etc.
Oracles:	same	as	#16	above,	but	removing	the	emphasis	on	"success	metrics"	and	focusing	on
the	general	"get	real-world	data"	problem
Unique-human	identities	(or,	more	realistically,	semi-unique-human	identities):	same	as	what
was	written	as	#15	above,	but	with	an	emphasis	on	a	less	"absolute"	solution:	it	should	be	much
harder	to	get	two	identities	than	one,	but	making	it	impossible	to	get	multiple	identities	is	both
impossible	and	potentially	harmful	even	if	we	do	succeed
Homomorphic	encryption	and	multi-party	computation:	ongoing	improvements	are	still
required	for	practicality
Decentralized	governance	mechanisms:	DAOs	are	cool,	but	current	DAOs	are	still	very
primitive;	we	can	do	better
Fully	formalizing	responses	to	PoS	51%	attacks:	ongoing	work	and	refinement	of
https://ethresear.ch/t/responding-to-51-attacks-in-casper-ffg/6363
More	sources	of	public	goods	funding:	the	ideal	is	to	charge	for	congestible	resources	inside
of	systems	that	have	network	effects	(eg.	transaction	fees),	but	doing	so	in	decentralized
systems	requires	public	legitimacy;	hence	this	is	a	social	problem	along	with	the	technical	one
of	finding	possible	sources
Reputation	systems:	same	as	#12	above

In	general,	base-layer	problems	are	slowly	but	surely	decreasing,	but	application-layer	problems	are
only	just	getting	started.
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2019	Oct	24 See	all	posts

Review	of	Gitcoin	Quadratic	Funding	Round	3

Special	thanks	to	the	Gitcoin	team	and	especially	Frank	Chen	for	working	with	me	through	these
numbers

The	next	round	of	Gitcoin	Grants	quadratic	funding	has	just	finished,	and	we	the	numbers	for	how
much	each	project	has	received	were	just	released.	Here	are	the	top	ten:

Altogether,	$163,279	was	donated	to	80	projects	by	477	contributors,	augmented	by	a	matching	pool
of	$100,000.	Nearly	half	came	from	four	contributions	above	$10,000:	$37,500	to	Lighthouse,	and
$12,500	each	to	Gas	Station	Network,	Black	Girls	Code	and	Public	Health	Incentives	Layer.	Out	of
the	remainder,	about	half	came	from	contributions	between	$1,000	and	$10,000,	and	the	rest	came
from	smaller	donations	of	various	sizes.	But	what	matters	more	here	are	not	the	raw	donations,	but
rather	the	subsidies	that	the	quadratic	funding	mechanism	applied.	Gitcoin	Grants	is	there	to	support
valuable	public	goods	in	the	Ethereum	ecosystem,	but	also	serve	as	a	testbed	for	this	new	quadratic
donation	matching	mechanism,	and	see	how	well	it	lives	up	to	its	promise	of	creating	a	democratic,
market-based	and	efficient	way	of	funding	public	goods.	This	time	around,	a	modified	formula	based
on	pairwise-bounded	coordination	subsidies	was	used,	which	has	the	goal	of	minimizing	distortion
from	large	contributions	from	coordinated	actors.	And	now	we	get	to	see	how	the	experiment	went.

Judging	the	Outcomes

First,	the	results.	Ultimately,	every	mechanism	for	allocating	resources,	whether	centralized,	market-
based,	democratic	or	otherwise,	must	stand	the	test	of	delivering	results,	or	else	sooner	or	later	it
will	be	abandoned	for	another	mechanism	that	is	perceived	to	be	better,	even	if	it	is	less
philosophically	clean.	Judging	results	is	inherently	a	subjective	exercise;	any	single	person's	analysis
of	a	mechanism	will	inevitably	be	shaped	by	how	well	the	results	fit	their	own	preferences	and	tastes.
However,	in	those	cases	where	a	mechanism	does	output	a	surprising	result,	one	can	and	should	use
that	as	an	opportunity	to	learn,	and	see	whether	or	not	one	missed	some	key	information	that	other
participants	in	the	mechanism	had.

In	my	own	case,	I	found	the	top	results	very	agreeable	and	a	quite	reasonable	catalogue	of	projects
that	are	good	for	the	Ethereum	community.	One	of	the	disparities	between	these	grants	and	the
Ethereum	Foundation	grants	is	that	the	Ethereum	Foundation	grants	(see	recent	rounds	here	and
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here)	tend	to	overwhelmingly	focus	on	technology	with	only	a	small	section	on	education	and
community	resources,	whereas	in	the	Gitcoin	grants	while	technology	still	dominates,	EthHub	is	#2
and	lower	down	defiprime.com	is	#14	and	cryptoeconomics.study	is	#17.	In	this	case	my	personal
opinion	is	that	EF	has	made	a	genuine	error	in	undervaluing	grants	to	community/education
organizations	and	Gitcoin's	"collective	instinct"	is	correct.	Score	one	for	new-age	fancy	quadratic
market	democracy.

Another	surprising	result	to	me	was	Austin	Griffith	getting	second	place.	I	personally	have	never
spent	too	much	time	thinking	about	Burner	Wallet;	I	knew	that	it	existed	but	in	my	mental	space	I	did
not	take	it	too	seriously,	focusing	instead	on	client	development,	L2	scaling,	privacy	and	to	a	lesser
extent	smart	contract	wallets	(the	latter	being	a	key	use	case	of	Gas	Station	Network	at	#8).	After
seeing	Austin's	impressive	performance	in	this	Gitcoin	round,	I	asked	a	few	people	what	was	going
on.

Burner	Wallet	(website,	explainer	article)	is	an	"insta-wallet"	that's	very	easy	to	use:	just	load	it	up	on
your	desktop	or	phone,	and	there	you	have	it.	It	was	used	successfully	at	EthDenver	to	sell	food	from
food	trucks,	and	generally	many	people	appreciate	its	convenience.	Its	main	weaknesses	are	lower
security	and	that	one	of	its	features,	support	for	xDAI,	is	dependent	on	a	permissioned	chain.

Austin's	Gitcoin	grant	is	there	to	fund	his	ongoing	work,	and	I	have	heard	one	criticism:	there's	many
prototypes,	but	comparatively	few	"things	taken	to	completion".	There	is	also	the	critique	that	as
great	as	Austin	is,	it's	difficult	to	argue	that	he's	as	important	to	the	success	of	Ethereum	as,	say,
Lighthouse	and	Prysmatic,	though	one	can	reply	that	what	matters	is	not	total	value,	but	rather	the
marginal	value	of	giving	a	given	project	or	person	an	extra	$10,000.	On	the	whole,	however,	I	feel
like	quadratic	funding's	(Glen	would	say	deliberate!)	tendency	to	select	for	things	like	Burner	Wallet
with	populist	appeal	is	a	much	needed	corrective	to	the	influence	of	the	Ethereum	tech	elite
(including	myself!)	who	often	value	technical	impressiveness	and	undervalue	simple	and	quick	things
that	make	it	really	easy	for	people	to	participate	in	Ethereum.	This	one	is	slightly	more	ambiguous,
but	I'll	say	score	two	for	new-age	fancy	quadratic	market	democracy.

The	main	thing	that	I	was	disappointed	the	Gitcoiner-ati	did	not	support	more	was	Gitcoin
maintenance	itself.	The	Gitcoin	Sustainability	Fund	only	got	a	total	$1,119	in	raw	contributions	from
18	participants,	plus	a	match	of	$202.	The	optional	5%	tips	that	users	could	give	to	Gitcoin	upon
donating	were	not	included	into	the	quadratic	matching	calculations,	but	raised	another	~$1,000.
Given	the	amount	of	effort	the	Gitcoin	people	put	in	to	making	quadratic	funding	possible,	this	is	not
nearly	enough;	Gitcoin	clearly	deserves	more	than	0.9%	of	the	total	donations	in	the	round.
Meanwhile,	the	Ethereum	Foundation	(as	well	as	Consensys	and	individual	donors)	have	been	giving
grants	to	Gitcoin	that	include	supporting	Gitcoin	itself.	Hopefully	in	future	rounds	people	will	support
Gitcoin	itself	too,	but	for	now,	score	one	for	good	old-fashioned	EF	technocracy.

On	the	whole,	quadratic	funding,	while	still	young	and	immature,	seems	to	be	a	remarkably	effective
complement	to	the	funding	preferences	of	existing	institutions,	and	it	seems	worthwhile	to	continue
it	and	even	increase	its	scope	and	size	in	the	future.

Pairwise-bounded	quadratic	funding	vs	traditional	quadratic	funding

Round	3	differs	from	previous	rounds	in	that	it	uses	a	new	flavor	of	quadratic	funding,	which	limits
the	subsidy	per	pair	of	participants.	For	example,	in	traditional	QF,	if	two	people	each	donate	$10,
the	subsidy	would	be	$10,	and	if	two	people	each	donate	$10,000,	the	subsidy	would	be	$10,000.
This	property	of	traditional	QF	makes	it	highly	vulnerable	to	collusion:	two	key	employees	of	a
project	(or	even	two	fake	accounts	owned	by	the	same	person)	could	each	donate	as	much	money	as
they	have,	and	get	back	a	very	large	subsidy.	Pairwise-bounded	QF	computes	the	total	subsidy	to	a
project	by	looking	through	all	pairs	of	contributors,	and	imposes	a	maximum	bound	on	the	total
subsidy	that	any	given	pair	of	participants	can	trigger	(combined	across	all	projects).	Pairwise-
bounded	QF	also	has	the	property	that	it	generally	penalizes	projects	that	are	dominated	by	large
contributors:
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The	projects	that	lost	the	most	relative	to	traditional	QF	seem	to	be	projects	that	have	a	single	large
contribution	(or	sometimes	two).	For	example,	"fuzz	geth	and	Parity	for	EVM	consensus	bugs"	got	a
$415	match	compared	to	the	$2000	he	would	have	gotten	in	traditional	QF;	the	decrease	is	explained
by	the	fact	that	the	contributions	are	dominated	by	two	large	$4500	contributions.	On	the	other
hand,	cryptoeconomics.study	got	$1274,	up	nearly	double	from	the	$750	it	would	have	gotten	in
traditional	QF;	this	is	explained	by	the	large	diversity	of	contributions	that	the	project	received	and
particularly	the	lack	of	large	sponsors:	the	largest	contribution	to	cryptoeconomics.study	was	$100.

Another	desirable	property	of	pairwise-bounded	QF	is	that	it	privileges	cross-tribal	projects.	That	is,
if	there	are	projects	that	group	A	typically	supports,	and	projects	that	group	B	typically	supports,
then	projects	that	manage	to	get	support	from	both	groups	get	a	more	favorable	subsidy	(because
the	pairs	that	go	between	groups	are	not	as	saturated).	Has	this	incentive	for	building	bridges
appeared	in	these	results?

Unfortunately,	my	code	of	honor	as	a	social	scientist	obliges	me	to	report	the	negative	result:	the
Ethereum	community	just	does	not	yet	have	enough	internal	tribal	structure	for	effects	like	this	to
materialize,	and	even	when	there	are	differences	in	correlations	they	don't	seem	strongly	connected
to	higher	subsidies	due	to	pairwise-bounding.	Here	are	the	cross-correlations	between	who
contributed	to	different	projects:

http://cryptoeconomics.study/


Generally,	all	projects	are	slightly	positively	correlated	with	each	other,	with	a	few	exceptions	with
greater	correlation	and	one	exception	with	broad	roughly	zero	correlation:	Nori	(120	in	this	chart).
However,	Nori	did	not	do	well	in	pairwise-bounded	QF,	because	over	94%	of	its	donations	came	from
a	single	$5000	donation.

Dominance	of	large	projects

One	other	pattern	that	we	saw	in	this	round	is	that	popular	projects	got	disproportionately	large
grants:

To	be	clear,	this	is	not	just	saying	"more	contributions,	more	match",	it's	saying	"more	contributions,
more	match	per	dollar	contributed".	Arguably,	this	is	an	intended	feature	of	the	mechanism.	Projects
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that	can	get	more	people	to	donate	to	them	represent	public	goods	that	serve	a	larger	public,	and	so
tragedy	of	the	commons	problems	are	more	severe	and	hence	contributions	to	them	should	be
multiplied	more	to	compensate.	However,	looking	at	the	list,	it's	hard	to	argue	that,	say,	Prysm
($3,848	contributed,	$8,566	matched)	is	a	more	public	good	than	Nimbus	($1,129	contributed,	$496
matched;	for	the	unaware,	Prysm	and	Nimbus	are	both	eth2	clients).	The	failure	does	not	look	too
severe;	on	average,	projects	near	the	top	do	seem	to	serve	a	larger	public	and	projects	near	the
bottom	do	seem	niche,	but	it	seems	clear	that	at	least	part	of	the	disparity	is	not	genuine	publicness
of	the	good,	but	rather	inequality	of	attention.	N	units	of	marketing	effort	can	attract	attention	of	N
people,	and	theoretically	get	N^2	resources.

Of	course,	this	could	be	solved	via	a	"layer	on	top"	venture-capital	style:	upstart	new	projects	could
get	investors	to	support	them,	in	return	for	a	share	of	matched	contributions	received	when	they	get
large.	Something	like	this	would	be	needed	eventually;	predicting	future	public	goods	is	as	important
a	social	function	as	predicting	future	private	goods.	But	we	could	also	consider	less	winner-take-all
alternatives;	the	simplest	one	would	be	adjusting	the	QF	formula	so	it	uses	an	exponent	of	eg.	1.5
instead	of	2.	I	can	see	it	being	worthwhile	to	try	a	future	round	of	Gitcoin	Grants	with	such	a	formula
(\(\left(\sum_i	x_i^{\frac{2}{3}}\right)^{\frac{3}{2}}\)	instead	of	\(\left(\sum_i	x_i^{\frac{1}
{2}}\right)^2\))	to	see	what	the	results	are	like.

Individual	leverage	curves

One	key	question	is,	if	you	donate	$1,	or	$5,	or	$100,	how	big	an	impact	can	you	have	on	the	amount
of	money	that	a	project	gets?	Fortunately,	we	can	use	the	data	to	calculate	these	deltas!

The	different	lines	are	for	different	projects;	supporting	projects	with	higher	existing	support	will
lead	to	you	getting	a	bigger	multiplier.	In	all	cases,	the	first	dollar	is	very	valuable,	with	a	matching
ratio	in	some	cases	over	100:1.	But	the	second	dollar	is	much	less	valuable,	and	matching	ratios
quickly	taper	off;	even	for	the	largest	projects	increasing	one's	donation	from	$32	to	$64	will	only	get
a	1:1	match,	and	anything	above	$100	becomes	almost	a	straight	donation	with	nearly	no	matching.
However,	given	that	it's	likely	possible	to	get	legitimate-looking	Github	accounts	on	the	grey	market
for	around	those	costs,	having	a	cap	of	a	few	hundred	dollars	on	the	amount	of	matched	funds	that
any	particular	account	can	direct	seems	like	a	very	reasonable	mitigation,	despite	its	costs	in	limiting
the	bulk	of	the	matching	effect	to	small-sized	donations.

Conclusions

On	the	whole,	this	was	by	far	the	largest	and	the	most	data-rich	Gitcoin	funding	round	to	date.	It
successfully	attracted	hundreds	of	contributors,	reaching	a	size	where	we	can	finally	see	many
significant	effects	in	play	and	drown	out	the	effects	of	the	more	naive	forms	of	small-scale	collusion.
The	experiment	already	seems	to	be	leading	to	valuable	information	that	can	be	used	by	future



quadratic	funding	implementers	to	improve	their	quadratic	funding	implementations.	The	case	of
Austin	Griffith	is	also	interesting	because	$23,911	in	funds	that	he	received	comes,	in	relative	terms,
surprisingly	close	to	an	average	salary	for	a	developer	if	the	grants	can	be	repeated	on	a	regular
schedule.	What	this	means	is	that	if	Gitcoin	Grants	does	continue	operating	regularly,	and	attracts
and	expands	its	pool	of	donations,	we	could	be	very	close	to	seeing	the	first	"quadratic	freelancer"	-
someone	directly	"working	for	the	public",	funded	by	donations	boosted	by	quadratic	matching
subsidies.	And	at	that	point	we	could	start	to	see	more	experimentation	in	new	forms	of	organization
that	live	on	top	of	quadratic	funding	gadgets	as	a	base	layer.	All	in	all,	this	foretells	an	exciting	and,
err,	radical	public-goods	funding	future	ahead	of	us.
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In-person	meatspace	protocol	to	prove
unconditional	possession	of	a	private	key

Recommended	pre-reading:	https://ethresear.ch/t/minimal-anti-collusion-infrastructure/5413

Alice	slowly	walks	down	the	old,	dusty	stairs	of	the	building	into	the	basement.	She	thinks	wistfully	of
the	old	days,	when	quadratic-voting	in	the	World	Collective	Market	was	a	much	simpler	process	of
linking	her	public	key	to	a	twitter	account	and	opening	up	metamask	to	start	firing	off	votes.	Of
course	back	then	voting	in	the	WCM	was	used	for	little;	there	were	a	few	internet	forums	that	used	it
for	voting	on	posts,	and	a	few	million	dollars	donated	to	its	quadratic	funding	oracle.	But	then	it
grew,	and	then	the	game-theoretic	attacks	came.

First	came	the	exchange	platforms,	which	started	offering	"dividends"	to	anyone	who	registered	a
public	key	belonging	to	an	exchange	and	thus	provably	allowed	the	exchange	to	vote	on	their	behalf,
breaking	the	crucial	"independent	choice"	assumption	of	the	quadratic	voting	and	funding
mechanisms.	And	soon	after	that	came	the	fake	accounts	-	Twitter	accounts,	Reddit	accounts	filtered
by	karma	score,	national	government	IDs,	all	proved	vulnerable	to	either	government	cheating	or
hackers,	or	both.	Elaborate	infrastructure	was	instituted	at	registration	time	to	ensure	both	that
account	holders	were	real	people,	and	that	account	holders	themselves	held	the	keys,	not	a	central
custody	service	purchasing	keys	by	the	thousands	to	buy	votes.

And	so	today,	voting	is	still	easy,	but	initiation,	while	still	not	harder	than	going	to	a	government
office,	is	no	longer	exactly	trivial.	But	of	course,	with	billions	of	dollars	in	donations	from	now-
deceased	billionaires	and	cryptocurrency	premines	forming	part	of	the	WCM's	quadratic	funding
pool,	and	elements	of	municipal	governance	using	its	quadratic	voting	protocols,	participating	is	very
much	worth	it.

After	reaching	the	end	of	the	stairs,	Alice	opens	the	door	and	enters	the	room.	Inside	the	room,	she
sees	a	table.	On	the	near	side	of	the	table,	she	sees	a	single,	empty	chair.	On	the	far	side	of	the	table,
she	sees	four	people	already	sitting	down	on	chairs	of	their	own,	the	high-reputation	Guardians
randomly	selected	by	the	WCM	for	Alice's	registration	ceremony.	"Hello,	Alice,"	the	person	sitting	on
the	leftmost	chair,	whose	name	she	intuits	is	Bob,	says	in	a	calm	voice.	"Glad	that	you	can	make	it,"
the	person	sitting	beside	Bob,	whose	name	she	intuits	is	Charlie,	adds.

Alice	walks	over	to	the	chair	that	is	clearly	meant	for	her	and	sits	down.	"Let	us	begin,"	the	person
sitting	beside	Charlie,	whose	name	by	logical	progression	is	David,	proclaims.	"Alice,	do	you	have
your	key	shares?"

Alice	takes	out	four	pocket-sized	notebooks,	clearly	bought	from	a	dollar	store,	and	places	them	on
the	table.	The	person	sitting	at	the	right,	logically	named	Evan,	takes	out	his	phone,	and	immediately
the	others	take	out	theirs.	They	open	up	their	ethereum	wallets.	"So,"	Evan	begins,	"the	current
Ethereum	beacon	chain	slot	number	is	28,205,913,	and	the	block	hash	starts	0xbe48.	Do	all	agree?".
"Yes,"	Alice,	Bob,	Charlie	and	David	exclaim	in	unison.	Evan	continues:	"so	let	us	wait	for	the	next
block."

The	five	intently	stare	at	their	phones.	First	for	ten	seconds,	then	twenty,	then	thirty.	"Three	skipped
proposers,"	Bob	mutters,	"how	unusual".	But	then	after	another	ten	seconds,	a	new	block	appears.
"Slot	number	28,205,917,	block	hash	starts	0x62f9,	so	first	digit	6.	All	agreed?"

"Yes."

"Six	mod	four	is	two,	and	as	is	prescribed	in	the	Old	Ways,	we	start	counting	indices	from	zero,	so
this	means	Alice	will	keep	the	third	book,	counting	as	usual	from	our	left."

Bob	takes	the	first,	second	and	fourth	notebooks	that	Alice	provided,	leaving	the	third	untouched.
Alice	takes	the	remaining	notebook	and	puts	it	back	in	her	backpack.	Bob	opens	each	notebook	to	a
page	in	the	middle	with	the	corner	folded,	and	sees	a	sequence	of	letters	and	numbers	written	with	a
pencil	in	the	middle	of	each	page	-	a	standard	way	of	writing	the	key	shares	for	over	a	decade,	since
camera	and	image	processing	technology	got	powerful	enough	to	recognize	words	and	numbers
written	on	single	slips	of	paper	even	inside	an	envelope.	Bob,	Charlie,	David	and	Evan	crowd	around
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the	books	together,	and	each	open	up	an	app	on	their	phone	and	press	a	few	buttons.

Bob	starts	reading,	as	all	four	start	typing	into	their	phones	at	the	same	time:

"Alice's	first	key	share	is,	6-b-d-7-h-k-k-l-o-e-q-q-p-3-y-s-6-x-e-f.	Applying	the	100,000x	iterated
SHA256	hash	we	get	e-a-6-6...,	confirm?"

"Confirmed,"	the	others	replied.	"Checking	against	Alice's	precommitted	elliptic	curve	point	A0...
match."

"Alice's	second	key	share	is,	f-r-n-m-j-t-x-r-s-3-b-u-n-n-n-i-z-3-d-g.	Iterated	hash	8-0-3-c...,
confirm?"

"Confirmed.	Checking	against	Alice's	precommitted	elliptic	curve	point	A1...	match."

"Alice's	fourth	key	share	is,	i-o-f-s-a-q-f-n-w-f-6-c-e-a-m-s-6-z-z-n.	Iterated	hash	6-a-5-6...,
confirm?"

"Confirmed.	Checking	against	Alice's	precommitted	elliptic	curve	point	A3...	match."

"Adding	the	four	precommitted	curve	points,	x	coordinate	begins	3-1-8-3.	Alice,	confirm	that	that	is
the	key	you	wish	to	register?"

"Confirm."

Bob,	Charlie,	David	and	Evan	glance	down	at	their	smartphone	apps	one	more	time,	and	each	tap	a
few	buttons.	Alice	catches	a	glance	at	Charlie's	phone;	she	sees	four	yellow	checkmarks,	and	an
"approval	transaction	pending"	dialog.	After	a	few	seconds,	the	four	yellow	checkmarks	are	replaced
with	a	single	green	checkmark,	with	a	transaction	hash	ID,	too	small	for	Alice	to	make	out	the	digits
from	a	few	meters	away,	below.	Alice's	phone	soon	buzzes,	with	a	notification	dialog	saying
"Registration	confirmed".

"Congratulations,	Alice,"	Bob	says.	"Unconditional	possession	of	your	key	has	been	verified.	You	are
now	free	to	send	a	transaction	to	the	World	Collective	Market's	MPC	oracle	to	update	your	key."

"Only	a	75%	probability	this	would	have	actually	caught	me	if	I	didn't	actually	have	all	four	parts	of
the	key,"	Alice	thought	to	herself.	But	it	seemed	to	be	enough	for	an	in-person	protocol	in	practice;
and	if	it	ever	wasn't	then	they	could	easily	switch	to	slightly	more	complex	protocols	that	used	low-
degree	polynomials	to	achieve	exponentially	high	levels	of	soundness.	Alice	taps	a	few	buttons	on	her
smartphone,	and	a	"transaction	pending"	dialog	shows	up	on	the	screen.	Five	seconds	later,	the
dialog	disappears	and	is	replaced	by	a	green	checkmark.	She	jumps	up	with	joy	and,	before	Bob,
Charlie,	David	and	Evan	can	say	goodbye,	runs	out	of	the	room,	frantically	tapping	buttons	to	vote	on
all	the	projects	and	issues	in	the	WCM	that	she	had	wanted	to	support	for	months.
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Understanding	PLONK

Special	thanks	to	Justin	Drake,	Karl	Floersch,	Hsiao-wei	Wang,	Barry	Whitehat,	Dankrad	Feist,	Kobi
Gurkan	and	Zac	Williamson	for	review

Very	recently,	Ariel	Gabizon,	Zac	Williamson	and	Oana	Ciobotaru	announced	a	new	general-purpose
zero-knowledge	proof	scheme	called	PLONK,	standing	for	the	unwieldy	quasi-backronym
"Permutations	over	Lagrange-bases	for	Oecumenical	Noninteractive	arguments	of	Knowledge".	While
improvements	to	general-purpose	zero-knowledge	proof	protocols	have	been	coming	for	years,	what
PLONK	(and	the	earlier	but	more	complex	SONIC	and	the	more	recent	Marlin)	bring	to	the	table	is	a
series	of	enhancements	that	may	greatly	improve	the	usability	and	progress	of	these	kinds	of	proofs
in	general.

The	first	improvement	is	that	while	PLONK	still	requires	a	trusted	setup	procedure	similar	to	that
needed	for	the	SNARKs	in	Zcash,	it	is	a	"universal	and	updateable"	trusted	setup.	This	means	two
things:	first,	instead	of	there	being	one	separate	trusted	setup	for	every	program	you	want	to	prove
things	about,	there	is	one	single	trusted	setup	for	the	whole	scheme	after	which	you	can	use	the
scheme	with	any	program	(up	to	some	maximum	size	chosen	when	making	the	setup).	Second,	there
is	a	way	for	multiple	parties	to	participate	in	the	trusted	setup	such	that	it	is	secure	as	long	as	any
one	of	them	is	honest,	and	this	multi-party	procedure	is	fully	sequential:	first	one	person	participates,
then	the	second,	then	the	third...	The	full	set	of	participants	does	not	even	need	to	be	known	ahead	of
time;	new	participants	could	just	add	themselves	to	the	end.	This	makes	it	easy	for	the	trusted	setup
to	have	a	large	number	of	participants,	making	it	quite	safe	in	practice.

The	second	improvement	is	that	the	"fancy	cryptography"	it	relies	on	is	one	single	standardized
component,	called	a	"polynomial	commitment".	PLONK	uses	"Kate	commitments",	based	on	a	trusted
setup	and	elliptic	curve	pairings,	but	you	can	instead	swap	it	out	with	other	schemes,	such	as	FRI
(which	would	turn	PLONK	into	a	kind	of	STARK)	or	DARK	(based	on	hidden-order	groups).	This
means	the	scheme	is	theoretically	compatible	with	any	(achievable)	tradeoff	between	proof	size	and
security	assumptions.

What	this	means	is	that	use	cases	that	require	different	tradeoffs	between	proof	size	and	security
assumptions	(or	developers	that	have	different	ideological	positions	about	this	question)	can	still
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share	the	bulk	of	the	same	tooling	for	"arithmetization"	-	the	process	for	converting	a	program	into	a
set	of	polynomial	equations	that	the	polynpomial	commitments	are	then	used	to	check.	If	this	kind	of
scheme	becomes	widely	adopted,	we	can	thus	expect	rapid	progress	in	improving	shared
arithmetization	techniques.

How	PLONK	works
Let	us	start	with	an	explanation	of	how	PLONK	works,	in	a	somewhat	abstracted	format	that	focuses
on	polynomial	equations	without	immediately	explaining	how	those	equations	are	verified.	A	key
ingredient	in	PLONK,	as	is	the	case	in	the	QAPs	used	in	SNARKs,	is	a	procedure	for	converting	a
problem	of	the	form	"give	me	a	value	\(X\)	such	that	a	specific	program	\(P\)	that	I	give	you,	when
evaluated	with	\(X\)	as	an	input,	gives	some	specific	result	\(Y\)"	into	the	problem	"give	me	a	set	of
values	that	satisfies	a	set	of	math	equations".	The	program	\(P\)	can	represent	many	things;	for
example	the	problem	could	be	"give	me	a	solution	to	this	sudoku",	which	you	would	encode	by	setting
\(P\)	to	be	a	sudoku	verifier	plus	some	initial	values	encoded	and	setting	\(Y\)	to	\(1\)	(ie.	"yes,	this
solution	is	correct"),	and	a	satisfying	input	\(X\)	would	be	a	valid	solution	to	the	sudoku.	This	is	done
by	representing	\(P\)	as	a	circuit	with	logic	gates	for	addition	and	multiplication,	and	converting	it
into	a	system	of	equations	where	the	variables	are	the	values	on	all	the	wires	and	there	is	one
equation	per	gate	(eg.	\(x_6	=	x_4	\cdot	x_7\)	for	multiplication,	\(x_8	=	x_5	+	x_9\)	for	addition).

Here	is	an	example	of	the	problem	of	finding	\(x\)	such	that	\(P(x)	=	x^3	+	x	+	5	=	35\)	(hint:	\(x	=
3\)):

We	can	label	the	gates	and	wires	as	follows:
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On	the	gates	and	wires,	we	have	two	types	of	constraints:	gate	constraints	(equations	between
wires	attached	to	the	same	gate,	eg.	\(a_1	\cdot	b_1	=	c_1\))	and	copy	constraints	(claims	about
equality	of	different	wires	anywhere	in	the	circuit,	eg.	\(a_0	=	a_1	=	b_1	=	b_2	=	a_3\)	or	\(c_0	=
a_1\)).	We	will	need	to	create	a	structured	system	of	equations,	which	will	ultimately	reduce	to	a	very
small	number	of	polynomial	equations,	to	represent	both.

In	PLONK,	the	setup	for	these	equations	is	as	follows.	Each	equation	is	of	the	following	form	(think:	\
(L\)	=	left,	\(R\)	=	right,	\(O\)	=	output,	\(M\)	=	multiplication,	\(C\)	=	constant):

\[	\left(Q_{L_{i}}\right)	a_{i}+\left(Q_{R_{i}}\right)	b_{i}+\left(Q_{O_{i}}\right)
c_{i}+\left(Q_{M_{i}}\right)	a_{i}	b_{i}+Q_{C_{i}}=0	\]

Each	\(Q\)	value	is	a	constant;	the	constants	in	each	equation	(and	the	number	of	equations)	will	be
different	for	each	program.	Each	small-letter	value	is	a	variable,	provided	by	the	user:	\(a_i\)	is	the
left	input	wire	of	the	\(i\)'th	gate,	\(b_i\)	is	the	right	input	wire,	and	\(c_i\)	is	the	output	wire	of	the	\
(i\)'th	gate.	For	an	addition	gate,	we	set:

\[	Q_{L_{i}}=1,	Q_{R_{i}}=1,	Q_{M_{i}}=0,	Q_{O_{i}}=-1,	Q_{C_{i}}=0	\]

Plugging	these	constants	into	the	equation	and	simplifying	gives	us	\(a_i	+	b_i	-	c_i	=	0\),	which	is
exactly	the	constraint	that	we	want.	For	a	multiplication	gate,	we	set:

\[	Q_{L_{i}}=0,	Q_{R_{i}}=0,	Q_{M_{i}}=1,	Q_{O_{i}}=-1,	Q_{C_{i}}=0	\]

For	a	constant	gate	setting	\(a_i\)	to	some	constant	\(x\),	we	set:

\[	Q_{L}=1,	Q_{R}=0,	Q_{M}=0,	Q_{O}=0,	Q_{C}=-x	\]

You	may	have	noticed	that	each	end	of	a	wire,	as	well	as	each	wire	in	a	set	of	wires	that	clearly	must
have	the	same	value	(eg.	\(x\)),	corresponds	to	a	distinct	variable;	there's	nothing	so	far	forcing	the
output	of	one	gate	to	be	the	same	as	the	input	of	another	gate	(what	we	call	"copy	constraints").
PLONK	does	of	course	have	a	way	of	enforcing	copy	constraints,	but	we'll	get	to	this	later.	So	now	we
have	a	problem	where	a	prover	wants	to	prove	that	they	have	a	bunch	of	\(x_{a_i},	x_{b_i}\)	and	\
(x_{c_i}\)	values	that	satisfy	a	bunch	of	equations	that	are	of	the	same	form.	This	is	still	a	big
problem,	but	unlike	"find	a	satisfying	input	to	this	computer	program"	it's	a	very	structured	big
problem,	and	we	have	mathematical	tools	to	"compress"	it.

From	linear	systems	to	polynomials



If	you	have	read	about	STARKs	or	QAPs,	the	mechanism	described	in	this	next	section	will	hopefully
feel	somewhat	familiar,	but	if	you	have	not	that's	okay	too.	The	main	ingredient	here	is	to	understand
a	polynomial	as	a	mathematical	tool	for	encapsulating	a	whole	lot	of	values	into	a	single	object.
Typically,	we	think	of	polynomials	in	"coefficient	form",	that	is	an	expression	like:

\[	y=x^{3}-5	x^{2}+7	x-2	\]

But	we	can	also	view	polynomials	in	"evaluation	form".	For	example,	we	can	think	of	the	above	as
being	"the"	degree	\(<	4\)	polynomial	with	evaluations	\((-2,	1,	0,	1)\)	at	the	coordinates	\((0,	1,	2,	3)\)
respectively.

Now	here's	the	next	step.	Systems	of	many	equations	of	the	same	form	can	be	re-interpreted	as	a
single	equation	over	polynomials.	For	example,	suppose	that	we	have	the	system:

\[	\begin{array}{l}{2	x_{1}-x_{2}+3	x_{3}=8}	\\	{x_{1}+4	x_{2}-5	x_{3}=5}	\\	{8	x_{1}-x_{2}-
x_{3}=-2}\end{array}	\]

Let	us	define	four	polynomials	in	evaluation	form:	\(L(x)\)	is	the	degree	\(<	3\)	polynomial	that
evaluates	to	\((2,	1,	8)\)	at	the	coordinates	\((0,	1,	2)\),	and	at	those	same	coordinates	\(M(x)\)
evaluates	to	\((-1,	4,	-1)\),	\(R(x)\)	to	\((3,	-5,	-1)\)	and	\(O(x)\)	to	\((8,	5,	-2)\)	(it	is	okay	to	directly
define	polynomials	in	this	way;	you	can	use	Lagrange	interpolation	to	convert	to	coefficient	form).
Now,	consider	the	equation:

\[	L(x)	\cdot	x_{1}+M(x)	\cdot	x_{2}+R(x)	\cdot	x_{3}-O(x)=Z(x)	H(x)	\]

Here,	\(Z(x)\)	is	shorthand	for	\((x-0)	\cdot	(x-1)	\cdot	(x-2)\)	-	the	minimal	(nontrivial)	polynomial	that
returns	zero	over	the	evaluation	domain	\((0,	1,	2)\).	A	solution	to	this	equation	(\(x_1	=	1,	x_2	=	6,
x_3	=	4,	H(x)	=	0\))	is	also	a	solution	to	the	original	system	of	equations,	except	the	original	system
does	not	need	\(H(x)\).	Notice	also	that	in	this	case,	\(H(x)\)	is	conveniently	zero,	but	in	more	complex
cases	\(H\)	may	need	to	be	nonzero.

So	now	we	know	that	we	can	represent	a	large	set	of	constraints	within	a	small	number	of
mathematical	objects	(the	polynomials).	But	in	the	equations	that	we	made	above	to	represent	the
gate	wire	constraints,	the	\(x_1,	x_2,	x_3\)	variables	are	different	per	equation.	We	can	handle	this	by
making	the	variables	themselves	polynomials	rather	than	constants	in	the	same	way.	And	so	we	get:

\[	Q_{L}(x)	a(x)+Q_{R}(x)	b(x)+Q_{O}(x)	c(x)+Q_{M}(x)	a(x)	b(x)+Q_{C}(x)=0	\]
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As	before,	each	\(Q\)	polynomial	is	a	parameter	that	can	be	generated	from	the	program	that	is	being
verified,	and	the	\(a\),	\(b\),	\(c\)	polynomials	are	the	user-provided	inputs.

Copy	constraints

Now,	let	us	get	back	to	"connecting"	the	wires.	So	far,	all	we	have	is	a	bunch	of	disjoint	equations
about	disjoint	values	that	are	independently	easy	to	satisfy:	constant	gates	can	be	satisfied	by	setting
the	value	to	the	constant	and	addition	and	multiplication	gates	can	simply	be	satisfied	by	setting	all
wires	to	zero!	To	make	the	problem	actually	challenging	(and	actually	represent	the	problem
encoded	in	the	original	circuit),	we	need	to	add	an	equation	that	verifies	"copy	constraints":
constraints	such	as	\(a(5)	=	c(7)\),	\(c(10)	=	c(12)\),	etc.	This	requires	some	clever	trickery.

Our	strategy	will	be	to	design	a	"coordinate	pair	accumulator",	a	polynomial	\(p(x)\)	which	works	as
follows.	First,	let	\(X(x)\)	and	\(Y(x)\)	be	two	polynomials	representing	the	\(x\)	and	\(y\)	coordinates	of
a	set	of	points	(eg.	to	represent	the	set	\(((0,	-2),	(1,	1),	(2,	0),	(3,	1))\)	you	might	set	\(X(x)	=	x\)	and	\
(Y(x)	=	x^3	-	5x^2	+	7x	-	2)\).	Our	goal	will	be	to	let	\(p(x)\)	represent	all	the	points	up	to	(but	not
including)	the	given	position,	so	\(p(0)\)	starts	at	\(1\),	\(p(1)\)	represents	just	the	first	point,	\(p(2)\)
the	first	and	the	second,	etc.	We	will	do	this	by	"randomly"	selecting	two	constants,	\(v_1\)	and	\
(v_2\),	and	constructing	\(p(x)\)	using	the	constraints	\(p(0)	=	1\)	and	\(p(x+1)	=	p(x)	\cdot	(v_1	+	X(x)
+	v_2	\cdot	Y(x))\)	at	least	within	the	domain	\((0,	1,	2,	3)\).

For	example,	letting	\(v_1	=	3\)	and	\(v_2	=	2\),	we	get:

X(x) 0 1 2 3 4
\(Y(x)\) -2 1 0 1

\(v_1	+	X(x)	+	v_2
\cdot	Y(x)\) -1 6 5 8

\(p(x)\) 1 -1 -6 -30 -240

Notice	that	(aside	from	the	first	column)	every	\(p(x)\)	value	equals	the	value	to	the	left	of	it	multiplied	by	the	value
to	the	left	and	above	it.

The	result	we	care	about	is	\(p(4)	=	-240\).	Now,	consider	the	case	where	instead	of	\(X(x)	=	x\),	we
set	\(X(x)	=	\frac{2}{3}	x^3	-	4x^2	+	\frac{19}{3}x\)	(that	is,	the	polynomial	that	evaluates	to	\((0,
3,	2,	1)\)	at	the	coordinates	\((0,	1,	2,	3)\)).	If	you	run	the	same	procedure,	you'll	find	that	you	also	get
\(p(4)	=	-240\).	This	is	not	a	coincidence	(in	fact,	if	you	randomly	pick	\(v_1\)	and	\(v_2\)	from	a
sufficiently	large	field,	it	will	almost	never	happen	coincidentally).	Rather,	this	happens	because	\
(Y(1)	=	Y(3)\),	so	if	you	"swap	the	\(X\)	coordinates"	of	the	points	\((1,	1)\)	and	\((3,	1)\)	you're	not
changing	the	set	of	points,	and	because	the	accumulator	encodes	a	set	(as	multiplication	does	not
care	about	order)	the	value	at	the	end	will	be	the	same.

Now	we	can	start	to	see	the	basic	technique	that	we	will	use	to	prove	copy	constraints.	First,
consider	the	simple	case	where	we	only	want	to	prove	copy	constraints	within	one	set	of	wires	(eg.



we	want	to	prove	\(a(1)	=	a(3)\)).	We'll	make	two	coordinate	accumulators:	one	where	\(X(x)	=	x\)	and
\(Y(x)	=	a(x)\),	and	the	other	where	\(Y(x)	=	a(x)\)	but	\(X'(x)\)	is	the	polynomial	that	evaluates	to	the
permutation	that	flips	(or	otherwise	rearranges)	the	values	in	each	copy	constraint;	in	the	\(a(1)	=
a(3)\)	case	this	would	mean	the	permutation	would	start	\(0	3	2	1	4...\).	The	first	accumulator	would
be	compressing	\(((0,	a(0)),	(1,	a(1)),	(2,	a(2)),	(3,	a(3)),	(4,	a(4))...\),	the	second	\(((0,	a(0)),	(3,	a(1)),
(2,	a(2)),	(1,	a(3)),	(4,	a(4))...\).	The	only	way	the	two	can	give	the	same	result	is	if	\(a(1)	=	a(3)\).

To	prove	constraints	between	\(a\),	\(b\)	and	\(c\),	we	use	the	same	procedure,	but	instead
"accumulate"	together	points	from	all	three	polynomials.	We	assign	each	of	\(a\),	\(b\),	\(c\)	a	range	of
\(X\)	coordinates	(eg.	\(a\)	gets	\(X_a(x)	=	x\)	ie.	\(0...n-1\),	\(b\)	gets	\(X_b(x)	=	n+x\),	ie.	\(n...2n-1\),	\
(c\)	gets	\(X_c(x)	=	2n+x\),	ie.	\(2n...3n-1\).	To	prove	copy	constraints	that	hop	between	different	sets
of	wires,	the	"alternate"	\(X\)	coordinates	would	be	slices	of	a	permutation	across	all	three	sets.	For
example,	if	we	want	to	prove	\(a(2)	=	b(4)\)	with	\(n	=	5\),	then	\(X'_a(x)\)	would	have	evaluations	\(\
{0,	1,	9,	3,	4\}\)	and	\(X'_b(x)\)	would	have	evaluations	\(\{5,	6,	7,	8,	2\}\)	(notice	the	\(2\)	and	\(9\)
flipped,	where	\(9\)	corresponds	to	the	\(b_4\)	wire).	Often,	\(X'_a(x)\),	\(X'_b(x)\)	and	\(X'_c(x)\)	are
also	called	\(\sigma_a(x)\),	\(\sigma_b(x)\)	and	\(\sigma_c(x)\).

We	would	then	instead	of	checking	equality	within	one	run	of	the	procedure	(ie.	checking	\(p(4)	=
p'(4)\)	as	before),	we	would	check	the	product	of	the	three	different	runs	on	each	side:

\[	p_{a}(n)	\cdot	p_{b}(n)	\cdot	p_{c}(n)=p_{a}^{\prime}(n)	\cdot	p_{b}^{\prime}(n)	\cdot
p_{c}^{\prime}(n)	\]

The	product	of	the	three	\(p(n)\)	evaluations	on	each	side	accumulates	all	coordinate	pairs	in	the	\(a\),
\(b\)	and	\(c\)	runs	on	each	side	together,	so	this	allows	us	to	do	the	same	check	as	before,	except
that	we	can	now	check	copy	constraints	not	just	between	positions	within	one	of	the	three	sets	of
wires	\(a\),	\(b\)	or	\(c\),	but	also	between	one	set	of	wires	and	another	(eg.	as	in	\(a(2)	=	b(4)\)).

And	that's	all	there	is	to	it!

Putting	it	all	together

In	reality,	all	of	this	math	is	done	not	over	integers,	but	over	a	prime	field;	check	the	section	"A
Modular	Math	Interlude"	here	for	a	description	of	what	prime	fields	are.	Also,	for	mathematical
reasons	perhaps	best	appreciated	by	reading	and	understanding	this	article	on	FFT	implementation,
instead	of	representing	wire	indices	with	\(x=0....n-1\),	we'll	use	powers	of	\(\omega:	1,	\omega,
\omega	^2....\omega	^{n-1}\)	where	\(\omega\)	is	a	high-order	root-of-unity	in	the	field.	This	changes
nothing	about	the	math,	except	that	the	coordinate	pair	accumulator	constraint	checking	equation
changes	from	\(p(x	+	1)	=	p(x)	\cdot	(v_1	+	X(x)	+	v_2	\cdot	Y(x))\)	to	\(p(\omega	\cdot	x)	=	p(x)	\cdot
(v_1	+	X(x)	+	v_2	\cdot	Y(x))\),	and	instead	of	using	\(0..n-1\),	\(n..2n-1\),	\(2n..3n-1\)	as	coordinates
we	use	\(\omega^i,	g	\cdot	\omega^i\)	and	\(g^2	\cdot	\omega^i\)	where	\(g\)	can	be	some	random
high-order	element	in	the	field.

Now	let's	write	out	all	the	equations	we	need	to	check.	First,	the	main	gate-constraint	satisfaction
check:

\[	Q_{L}(x)	a(x)+Q_{R}(x)	b(x)+Q_{O}(x)	c(x)+Q_{M}(x)	a(x)	b(x)+Q_{C}(x)=0	\]

Then	the	polynomial	accumulator	transition	constraint	(note:	think	of	"\(=	Z(x)	\cdot	H(x)\)"	as
meaning	"equals	zero	for	all	coordinates	within	some	particular	domain	that	we	care	about,	but	not
necessarily	outside	of	it"):

\[	\begin{array}{l}{P_{a}(\omega	x)-P_{a}(x)\left(v_{1}+x+v_{2}	a(x)\right)	=Z(x)	H_{1}(x)}	\\
{P_{a^{\prime}}(\omega	x)-P_{a^{\prime}}(x)\left(v_{1}+\sigma_{a}(x)+v_{2}	a(x)\right)=Z(x)
H_{2}(x)}	\\	{P_{b}(\omega	x)-P_{b}(x)\left(v_{1}+g	x+v_{2}	b(x)\right)=Z(x)	H_{3}(x)}	\\
{P_{b^{\prime}}(\omega	x)-P_{b^{\prime}}(x)\left(v_{1}+\sigma_{b}(x)+v_{2}	b(x)\right)=Z(x)
H_{4}(x)}	\\	{P_{c}(\omega	x)-P_{c}(x)\left(v_{1}+g^{2}	x+v_{2}	c(x)\right)=Z(x)	H_{5}(x)}	\\
{P_{c^{\prime}}(\omega	x)-P_{c^{\prime}}(x)\left(v_{1}+\sigma_{c}(x)+v_{2}	c(x)\right)=Z(x)
H_{6}(x)}\end{array}	\]

Then	the	polynomial	accumulator	starting	and	ending	constraints:

\[	\begin{array}{l}{P_{a}(1)=P_{b}(1)=P_{c}(1)=P_{a^{\prime}}(1)=P_{b^{\prime}}
(1)=P_{c^{\prime}}(1)=1}	\\	{P_{a}\left(\omega^{n}\right)	P_{b}\left(\omega^{n}\right)
P_{c}\left(\omega^{n}\right)=P_{a^{\prime}}\left(\omega^{n}\right)
P_{b^{\prime}}\left(\omega^{n}\right)	P_{c^{\prime}}\left(\omega^{n}\right)}\end{array}	\]

The	user-provided	polynomials	are:
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The	wire	assignments	\(a(x),	b(x),	c(x)\)
The	coordinate	accumulators	\(P_a(x),	P_b(x),	P_c(x),	P_{a'}(x),	P_{b'}(x),	P_{c'}(x)\)
The	quotients	\(H(x)\)	and	\(H_1(x)...H_6(x)\)

The	program-specific	polynomials	that	the	prover	and	verifier	need	to	compute	ahead	of	time	are:

\(Q_L(x),	Q_R(x),	Q_O(x),	Q_M(x),	Q_C(x)\),	which	together	represent	the	gates	in	the	circuit
(note	that	\(Q_C(x)\)	encodes	public	inputs,	so	it	may	need	to	be	computed	or	modified	at
runtime)
The	"permutation	polynomials"	\(\sigma_a(x),	\sigma_b(x)\)	and	\(\sigma_c(x)\),	which	encode	the
copy	constraints	between	the	\(a\),	\(b\)	and	\(c\)	wires

Note	that	the	verifier	need	only	store	commitments	to	these	polynomials.	The	only	remaining
polynomial	in	the	above	equations	is	\(Z(x)	=	(x	-	1)	\cdot	(x	-	\omega)	\cdot	...	\cdot	(x	-	\omega	^{n-
1})\)	which	is	designed	to	evaluate	to	zero	at	all	those	points.	Fortunately,	\(\omega\)	can	be	chosen
to	make	this	polynomial	very	easy	to	evaluate:	the	usual	technique	is	to	choose	\(\omega\)	to	satisfy	\
(\omega	^n	=	1\),	in	which	case	\(Z(x)	=	x^n	-	1\).

There	is	one	nuance	here:	the	constraint	between	\(P_a(\omega^{i+1})\)	and	\(P_a(\omega^i)\)	can't
be	true	across	the	entire	circle	of	powers	of	\(\omega\);	it's	almost	always	false	at	\(\omega^{n-1}\)
as	the	next	coordinate	is	\(\omega^n	=	1\)	which	brings	us	back	to	the	start	of	the	"accumulator";	to
fix	this,	we	can	modify	the	constraint	to	say	"either	the	constraint	is	true	or	\(x	=	\omega^{n-1}\)",
which	one	can	do	by	multiplying	\(x	-	\omega^{n-1}\)	into	the	constraint	so	it	equals	zero	at	that
point.

The	only	constraint	on	\(v_1\)	and	\(v_2\)	is	that	the	user	must	not	be	able	to	choose	\(a(x),	b(x)\)	or	\
(c(x)\)	after	\(v_1\)	and	\(v_2\)	become	known,	so	we	can	satisfy	this	by	computing	\(v_1\)	and	\(v_2\)
from	hashes	of	commitments	to	\(a(x),	b(x)\)	and	\(c(x)\).

So	now	we've	turned	the	program	satisfaction	problem	into	a	simple	problem	of	satisfying	a	few
equations	with	polynomials,	and	there	are	some	optimizations	in	PLONK	that	allow	us	to	remove
many	of	the	polynomials	in	the	above	equations	that	I	will	not	go	into	to	preserve	simplicity.	But	the
polynomials	themselves,	both	the	program-specific	parameters	and	the	user	inputs,	are	big.	So	the
next	question	is,	how	do	we	get	around	this	so	we	can	make	the	proof	short?

Polynomial	commitments
A	polynomial	commitment	is	a	short	object	that	"represents"	a	polynomial,	and	allows	you	to	verify
evaluations	of	that	polynomial,	without	needing	to	actually	contain	all	of	the	data	in	the	polynomial.
That	is,	if	someone	gives	you	a	commitment	\(c\)	representing	\(P(x)\),	they	can	give	you	a	proof	that
can	convince	you,	for	some	specific	\(z\),	what	the	value	of	\(P(z)\)	is.	There	is	a	further	mathematical
result	that	says	that,	over	a	sufficiently	big	field,	if	certain	kinds	of	equations	(chosen	before	\(z\)	is
known)	about	polynomials	evaluated	at	a	random	\(z\)	are	true,	those	same	equations	are	true	about
the	whole	polynomial	as	well.	For	example,	if	\(P(z)	\cdot	Q(z)	+	R(z)	=	S(z)	+	5\),	then	we	know	that
it's	overwhelmingly	likely	that	\(P(x)	\cdot	Q(x)	+	R(x)	=	S(x)	+	5\)	in	general.	Using	such	polynomial
commitments,	we	could	very	easily	check	all	of	the	above	polynomial	equations	above	-	make	the
commitments,	use	them	as	input	to	generate	\(z\),	prove	what	the	evaluations	are	of	each	polynomial
at	\(z\),	and	then	run	the	equations	with	these	evaluations	instead	of	the	original	polynomials.	But
how	do	these	commitments	work?

There	are	two	parts:	the	commitment	to	the	polynomial	\(P(x)	\rightarrow	c\),	and	the	opening	to	a
value	\(P(z)\)	at	some	\(z\).	To	make	a	commitment,	there	are	many	techniques;	one	example	is	FRI,
and	another	is	Kate	commitments	which	I	will	describe	below.	To	prove	an	opening,	it	turns	out	that
there	is	a	simple	generic	"subtract-and-divide"	trick:	to	prove	that	\(P(z)	=	a\),	you	prove	that

\[	\frac{P(x)-a}{x-z}	\]

is	also	a	polynomial	(using	another	polynomial	commitment).	This	works	because	if	the	quotient	is	a
polynomial	(ie.	it	is	not	fractional),	then	\(x	-	z\)	is	a	factor	of	\(P(x)	-	a\),	so	\((P(x)	-	a)(z)	=	0\),	so	\
(P(z)	=	a\).	Try	it	with	some	polynomial,	eg.	\(P(x)	=	x^3	+	2	\cdot	x^2	+	5\)	with	\((z	=	6,	a	=	293)\),
yourself;	and	try	\((z	=	6,	a	=	292)\)	and	see	how	it	fails	(if	you're	lazy,	see	WolframAlpha	here	vs
here).	Note	also	a	generic	optimization:	to	prove	many	openings	of	many	polynomials	at	the	same
time,	after	committing	to	the	outputs	do	the	subtract-and-divide	trick	on	a	random	linear	combination
of	the	polynomials	and	the	outputs.

So	how	do	the	commitments	themselves	work?	Kate	commitments	are,	fortunately,	much	simpler
than	FRI.	A	trusted-setup	procedure	generates	a	set	of	elliptic	curve	points	\(G,	G	\cdot	s,	G	\cdot
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s^2\)	....	\(G	\cdot	s^n\),	as	well	as	\(G_2	\cdot	s\),	where	\(G\)	and	\(G_2\)	are	the	generators	of	two
elliptic	curve	groups	and	\(s\)	is	a	secret	that	is	forgotten	once	the	procedure	is	finished	(note	that
there	is	a	multi-party	version	of	this	setup,	which	is	secure	as	long	as	at	least	one	of	the	participants
forgets	their	share	of	the	secret).	These	points	are	published	and	considered	to	be	"the	proving	key"
of	the	scheme;	anyone	who	needs	to	make	a	polynomial	commitment	will	need	to	use	these	points.	A
commitment	to	a	degree-d	polynomial	is	made	by	multiplying	each	of	the	first	d+1	points	in	the
proving	key	by	the	corresponding	coefficient	in	the	polynomial,	and	adding	the	results	together.

Notice	that	this	provides	an	"evaluation"	of	that	polynomial	at	\(s\),	without	knowing	\(s\).	For
example,	\(x^3	+	2x^2+5\)	would	be	represented	by	\((G	\cdot	s^3)	+	2	\cdot	(G	\cdot	s^2)	+	5	\cdot
G\).	We	can	use	the	notation	\([P]\)	to	refer	to	\(P\)	encoded	in	this	way	(ie.	\(G	\cdot	P(s)\)).	When
doing	the	subtract-and-divide	trick,	you	can	prove	that	the	two	polynomials	actually	satisfy	the
relation	by	using	elliptic	curve	pairings:	check	that	\(e([P]	-	G	\cdot	a,	G_2)	=	e([Q],	[x]	-	G_2	\cdot	z)\)
as	a	proxy	for	checking	that	\(P(x)	-	a	=	Q(x)	\cdot	(x	-	z)\).

But	there	are	more	recently	other	types	of	polynomial	commitments	coming	out	too.	A	new	scheme
called	DARK	("Diophantine	arguments	of	knowledge")	uses	"hidden	order	groups"	such	as	class
groups	to	implement	another	kind	of	polynomial	commitment.	Hidden	order	groups	are	unique
because	they	allow	you	to	compress	arbitrarily	large	numbers	into	group	elements,	even	numbers
much	larger	than	the	size	of	the	group	element,	in	a	way	that	can't	be	"spoofed";	constructions	from
VDFs	to	accumulators	to	range	proofs	to	polynomial	commitments	can	be	built	on	top	of	this.	Another
option	is	to	use	bulletproofs,	using	regular	elliptic	curve	groups	at	the	cost	of	the	proof	taking	much
longer	to	verify.	Because	polynomial	commitments	are	much	simpler	than	full-on	zero	knowledge
proof	schemes,	we	can	expect	more	such	schemes	to	get	created	in	the	future.

Recap
To	finish	off,	let's	go	over	the	scheme	again.	Given	a	program	\(P\),	you	convert	it	into	a	circuit,	and
generate	a	set	of	equations	that	look	like	this:

\[	\left(Q_{L_{i}}\right)	a_{i}+\left(Q_{R_{i}}\right)	b_{i}+\left(Q_{O_{i}}\right)
c_{i}+\left(Q_{M_{i}}\right)	a_{i}	b_{i}+Q_{C_{i}}=0	\]

You	then	convert	this	set	of	equations	into	a	single	polynomial	equation:

\[	Q_{L}(x)	a(x)+Q_{R}(x)	b(x)+Q_{O}(x)	c(x)+Q_{M}(x)	a(x)	b(x)+Q_{C}(x)=0	\]

You	also	generate	from	the	circuit	a	list	of	copy	constraints.	From	these	copy	constraints	you
generate	the	three	polynomials	representing	the	permuted	wire	indices:	\(\sigma_a(x),	\sigma_b(x),
\sigma_c(x)\).	To	generate	a	proof,	you	compute	the	values	of	all	the	wires	and	convert	them	into
three	polynomials:	\(a(x),	b(x),	c(x)\).	You	also	compute	six	"coordinate	pair	accumulator"	polynomials
as	part	of	the	permutation-check	argument.	Finally	you	compute	the	cofactors	\(H_i(x)\).

There	is	a	set	of	equations	between	the	polynomials	that	need	to	be	checked;	you	can	do	this	by
making	commitments	to	the	polynomials,	opening	them	at	some	random	\(z\)	(along	with	proofs	that
the	openings	are	correct),	and	running	the	equations	on	these	evaluations	instead	of	the	original
polynomials.	The	proof	itself	is	just	a	few	commitments	and	openings	and	can	be	checked	with	a	few
equations.	And	that's	all	there	is	to	it!
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The	Dawn	of	Hybrid	Layer	2	Protocols

Special	thanks	to	the	Plasma	Group	team	for	review	and	feedback

Current	approaches	to	layer	2	scaling	-	basically,	Plasma	and	state	channels	-	are	increasingly
moving	from	theory	to	practice,	but	at	the	same	time	it	is	becoming	easier	to	see	the	inherent
challenges	in	treating	these	techniques	as	a	fully	fledged	scaling	solution	for	Ethereum.	Ethereum
was	arguably	successful	in	large	part	because	of	its	very	easy	developer	experience:	you	write	a
program,	publish	the	program,	and	anyone	can	interact	with	it.	Designing	a	state	channel	or	Plasma
application,	on	the	other	hand,	relies	on	a	lot	of	explicit	reasoning	about	incentives	and	application-
specific	development	complexity.	State	channels	work	well	for	specific	use	cases	such	as	repeated
payments	between	the	same	two	parties	and	two-player	games	(as	successfully	implemented	in
Celer),	but	more	generalized	usage	is	proving	challenging.	Plasma,	particularly	Plasma	Cash,	can
work	well	for	payments,	but	generalization	similarly	incurs	challenges:	even	implementing	a
decentralized	exchange	requires	clients	to	store	much	more	history	data,	and	generalizing	to
Ethereum-style	smart	contracts	on	Plasma	seems	extremely	difficult.

But	at	the	same	time,	there	is	a	resurgence	of	a	forgotten	category	of	"semi-layer-2"	protocols	-	a
category	which	promises	less	extreme	gains	in	scaling,	but	with	the	benefit	of	much	easier
generalization	and	more	favorable	security	models.	A	long-forgotten	blog	post	from	2014	introduced
the	idea	of	"shadow	chains",	an	architecture	where	block	data	is	published	on-chain,	but	blocks	are
not	verified	by	default.	Rather,	blocks	are	tentatively	accepted,	and	only	finalized	after	some	period
of	time	(eg.	2	weeks).	During	those	2	weeks,	a	tentatively	accepted	block	can	be	challenged;	only
then	is	the	block	verified,	and	if	the	block	proves	to	be	invalid	then	the	chain	from	that	block	on	is
reverted,	and	the	original	publisher's	deposit	is	penalized.	The	contract	does	not	keep	track	of	the
full	state	of	the	system;	it	only	keeps	track	of	the	state	root,	and	users	themselves	can	calculate	the
state	by	processing	the	data	submitted	to	the	chain	from	start	to	head.	A	more	recent	proposal,	ZK
Rollup,	does	the	same	thing	without	challenge	periods,	by	using	ZK-SNARKs	to	verify	blocks'	validity.

Anatomy	of	a	ZK	Rollup	package	that	is	published	on-chain.	Hundreds	of	"internal	transactions"	that	affect	the	state
(ie.	account	balances)	of	the	ZK	Rollup	system	are	compressed	into	a	package	that	contains	~10	bytes	per	internal

transaction	that	specifies	the	state	transitions,	plus	a	~100-300	byte	SNARK	proving	that	the	transitions	are	all
valid.

In	both	cases,	the	main	chain	is	used	to	verify	data	availability,	but	does	not	(directly)	verify	block
validity	or	perform	any	significant	computation,	unless	challenges	are	made.	This	technique	is	thus
not	a	jaw-droppingly	huge	scalability	gain,	because	the	on-chain	data	overhead	eventually	presents	a
bottleneck,	but	it	is	nevertheless	a	very	significant	one.	Data	is	cheaper	than	computation,	and	there
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are	ways	to	compress	transaction	data	very	significantly,	particularly	because	the	great	majority	of
data	in	a	transaction	is	the	signature	and	many	signatures	can	be	compressed	into	one	through	many
forms	of	aggregation.	ZK	Rollup	promises	500	tx/sec,	a	30x	gain	over	the	Ethereum	chain	itself,	by
compressing	each	transaction	to	a	mere	~10	bytes;	signatures	do	not	need	to	be	included	because
their	validity	is	verified	by	the	zero-knowledge	proof.	With	BLS	aggregate	signatures	a	similar
throughput	can	be	achieved	in	shadow	chains	(more	recently	called	"optimistic	rollup"	to	highlight	its
similarities	to	ZK	Rollup).	The	upcoming	Istanbul	hard	fork	will	reduce	the	gas	cost	of	data	from	68
per	byte	to	16	per	byte,	increasing	the	throughput	of	these	techniques	by	another	4x	(that's	over
2000	transactions	per	second).

So	what	is	the	benefit	of	data	on-chain	techniques	such	as	ZK/optimistic	rollup	versus	data	off-chain
techniques	such	as	Plasma?	First	of	all,	there	is	no	need	for	semi-trusted	operators.	In	ZK	Rollup,
because	validity	is	verified	by	cryptographic	proofs	there	is	literally	no	way	for	a	package	submitter
to	be	malicious	(depending	on	the	setup,	a	malicious	submitter	may	cause	the	system	to	halt	for	a
few	seconds,	but	this	is	the	most	harm	that	can	be	done).	In	optimistic	rollup,	a	malicious	submitter
can	publish	a	bad	block,	but	the	next	submitter	will	immediately	challenge	that	block	before
publishing	their	own.	In	both	ZK	and	optimistic	rollup,	enough	data	is	published	on	chain	to	allow
anyone	to	compute	the	complete	internal	state,	simply	by	processing	all	of	the	submitted	deltas	in
order,	and	there	is	no	"data	withholding	attack"	that	can	take	this	property	away.	Hence,	becoming
an	operator	can	be	fully	permissionless;	all	that	is	needed	is	a	security	deposit	(eg.	10	ETH)	for	anti-
spam	purposes.

Second,	optimistic	rollup	particularly	is	vastly	easier	to	generalize;	the	state	transition	function	in	an
optimistic	rollup	system	can	be	literally	anything	that	can	be	computed	within	the	gas	limit	of	a
single	block	(including	the	Merkle	branches	providing	the	parts	of	the	state	needed	to	verify	the
transition).	ZK	Rollup	is	theoretically	generalizeable	in	the	same	way,	though	in	practice	making	ZK
SNARKs	over	general-purpose	computation	(such	as	EVM	execution)	is	very	difficult,	at	least	for
now.	Third,	optimistic	rollup	is	much	easier	to	build	clients	for,	as	there	is	less	need	for	second-layer
networking	infrastructure;	more	can	be	done	by	just	scanning	the	blockchain.

But	where	do	these	advantages	come	from?	The	answer	lies	in	a	highly	technical	issue	known	as	the
data	availability	problem	(see	note,	video).	Basically,	there	are	two	ways	to	try	to	cheat	in	a	layer-2
system.	The	first	is	to	publish	invalid	data	to	the	blockchain.	The	second	is	to	not	publish	data	at	all
(eg.	in	Plasma,	publishing	the	root	hash	of	a	new	Plasma	block	to	the	main	chain	but	without
revealing	the	contents	of	the	block	to	anyone).	Published-but-invalid	data	is	very	easy	to	deal	with,
because	once	the	data	is	published	on-chain	there	are	multiple	ways	to	figure	out	unambiguously
whether	or	not	it's	valid,	and	an	invalid	submission	is	unambiguously	invalid	so	the	submitter	can	be
heavily	penalized.	Unavailable	data,	on	the	other	hand,	is	much	harder	to	deal	with,	because	even
though	unavailability	can	be	detected	if	challenged,	one	cannot	reliably	determine	whose	fault	the
non-publication	is,	especially	if	data	is	withheld	by	default	and	revealed	on-demand	only	when	some
verification	mechanism	tries	to	verify	its	availability.	This	is	illustrated	in	the	"Fisherman's	dilemma",
which	shows	how	a	challenge-response	game	cannot	distinguish	between	malicious	submitters	and
malicious	challengers:
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Fisherman's	dilemma.	If	you	only	start	watching	the	given	specific	piece	of	data	at	time	T3,	you	have	no	idea
whether	you	are	living	in	Case	1	or	Case	2,	and	hence	who	is	at	fault.

Plasma	and	channels	both	work	around	the	fisherman's	dilemma	by	pushing	the	problem	to	users:	if
you	as	a	user	decide	that	another	user	you	are	interacting	with	(a	counterparty	in	a	state	channel,	an
operator	in	a	Plasma	chain)	is	not	publishing	data	to	you	that	they	should	be	publishing,	it's	your
responsibility	to	exit	and	move	to	a	different	counterparty/operator.	The	fact	that	you	as	a	user	have
all	of	the	previous	data,	and	data	about	all	of	the	transactions	you	signed,	allows	you	to	prove	to	the
chain	what	assets	you	held	inside	the	layer-2	protocol,	and	thus	safely	bring	them	out	of	the	system.
You	prove	the	existence	of	a	(previously	agreed)	operation	that	gave	the	asset	to	you,	no	one	else	can
prove	the	existence	of	an	operation	approved	by	you	that	sent	the	asset	to	someone	else,	so	you	get
the	asset.

The	technique	is	very	elegant.	However,	it	relies	on	a	key	assumption:	that	every	state	object	has	a
logical	"owner",	and	the	state	of	the	object	cannot	be	changed	without	the	owner's	consent.	This
works	well	for	UTXO-based	payments	(but	not	account-based	payments,	where	you	can	edit	someone
else's	balance	upward	without	their	consent;	this	is	why	account-based	Plasma	is	so	hard),	and	it	can
even	be	made	to	work	for	a	decentralized	exchange,	but	this	"ownership"	property	is	far	from
universal.	Some	applications,	eg.	Uniswap	don't	have	a	natural	owner,	and	even	in	those	applications
that	do,	there	are	often	multiple	people	that	can	legitimately	make	edits	to	the	object.	And	there	is	no
way	to	allow	arbitrary	third	parties	to	exit	an	asset	without	introducing	the	possibility	of	denial-of-
service	(DoS)	attacks,	precisely	because	one	cannot	prove	whether	the	publisher	or	submitter	is	at
fault.

There	are	other	issues	peculiar	to	Plasma	and	channels	individually.	Channels	do	not	allow	off-chain
transactions	to	users	that	are	not	already	part	of	the	channel	(argument:	suppose	there	existed	a	way
to	send	$1	to	an	arbitrary	new	user	from	inside	a	channel.	Then	this	technique	could	be	used	many
times	in	parallel	to	send	$1	to	more	users	than	there	are	funds	in	the	system,	already	breaking	its
security	guarantee).	Plasma	requires	users	to	store	large	amounts	of	history	data,	which	gets	even
bigger	when	different	assets	can	be	intertwined	(eg.	when	an	asset	is	transferred	conditional	on
transfer	of	another	asset,	as	happens	in	a	decentralized	exchange	with	a	single-stage	order	book
mechanism).

Because	data-on-chain	computation-off-chain	layer	2	techniques	don't	have	data	availability	issues,
they	have	none	of	these	weaknesses.	ZK	and	optimistic	rollup	take	great	care	to	put	enough	data	on
chain	to	allow	users	to	calculate	the	full	state	of	the	layer	2	system,	ensuring	that	if	any	participant
disappears	a	new	one	can	trivially	take	their	place.	The	only	issue	that	they	have	is	verifying
computation	without	doing	the	computation	on-chain,	which	is	a	much	easier	problem.	And	the
scalability	gains	are	significant:	~10	bytes	per	transaction	in	ZK	Rollup,	and	a	similar	level	of
scalability	can	be	achieved	in	optimistic	rollup	by	using	BLS	aggregation	to	aggregate	signatures.
This	corresponds	to	a	theoretical	maximum	of	~500	transactions	per	second	today,	and	over	2000
post-Istanbul.

http://uniswap.exchange/


But	what	if	you	want	more	scalability?	Then	there	is	a	large	middle	ground	between	data-on-chain
layer	2	and	data-off-chain	layer	2	protocols,	with	many	hybrid	approaches	that	give	you	some	of	the
benefits	of	both.	To	give	a	simple	example,	the	history	storage	blowup	in	a	decentralized	exchange
implemented	on	Plasma	Cash	can	be	prevented	by	publishing	a	mapping	of	which	orders	are
matched	with	which	orders	(that's	less	than	4	bytes	per	order)	on	chain:

Left:	History	data	a	Plasma	Cash	user	needs	to	store	if	they	own	1	coin.	Middle:	History	data	a	Plasma	Cash	user
needs	to	store	if	they	own	1	coin	that	was	exchanged	with	another	coin	using	an	atomic	swap.	Right:	History	data	a

Plasma	Cash	user	needs	to	store	if	the	order	matching	is	published	on	chain.

Even	outside	of	the	decentralized	exchange	context,	the	amount	of	history	that	users	need	to	store	in
Plasma	can	be	reduced	by	having	the	Plasma	chain	periodically	publish	some	per-user	data	on-chain.
One	could	also	imagine	a	platform	which	works	like	Plasma	in	the	case	where	some	state	does	have	a
logical	"owner"	and	works	like	ZK	or	optimistic	rollup	in	the	case	where	it	does	not.	Plasma
developers	are	already	starting	to	work	on	these	kinds	of	optimizations.

There	is	thus	a	strong	case	to	be	made	for	developers	of	layer	2	scalability	solutions	to	move	to	be
more	willing	to	publish	per-user	data	on-chain	at	least	some	of	the	time:	it	greatly	increases	ease	of
development,	generality	and	security	and	reduces	per-user	load	(eg.	no	need	for	users	storing	history
data).	The	efficiency	losses	of	doing	so	are	also	overstated:	even	in	a	fully	off-chain	layer-2
architecture,	users	depositing,	withdrawing	and	moving	between	different	counterparties	and
providers	is	going	to	be	an	inevitable	and	frequent	occurrence,	and	so	there	will	be	a	significant
amount	of	per-user	on-chain	data	regardless.	The	hybrid	route	opens	the	door	to	a	relatively	fast
deployment	of	fully	generalized	Ethereum-style	smart	contracts	inside	a	quasi-layer-2	architecture.

See	also:

Introducing	the	OVM
Blog	post	by	Karl	Floersch

https://plasma.build/t/rollup-plasma-for-mass-exits-complex-disputes/90
https://medium.com/@plasma_group/db253287af50
https://medium.com/plasma-group/ethereum-smart-contracts-in-l2-optimistic-rollup-2c1cef2ec537


Related	ideas	by	John	Adler
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Sidechains	vs	Plasma	vs	Sharding

Special	thanks	to	Jinglan	Wang	for	review	and	feedback

One	question	that	often	comes	up	is:	how	exactly	is	sharding	different	from	sidechains	or	Plasma?	All
three	architectures	seem	to	involve	a	hub-and-spoke	architecture	with	a	central	"main	chain"	that
serves	as	the	consensus	backbone	of	the	system,	and	a	set	of	"child"	chains	containing	actual	user-
level	transactions.	Hashes	from	the	child	chains	are	usually	periodically	published	into	the	main
chain	(sharded	chains	with	no	hub	are	theoretically	possible	but	haven't	been	done	so	far;	this	article
will	not	focus	on	them,	but	the	arguments	are	similar).	Given	this	fundamental	similarity,	why	go
with	one	approach	over	the	others?

Distinguishing	sidechains	from	Plasma	is	simple.	Plasma	chains	are	sidechains	that	have	a	non-
custodial	property:	if	there	is	any	error	in	the	Plasma	chain,	then	the	error	can	be	detected,	and
users	can	safely	exit	the	Plasma	chain	and	prevent	the	attacker	from	doing	any	lasting	damage.	The
only	cost	that	users	suffer	is	that	they	must	wait	for	a	challenge	period	and	pay	some	higher
transaction	fees	on	the	(non-scalable)	base	chain.	Regular	sidechains	do	not	have	this	safety
property,	so	they	are	less	secure.	However,	designing	Plasma	chains	is	in	many	cases	much	harder,
and	one	could	argue	that	for	many	low-value	applications	the	security	is	not	worth	the	added
complexity.

So	what	about	Plasma	versus	sharding?	The	key	technical	difference	has	to	do	with	the	notion	of
tight	coupling.	Tight	coupling	is	a	property	of	sharding,	but	NOT	a	property	of	sidechains	or
Plasma,	that	says	that	the	validity	of	the	main	chain	("beacon	chain"	in	ethereum	2.0)	is	inseparable
from	the	validity	of	the	child	chains.	That	is,	a	child	chain	block	that	specifies	an	invalid	main	chain
block	as	a	dependency	is	by	definition	invalid,	and	more	importantly	a	main	chain	block	that	includes
an	invalid	child	chain	block	is	by	definition	invalid.

In	non-sharded	blockchains,	this	idea	that	the	canonical	chain	(ie.	the	chain	that	everyone	accepts	as
representing	the	"real"	history)	is	by	definition	fully	available	and	valid	also	applies;	for	example	in
the	case	of	Bitcoin	and	Ethereum	one	typically	says	that	the	canonical	chain	is	the	"longest	valid
chain"	(or,	more	pedantically,	the	"heaviest	valid	and	available	chain").	In	sharded	blockchains,	this
idea	that	the	canonical	chain	is	the	heaviest	valid	and	available	chain	by	definition	also	applies,	with
the	validity	and	availability	requirement	applying	to	both	the	main	chain	and	shard	chains.	The	new
challenge	that	a	sharded	system	has,	however,	is	that	users	have	no	way	of	fully	verifying	the	validity
and	availability	of	any	given	chain	directly,	because	there	is	too	much	data.	The	challenge	of
engineering	sharded	chains	is	to	get	around	this	limitation	by	giving	users	a	maximally	trustless	and
practical	indirect	means	to	verify	which	chains	are	fully	available	and	valid,	so	that	they	can	still
determine	which	chain	is	canonical.	In	practice,	this	includes	techniques	like	committees,
SNARKs/STARKs,	fisherman	schemes	and	fraud	and	data	availability	proofs.

If	a	chain	structure	does	not	have	this	tight-coupling	property,	then	it	is	arguably	not	a	layer-1
sharding	scheme,	but	rather	a	layer-2	system	sitting	on	top	of	a	non-scalable	layer-1	chain.	Plasma	is
not	a	tightly-coupled	system:	an	invalid	Plasma	block	absolutely	can	have	its	header	be	committed
into	the	main	Ethereum	chain,	because	the	Ethereum	base	layer	has	no	idea	that	it	represents	an
invalid	Plasma	block,	or	even	that	it	represents	a	Plasma	block	at	all;	all	that	it	sees	is	a	transaction
containing	a	small	piece	of	data.	However,	the	consequences	of	a	single	Plasma	chain	failing	are
localized	to	within	that	Plasma	chain.

Sharding Try	really	hard	to	ensure	total	validity/availability	of	every	part	of	the	system
Plasma Accept	local	faults	but	try	to	limit	their	consequences

However,	if	you	try	to	analyze	the	process	of	how	users	perform	the	"indirect	validation"	procedure
to	determine	if	the	chain	they	are	looking	at	is	fully	valid	and	available	without	downloading	and
executing	the	whole	thing,	one	can	find	more	similarities	with	how	Plasma	works.	For	example,	a
common	technique	used	to	prevent	availability	issues	is	fishermen:	if	a	node	sees	a	given	piece	of	a
block	as	unavailable,	it	can	publish	a	challenge	claiming	this,	creating	a	time	period	within	which
anyone	can	publish	that	piece	of	data.	If	a	block	goes	unchallenged	for	long	enough,	the	blocks	and
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all	blocks	that	cite	it	as	a	dependency	can	be	reverted.	This	seems	fundamentally	similar	to	Plasma,
where	if	a	block	is	unavailable	users	can	publish	a	message	to	the	main	chain	to	exit	their	state	in
response.	Both	techniques	eventually	buckle	under	pressure	in	the	same	way:	if	there	are	too	many
false	challenges	in	a	sharded	system,	then	users	cannot	keep	track	of	whether	or	not	all	of	the
availability	challenges	have	been	answered,	and	if	there	are	too	many	availability	challenges	in	a
Plasma	system	then	the	main	chain	could	get	overwhelmed	as	the	exits	fill	up	the	chain's	block	size
limit.	In	both	cases,	it	seems	like	there's	a	system	that	has	nominally	\(O(C^2)\)	scalability	(where	\
(C\)	is	the	computing	power	of	one	node)	but	where	scalability	falls	to	\(O(C)\)	in	the	event	of	an
attack.	However,	sharding	has	more	defenses	against	this.

First	of	all,	modern	sharded	designs	use	randomly	sampled	committees,	so	one	cannot	easily
dominate	even	one	committee	enough	to	produce	a	fake	block	unless	one	has	a	large	portion
(perhaps	\(>\frac{1}{3}\))	of	the	entire	validator	set	of	the	chain.	Second,	there	are	better	strategies
to	handling	data	availability	than	fishermen:	data	availability	proofs.	In	a	scheme	using	data
availability	proofs,	if	a	block	is	unavailable,	then	clients'	data	availability	checks	will	fail	and	clients
will	see	that	block	as	unavailable.	If	the	block	is	invalid,	then	even	a	single	fraud	proof	will	convince
them	of	this	fact	for	an	entire	block.	An	\(O(1)\)-sized	fraud	proof	can	convince	a	client	of	the
invalidity	of	an	\(O(C)\)-sized	block,	and	so	\(O(C)\)	data	suffices	to	convince	a	client	of	the	invalidity
of	\(O(C^2)\)	data	(this	is	in	the	worst	case	where	the	client	is	dealing	with	\(N\)	sister	blocks	all	with
the	same	parent	of	which	only	one	is	valid;	in	more	likely	cases,	one	single	fraud	proof	suffices	to
prove	invalidity	of	an	entire	invalid	chain).	Hence,	sharded	systems	are	theoretically	less	vulnerable
to	being	overwhelmed	by	denial-of-service	attacks	than	Plasma	chains.

Second,	sharded	chains	provide	stronger	guarantees	in	the	face	of	large	and	majority	attackers	(with
more	than	\(\frac{1}{3}\)	or	even	\(\frac{1}{2}\)	of	the	validator	set).	A	Plasma	chain	can	always	be
successfully	attacked	by	a	51%	attack	on	the	main	chain	that	censors	exits;	a	sharded	chain	cannot.
This	is	because	data	availability	proofs	and	fraud	proofs	happen	inside	the	client,	rather	than	inside
the	chain,	so	they	cannot	be	censored	by	51%	attacks.	Third,	the	defenses	provided	by	sharded
chains	are	easier	to	generalize;	Plasma's	model	of	exits	requires	state	to	be	separated	into	discrete
pieces	each	of	which	is	in	the	interest	of	any	single	actor	to	maintain,	whereas	sharded	chains	relying
on	data	availability	proofs,	fraud	proofs,	fishermen	and	random	sampling	are	theoretically	universal.

So	there	really	is	a	large	difference	between	validity	and	availability	guarantees	that	are	provided	at
layer	2,	which	are	limited	and	more	complex	as	they	require	explicit	reasoning	about	incentives	and
which	party	has	an	interest	in	which	pieces	of	state,	and	guarantees	that	are	provided	by	a	layer	1
system	that	is	committed	to	fully	satisfying	them.

But	Plasma	chains	also	have	large	advantages	too.	First,	they	can	be	iterated	and	new	designs	can	be
implemented	more	quickly,	as	each	Plasma	chain	can	be	deployed	separately	without	coordinating
the	rest	of	the	ecosystem.	Second,	sharding	is	inherently	more	fragile,	as	it	attempts	to	guarantee
absolute	and	total	availability	and	validity	of	some	quantity	of	data,	and	this	quantity	must	be	set	in
the	protocol;	too	little,	and	the	system	has	less	scalability	than	it	could	have	had,	too	much,	and	the
entire	system	risks	breaking.	The	maximum	safe	level	of	scalability	also	depends	on	the	number	of
users	of	the	system,	which	is	an	unpredictable	variable.	Plasma	chains,	on	the	other	hand,	allow
different	users	to	make	different	tradeoffs	in	this	regard,	and	allow	users	to	adjust	more	flexibly	to
changes	in	circumstances.

Single-operator	Plasma	chains	can	also	be	used	to	offer	more	privacy	than	sharded	systems,	where
all	data	is	public.	Even	where	privacy	is	not	desired,	they	are	potentially	more	efficient,	because	the
total	data	availability	requirement	of	sharded	systems	requires	a	large	extra	level	of	redundancy	as	a
safety	margin.	In	Plasma	systems,	on	the	other	hand,	data	requirements	for	each	piece	of	data	can	be
minimized,	to	the	point	where	in	the	long	term	each	individual	piece	of	data	may	only	need	to	be
replicated	a	few	times,	rather	than	a	thousand	times	as	is	the	case	in	sharded	systems.

Hence,	in	the	long	term,	a	hybrid	system	where	a	sharded	base	layer	exists,	and	Plasma	chains	exist
on	top	of	it	to	provide	further	scalability,	seems	like	the	most	likely	approach,	more	able	to	serve
different	groups'	of	users	need	than	sole	reliance	on	one	strategy	or	the	other.	And	it	is	unfortunately
not	the	case	that	at	a	sufficient	level	of	advancement	Plasma	and	sharding	collapse	into	the	same
design;	the	two	are	in	some	key	ways	irreducibly	different	(eg.	the	data	availability	checks	made	by
clients	in	sharded	systems	cannot	be	moved	to	the	main	chain	in	Plasma	because	these	checks	only
work	if	they	are	done	subjectively	and	based	on	private	information).	But	both	scalability	solutions
(as	well	as	state	channels!)	have	a	bright	future	ahead	of	them.
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Fast	Fourier	Transforms

Trigger	warning:	specialized	mathematical	topic

Special	thanks	to	Karl	Floersch	for	feedback

One	of	the	more	interesting	algorithms	in	number	theory	is	the	Fast	Fourier	transform	(FFT).	FFTs
are	a	key	building	block	in	many	algorithms,	including	extremely	fast	multiplication	of	large
numbers,	multiplication	of	polynomials,	and	extremely	fast	generation	and	recovery	of	erasure	codes.
Erasure	codes	in	particular	are	highly	versatile;	in	addition	to	their	basic	use	cases	in	fault-tolerant
data	storage	and	recovery,	erasure	codes	also	have	more	advanced	use	cases	such	as	securing	data
availability	in	scalable	blockchains	and	STARKs.	This	article	will	go	into	what	fast	Fourier	transforms
are,	and	how	some	of	the	simpler	algorithms	for	computing	them	work.

Background

The	original	Fourier	transform	is	a	mathematical	operation	that	is	often	described	as	converting	data
between	the	"frequency	domain"	and	the	"time	domain".	What	this	means	more	precisely	is	that	if
you	have	a	piece	of	data,	then	running	the	algorithm	would	come	up	with	a	collection	of	sine	waves
with	different	frequencies	and	amplitudes	that,	if	you	added	them	together,	would	approximate	the
original	data.	Fourier	transforms	can	be	used	for	such	wonderful	things	as	expressing	square	orbits
through	epicycles	and	deriving	a	set	of	equations	that	can	draw	an	elephant:

Ok	fine,	Fourier	transforms	also	have	really	important	applications	in	signal	processing,	quantum	mechanics,	and
other	areas,	and	help	make	significant	parts	of	the	global	economy	happen.	But	come	on,	elephants	are	cooler.

Running	the	Fourier	transform	algorithm	in	the	"inverse"	direction	would	simply	take	the	sine	waves
and	add	them	together	and	compute	the	resulting	values	at	as	many	points	as	you	wanted	to	sample.

The	kind	of	Fourier	transform	we'll	be	talking	about	in	this	post	is	a	similar	algorithm,	except	instead
of	being	a	continuous	Fourier	transform	over	real	or	complex	numbers,	it's	a	discrete	Fourier
transform	over	finite	fields	(see	the	"A	Modular	Math	Interlude"	section	here	for	a	refresher	on	what
finite	fields	are).	Instead	of	talking	about	converting	between	"frequency	domain"	and	"time	domain",
here	we'll	talk	about	two	different	operations:	multi-point	polynomial	evaluation	(evaluating	a	degree
\(<	N\)	polynomial	at	\(N\)	different	points)	and	its	inverse,	polynomial	interpolation	(given	the
evaluations	of	a	degree	\(<	N\)	polynomial	at	\(N\)	different	points,	recovering	the	polynomial).	For
example,	if	we	are	operating	in	the	prime	field	with	modulus	5,	then	the	polynomial	\(y	=	x²	+	3\)	(for
convenience	we	can	write	the	coefficients	in	increasing	order:	\([3,0,1]\))	evaluated	at	the	points	\
([0,1,2]\)	gives	the	values	\([3,4,2]\)	(not	\([3,	4,	7]\)	because	we're	operating	in	a	finite	field	where
the	numbers	wrap	around	at	5),	and	we	can	actually	take	the	evaluations	\([3,4,2]\)	and	the
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coordinates	they	were	evaluated	at	(\([0,1,2]\))	to	recover	the	original	polynomial	\([3,0,1]\).

There	are	algorithms	for	both	multi-point	evaluation	and	interpolation	that	can	do	either	operation	in
\(O(N^2)\)	time.	Multi-point	evaluation	is	simple:	just	separately	evaluate	the	polynomial	at	each
point.	Here's	python	code	for	doing	that:

def	eval_poly_at(self,	poly,	x,	modulus):
				y	=	0
				power_of_x	=	1
				for	coefficient	in	poly:
								y	+=	power_of_x	*	coefficient
								power_of_x	*=	x
				return	y	%	modulus

The	algorithm	runs	a	loop	going	through	every	coefficient	and	does	one	thing	for	each	coefficient,	so
it	runs	in	\(O(N)\)	time.	Multi-point	evaluation	involves	doing	this	evaluation	at	\(N\)	different	points,
so	the	total	run	time	is	\(O(N^2)\).

Lagrange	interpolation	is	more	complicated	(search	for	"Lagrange	interpolation"	here	for	a	more
detailed	explanation).	The	key	building	block	of	the	basic	strategy	is	that	for	any	domain	\(D\)	and
point	\(x\),	we	can	construct	a	polynomial	that	returns	\(1\)	for	\(x\)	and	\(0\)	for	any	value	in	\(D\)
other	than	\(x\).	For	example,	if	\(D	=	[1,2,3,4]\)	and	\(x	=	1\),	the	polynomial	is:

\[	y	=	\frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)}	\]

You	can	mentally	plug	in	\(1\),	\(2\),	\(3\)	and	\(4\)	to	the	above	expression	and	verify	that	it	returns	\
(1\)	for	\(x=	1\)	and	\(0\)	in	the	other	three	cases.

We	can	recover	the	polynomial	that	gives	any	desired	set	of	outputs	on	the	given	domain	by
multiplying	and	adding	these	polynomials.	If	we	call	the	above	polynomial	\(P_1\),	and	the	equivalent
ones	for	\(x=2\),	\(x=3\),	\(x=4\),	\(P_2\),	\(P_3\)	and	\(P_4\),	then	the	polynomial	that	returns	\
([3,1,4,1]\)	on	the	domain	\([1,2,3,4]\)	is	simply	\(3	\cdot	P_1	+	P_2	+	4	\cdot	P_3	+	P_4\).	Computing
the	\(P_i\)	polynomials	takes	\(O(N^2)\)	time	(you	first	construct	the	polynomial	that	returns	to	0	on
the	entire	domain,	which	takes	\(O(N^2)\)	time,	then	separately	divide	it	by	\((x	-	x_i)\)	for	each	\
(x_i\)),	and	computing	the	linear	combination	takes	another	\(O(N^2)\)	time,	so	it's	\(O(N^2)\)
runtime	total.

What	Fast	Fourier	transforms	let	us	do,	is	make	both	multi-point	evaluation	and	interpolation	much
faster.

Fast	Fourier	Transforms

There	is	a	price	you	have	to	pay	for	using	this	much	faster	algorithm,	which	is	that	you	cannot	choose
any	arbitrary	field	and	any	arbitrary	domain.	Whereas	with	Lagrange	interpolation,	you	could	choose
whatever	x	coordinates	and	y	coordinates	you	wanted,	and	whatever	field	you	wanted	(you	could
even	do	it	over	plain	old	real	numbers),	and	you	could	get	a	polynomial	that	passes	through	them.,
with	an	FFT,	you	have	to	use	a	finite	field,	and	the	domain	must	be	a	multiplicative	subgroup	of	the
field	(that	is,	a	list	of	powers	of	some	"generator"	value).	For	example,	you	could	use	the	finite	field	of
integers	modulo	\(337\),	and	for	the	domain	use	\([1,	85,	148,	111,	336,	252,	189,	226]\)	(that's	the
powers	of	\(85\)	in	the	field,	eg.	\(85^3\)	%	\(337	=	111\);	it	stops	at	\(226\)	because	the	next	power
of	\(85\)	cycles	back	to	\(1\)).	Futhermore,	the	multiplicative	subgroup	must	have	size	\(2^n\)	(there's
ways	to	make	it	work	for	numbers	of	the	form	\(2^{m}	\cdot	3^n\)	and	possibly	slightly	higher	prime
powers	but	then	it	gets	much	more	complicated	and	inefficient).	The	finite	field	of	intergers	modulo	\
(59\),	for	example,	would	not	work,	because	there	are	only	multiplicative	subgroups	of	order	\(2\),	\
(29\)	and	\(58\);	\(2\)	is	too	small	to	be	interesting,	and	the	factor	\(29\)	is	far	too	large	to	be	FFT-
friendly.	The	symmetry	that	comes	from	multiplicative	groups	of	size	\(2^n\)	lets	us	create	a
recursive	algorithm	that	quite	cleverly	calculate	the	results	we	need	from	a	much	smaller	amount	of
work.

To	understand	the	algorithm	and	why	it	has	a	low	runtime,	it's	important	to	understand	the	general
concept	of	recursion.	A	recursive	algorithm	is	an	algorithm	that	has	two	cases:	a	"base	case"	where
the	input	to	the	algorithm	is	small	enough	that	you	can	give	the	output	directly,	and	the	"recursive
case"	where	the	required	computation	consists	of	some	"glue	computation"	plus	one	or	more	uses	of
the	same	algorithm	to	smaller	inputs.	For	example,	you	might	have	seen	recursive	algorithms	being
used	for	sorting	lists.	If	you	have	a	list	(eg.	\([1,8,7,4,5,6,3,2,9]\)),	then	you	can	sort	it	using	the
following	procedure:

If	the	input	has	one	element,	then	it's	already	"sorted",	so	you	can	just	return	the	input.
If	the	input	has	more	than	one	element,	then	separately	sort	the	first	half	of	the	list	and	the
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second	half	of	the	list,	and	then	merge	the	two	sorted	sub-lists	(call	them	\(A\)	and	\(B\))	as
follows.	Maintain	two	counters,	\(apos\)	and	\(bpos\),	both	starting	at	zero,	and	maintain	an
output	list,	which	starts	empty.	Until	either	\(apos\)	or	\(bpos\)	is	at	the	end	of	the	corresponding
list,	check	if	\(A[apos]\)	or	\(B[bpos]\)	is	smaller.	Whichever	is	smaller,	add	that	value	to	the	end
of	the	output	list,	and	increase	that	counter	by	\(1\).	Once	this	is	done,	add	the	rest	of	whatever
list	has	not	been	fully	processed	to	the	end	of	the	output	list,	and	return	the	output	list.

Note	that	the	"glue"	in	the	second	procedure	has	runtime	\(O(N)\):	if	each	of	the	two	sub-lists	has	\
(N\)	elements,	then	you	need	to	run	through	every	item	in	each	list	once,	so	it's	\(O(N)\)	computation
total.	So	the	algorithm	as	a	whole	works	by	taking	a	problem	of	size	\(N\),	and	breaking	it	up	into	two
problems	of	size	\(\frac{N}{2}\),	plus	\(O(N)\)	of	"glue"	execution.	There	is	a	theorem	called	the
Master	Theorem	that	lets	us	compute	the	total	runtime	of	algorithms	like	this.	It	has	many	sub-cases,
but	in	the	case	where	you	break	up	an	execution	of	size	\(N\)	into	\(k\)	sub-cases	of	size	\(\frac{N}
{k}\)	with	\(O(N)\)	glue	(as	is	the	case	here),	the	result	is	that	the	execution	takes	time	\(O(N	\cdot
log(N))\).

An	FFT	works	in	the	same	way.	We	take	a	problem	of	size	\(N\),	break	it	up	into	two	problems	of	size
\(\frac{N}{2}\),	and	do	\(O(N)\)	glue	work	to	combine	the	smaller	solutions	into	a	bigger	solution,	so
we	get	\(O(N	\cdot	log(N))\)	runtime	total	-	much	faster	than	\(O(N^2)\).	Here	is	how	we	do	it.	I'll
describe	first	how	to	use	an	FFT	for	multi-point	evaluation	(ie.	for	some	domain	\(D\)	and	polynomial	\
(P\),	calculate	\(P(x)\)	for	every	\(x\)	in	\(D\)),	and	it	turns	out	that	you	can	use	the	same	algorithm	for
interpolation	with	a	minor	tweak.

Suppose	that	we	have	an	FFT	where	the	given	domain	is	the	powers	of	\(x\)	in	some	field,	where	\
(x^{2^{k}}	=	1\)	(eg.	in	the	case	we	introduced	above,	the	domain	is	the	powers	of	\(85\)	modulo	\
(337\),	and	\(85^{2^{3}}	=	1\)).	We	have	some	polynomial,	eg.	\(y	=	6x^7	+	2x^6	+	9x^5	+	5x^4
+	x^3	+	4x^2	+	x	+	3\)	(we'll	write	it	as	\(p	=	[3,	1,	4,	1,	5,	9,	2,	6]\)).	We	want	to	evaluate	this
polynomial	at	each	point	in	the	domain,	ie.	at	each	of	the	eight	powers	of	\(85\).	Here	is	what	we	do.
First,	we	break	up	the	polynomial	into	two	parts,	which	we'll	call	\(evens\)	and	\(odds\):	\(evens	=	[3,
4,	5,	2]\)	and	\(odds	=	[1,	1,	9,	6]\)	(or	\(evens	=	2x^3	+	5x^2	+	4x	+	3\)	and	\(odds	=	6x^3	+	9x^2
+	x	+	1\);	yes,	this	is	just	taking	the	even-degree	coefficients	and	the	odd-degree	coefficients).	Now,
we	note	a	mathematical	observation:	\(p(x)	=	evens(x^2)	+	x	\cdot	odds(x^2)\)	and	\(p(-x)	=
evens(x^2)	-	x	\cdot	odds(x^2)\)	(think	about	this	for	yourself	and	make	sure	you	understand	it
before	going	further).

Here,	we	have	a	nice	property:	\(evens\)	and	\(odds\)	are	both	polynomials	half	the	size	of	\(p\),	and
furthermore,	the	set	of	possible	values	of	\(x^2\)	is	only	half	the	size	of	the	original	domain,	because
there	is	a	two-to-one	correspondence:	\(x\)	and	\(-x\)	are	both	part	of	\(D\)	(eg.	in	our	current	domain	\
([1,	85,	148,	111,	336,	252,	189,	226]\),	1	and	336	are	negatives	of	each	other,	as	\(336	=	-1\)	%	\
(337\),	as	are	\((85,	252)\),	\((148,	189)\)	and	\((111,	226)\).	And	\(x\)	and	\(-x\)	always	both	have	the
same	square.	Hence,	we	can	use	an	FFT	to	compute	the	result	of	\(evens(x)\)	for	every	\(x\)	in	the
smaller	domain	consisting	of	squares	of	numbers	in	the	original	domain	(\([1,	148,	336,	189]\)),	and
we	can	do	the	same	for	odds.	And	voila,	we've	reduced	a	size-\(N\)	problem	into	half-size	problems.
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The	"glue"	is	relatively	easy	(and	\(O(N)\)	in	runtime):	we	receive	the	evaluations	of	\(evens\)	and	\
(odds\)	as	size-\(\frac{N}{2}\)	lists,	so	we	simply	do	\(p[i]	=	evens\_result[i]	+	domain[i]\cdot
odds\_result[i]\)	and	\(p[\frac{N}{2}	+	i]	=	evens\_result[i]	-	domain[i]\cdot	odds\_result[i]\)	for	each
index	\(i\).

Here's	the	full	code:

def	fft(vals,	modulus,	domain):
				if	len(vals)	==	1:
								return	vals
				L	=	fft(vals[::2],	modulus,	domain[::2])
				R	=	fft(vals[1::2],	modulus,	domain[::2])
				o	=	[0	for	i	in	vals]
				for	i,	(x,	y)	in	enumerate(zip(L,	R)):
								y_times_root	=	y*domain[i]
								o[i]	=	(x+y_times_root)	%	modulus
								o[i+len(L)]	=	(x-y_times_root)	%	modulus
				return	o

We	can	try	running	it:

>>>	fft([3,1,4,1,5,9,2,6],	337,	[1,	85,	148,	111,	336,	252,	189,	226])
[31,	70,	109,	74,	334,	181,	232,	4]

And	we	can	check	the	result;	evaluating	the	polynomial	at	the	position	\(85\),	for	example,	actually
does	give	the	result	\(70\).	Note	that	this	only	works	if	the	domain	is	"correct";	it	needs	to	be	of	the
form	\([x^i\)	%	\(modulus\)	for	\(i\)	in	\(range(n)]\)	where	\(x^n	=	1\).

An	inverse	FFT	is	surprisingly	simple:

def	inverse_fft(vals,	modulus,	domain):
				vals	=	fft(vals,	modulus,	domain)
				return	[x	*	modular_inverse(len(vals),	modulus)	%	modulus	for	x	in	[vals[0]]	+	vals[1:][::-1]]

Basically,	run	the	FFT	again,	but	reverse	the	result	(except	the	first	item	stays	in	place)	and	divide
every	value	by	the	length	of	the	list.

>>>	domain	=	[1,	85,	148,	111,	336,	252,	189,	226]
>>>	def	modular_inverse(x,	n):	return	pow(x,	n	-	2,	n)
>>>	values	=	fft([3,1,4,1,5,9,2,6],	337,	domain)
>>>	values
[31,	70,	109,	74,	334,	181,	232,	4]
>>>	inverse_fft(values,	337,	domain)
[3,	1,	4,	1,	5,	9,	2,	6]

Now,	what	can	we	use	this	for?	Here's	one	fun	use	case:	we	can	use	FFTs	to	multiply	numbers	very
quickly.	Suppose	we	wanted	to	multiply	\(1253\)	by	\(1895\).	Here	is	what	we	would	do.	First,	we
would	convert	the	problem	into	one	that	turns	out	to	be	slightly	easier:	multiply	the	polynomials	\([3,
5,	2,	1]\)	by	\([5,	9,	8,	1]\)	(that's	just	the	digits	of	the	two	numbers	in	increasing	order),	and	then
convert	the	answer	back	into	a	number	by	doing	a	single	pass	to	carry	over	tens	digits.	We	can
multiply	polynomials	with	FFTs	quickly,	because	it	turns	out	that	if	you	convert	a	polynomial	into
evaluation	form	(ie.	\(f(x)\)	for	every	\(x\)	in	some	domain	\(D\)),	then	you	can	multiply	two
polynomials	simply	by	multiplying	their	evaluations.	So	what	we'll	do	is	take	the	polynomials
representing	our	two	numbers	in	coefficient	form,	use	FFTs	to	convert	them	to	evaluation	form,
multiply	them	pointwise,	and	convert	back:

>>>	p1	=	[3,5,2,1,0,0,0,0]
>>>	p2	=	[5,9,8,1,0,0,0,0]
>>>	x1	=	fft(p1,	337,	domain)
>>>	x1
[11,	161,	256,	10,	336,	100,	83,	78]
>>>	x2	=	fft(p2,	337,	domain)
>>>	x2
[23,	43,	170,	242,	3,	313,	161,	96]
>>>	x3	=	[(v1	*	v2)	%	337	for	v1,	v2	in	zip(x1,	x2)]
>>>	x3
[253,	183,	47,	61,	334,	296,	220,	74]
>>>	inverse_fft(x3,	337,	domain)
[15,	52,	79,	66,	30,	10,	1,	0]

This	requires	three	FFTs	(each	\(O(N	\cdot	log(N))\)	time)	and	one	pointwise	multiplication	(\(O(N)\)



time),	so	it	takes	\(O(N	\cdot	log(N))\)	time	altogether	(technically	a	little	bit	more	than	\(O(N	\cdot
log(N))\),	because	for	very	big	numbers	you	would	need	replace	\(337\)	with	a	bigger	modulus	and
that	would	make	multiplication	harder,	but	close	enough).	This	is	much	faster	than	schoolbook
multiplication,	which	takes	\(O(N^2)\)	time:

					3		5		2		1
			------------
5	|	15	25	10		5
9	|				27	45	18		9
8	|							24	40	16		8
1	|											3		5		2		1
			---------------------
				15	52	79	66	30	10		1

So	now	we	just	take	the	result,	and	carry	the	tens	digits	over	(this	is	a	"walk	through	the	list	once
and	do	one	thing	at	each	point"	algorithm	so	it	takes	\(O(N)\)	time):

[15,	52,	79,	66,	30,	10,	1,	0]
[	5,	53,	79,	66,	30,	10,	1,	0]
[	5,		3,	84,	66,	30,	10,	1,	0]
[	5,		3,		4,	74,	30,	10,	1,	0]
[	5,		3,		4,		4,	37,	10,	1,	0]
[	5,		3,		4,		4,		7,	13,	1,	0]
[	5,		3,		4,		4,		7,		3,	2,	0]

And	if	we	read	the	digits	from	top	to	bottom,	we	get	\(2374435\).	Let's	check	the	answer....

>>>	1253	*	1895
2374435

Yay!	It	worked.	In	practice,	on	such	small	inputs,	the	difference	between	\(O(N	\cdot	log(N))\)	and	\
(O(N^2)\)	isn't	that	large,	so	schoolbook	multiplication	is	faster	than	this	FFT-based	multiplication
process	just	because	the	algorithm	is	simpler,	but	on	large	inputs	it	makes	a	really	big	difference.

But	FFTs	are	useful	not	just	for	multiplying	numbers;	as	mentioned	above,	polynomial	multiplication
and	multi-point	evaluation	are	crucially	important	operations	in	implementing	erasure	coding,	which
is	a	very	important	technique	for	building	many	kinds	of	redundant	fault-tolerant	systems.	If	you	like
fault	tolerance	and	you	like	efficiency,	FFTs	are	your	friend.

FFTs	and	binary	fields

Prime	fields	are	not	the	only	kind	of	finite	field	out	there.	Another	kind	of	finite	field	(really	a	special
case	of	the	more	general	concept	of	an	extension	field,	which	are	kind	of	like	the	finite-field
equivalent	of	complex	numbers)	are	binary	fields.	In	an	binary	field,	each	element	is	expressed	as	a
polynomial	where	all	of	the	entries	are	\(0\)	or	\(1\),	eg.	\(x^3	+	x	+	1\).	Adding	polynomials	is	done
modulo	\(2\),	and	subtraction	is	the	same	as	addition	(as	\(-1	=	1	\bmod	2\)).	We	select	some
irreducible	polynomial	as	a	modulus	(eg.	\(x^4	+	x	+	1\);	\(x^4	+	1\)	would	not	work	because	\(x^4	+
1\)	can	be	factored	into	\((x^2	+	1)\cdot(x^2	+	1)\)	so	it's	not	"irreducible");	multiplication	is	done
modulo	that	modulus.	For	example,	in	the	binary	field	mod	\(x^4	+	x	+	1\),	multiplying	\(x^2	+	1\)	by
\(x^3	+	1\)	would	give	\(x^5	+	x^3	+	x^2	+	1\)	if	you	just	do	the	multiplication,	but	\(x^5	+	x^3	+
x^2	+	1	=	(x^4	+	x	+	1)\cdot	x	+	(x^3	+	x	+	1)\),	so	the	result	is	the	remainder	\(x^3	+	x	+	1\).

We	can	express	this	example	as	a	multiplication	table.	First	multiply	\([1,	0,	0,	1]\)	(ie.	\(x^3	+	1\))	by
\([1,	0,	1]\)	(ie.	\(x^2	+	1\)):

				1	0	0	1
			--------
1	|	1	0	0	1
0	|			0	0	0	0
1	|					1	0	0	1
			------------
				1	0	1	1	0	1

The	multiplication	result	contains	an	\(x^5\)	term	so	we	can	subtract	\((x^4	+	x	+	1)\cdot	x\):

				1	0	1	1	0	1
		-			1	1	0	0	1				[(x⁴	+	x	+	1)	shifted	right	by	one	to	reflect	being	multipled	by	x]
			------------
				1	1	0	1	0	0

And	we	get	the	result,	\([1,	1,	0,	1]\)	(or	\(x^3	+	x	+	1\)).



Addition	and	multiplication	tables	for	the	binary	field	mod	\(x^4	+	x	+	1\).	Field	elements	are	expressed	as	integers
converted	from	binary	(eg.	\(x^3	+	x^2	\rightarrow	1100	\rightarrow	12\))

Binary	fields	are	interesting	for	two	reasons.	First	of	all,	if	you	want	to	erasure-code	binary	data,
then	binary	fields	are	really	convenient	because	\(N\)	bytes	of	data	can	be	directly	encoded	as	a
binary	field	element,	and	any	binary	field	elements	that	you	generate	by	performing	computations	on
it	will	also	be	\(N\)	bytes	long.	You	cannot	do	this	with	prime	fields	because	prime	fields'	size	is	not
exactly	a	power	of	two;	for	example,	you	could	encode	every	\(2\)	bytes	as	a	number	from	\
(0...65536\)	in	the	prime	field	modulo	\(65537\)	(which	is	prime),	but	if	you	do	an	FFT	on	these
values,	then	the	output	could	contain	\(65536\),	which	cannot	be	expressed	in	two	bytes.	Second,	the
fact	that	addition	and	subtraction	become	the	same	operation,	and	\(1	+	1	=	0\),	create	some
"structure"	which	leads	to	some	very	interesting	consequences.	One	particularly	interesting,	and
useful,	oddity	of	binary	fields	is	the	"freshman's	dream"	theorem:	\((x+y)^2	=	x^2	+	y^2\)	(and	the
same	for	exponents	\(4,	8,	16...\)	basically	any	power	of	two).

But	if	you	want	to	use	binary	fields	for	erasure	coding,	and	do	so	efficiently,	then	you	need	to	be	able
to	do	Fast	Fourier	transforms	over	binary	fields.	But	then	there	is	a	problem:	in	a	binary	field,	there
are	no	(nontrivial)	multiplicative	groups	of	order	\(2^n\).	This	is	because	the	multiplicative	groups
are	all	order	\(2^n\)-1.	For	example,	in	the	binary	field	with	modulus	\(x^4	+	x	+	1\),	if	you	start
calculating	successive	powers	of	\(x+1\),	you	cycle	back	to	\(1\)	after	\(\it	15\)	steps	-	not	\(16\).	The
reason	is	that	the	total	number	of	elements	in	the	field	is	\(16\),	but	one	of	them	is	zero,	and	you're
never	going	to	reach	zero	by	multiplying	any	nonzero	value	by	itself	in	a	field,	so	the	powers	of	\
(x+1\)	cycle	through	every	element	but	zero,	so	the	cycle	length	is	\(15\),	not	\(16\).	So	what	do	we
do?

The	reason	we	needed	the	domain	to	have	the	"structure"	of	a	multiplicative	group	with	\(2^n\)
elements	before	is	that	we	needed	to	reduce	the	size	of	the	domain	by	a	factor	of	two	by	squaring
each	number	in	it:	the	domain	\([1,	85,	148,	111,	336,	252,	189,	226]\)	gets	reduced	to	\([1,	148,	336,
189]\)	because	\(1\)	is	the	square	of	both	\(1\)	and	\(336\),	\(148\)	is	the	square	of	both	\(85\)	and	\
(252\),	and	so	forth.	But	what	if	in	a	binary	field	there's	a	different	way	to	halve	the	size	of	a	domain?
It	turns	out	that	there	is:	given	a	domain	containing	\(2^k\)	values,	including	zero	(technically	the
domain	must	be	a	subspace),	we	can	construct	a	half-sized	new	domain	\(D'\)	by	taking	\(x	\cdot
(x+k)\)	for	\(x\)	in	\(D\)	using	some	specific	\(k\)	in	\(D\).	Because	the	original	domain	is	a	subspace,
since	\(k\)	is	in	the	domain,	any	\(x\)	in	the	domain	has	a	corresponding	\(x+k\)	also	in	the	domain,
and	the	function	\(f(x)	=	x	\cdot	(x+k)\)	returns	the	same	value	for	\(x\)	and	\(x+k\)	so	we	get	the
same	kind	of	two-to-one	correspondence	that	squaring	gives	us.

\(x\) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

\(x	\cdot	(x+1)\) 0 0 6 6 7 7 1 1 4 4 2 2 3 3 5 5

So	now,	how	do	we	do	an	FFT	on	top	of	this?	We'll	use	the	same	trick,	converting	a	problem	with	an	\
(N\)-sized	polynomial	and	\(N\)-sized	domain	into	two	problems	each	with	an	\(\frac{N}{2}\)-sized
polynomial	and	\(\frac{N}{2}\)-sized	domain,	but	this	time	using	different	equations.	We'll	convert	a
polynomial	\(p\)	into	two	polynomials	\(evens\)	and	\(odds\)	such	that	\(p(x)	=	evens(x	\cdot	(k-x))	+	x
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\cdot	odds(x	\cdot	(k-x))\).	Note	that	for	the	\(evens\)	and	\(odds\)	that	we	find,	it	will	also	be	true	that
\(p(x+k)	=	evens(x	\cdot	(k-x))	+	(x+k)	\cdot	odds(x	\cdot	(k-x))\).	So	we	can	then	recursively	do	an
FFT	to	\(evens\)	and	\(odds\)	on	the	reduced	domain	\([x	\cdot	(k-x)\)	for	\(x\)	in	\(D]\),	and	then	we
use	these	two	formulas	to	get	the	answers	for	two	"halves"	of	the	domain,	one	offset	by	\(k\)	from	the
other.

Converting	\(p\)	into	\(evens\)	and	\(odds\)	as	described	above	turns	out	to	itself	be	nontrivial.	The
"naive"	algorithm	for	doing	this	is	itself	\(O(N^2)\),	but	it	turns	out	that	in	a	binary	field,	we	can	use
the	fact	that	\((x^2-kx)^2	=	x^4	-	k^2	\cdot	x^2\),	and	more	generally	\((x^2-kx)^{2^{i}}	=
x^{2^{i+1}}	-	k^{2^{i}}	\cdot	x^{2^{i}}\)	,	to	create	yet	another	recursive	algorithm	to	do	this
in	\(O(N	\cdot	log(N))\)	time.

And	if	you	want	to	do	an	inverse	FFT,	to	do	interpolation,	then	you	need	to	run	the	steps	in	the
algorithm	in	reverse	order.	You	can	find	the	complete	code	for	doing	this	here:
https://github.com/ethereum/research/tree/master/binary_fft,	and	a	paper	with	details	on	more
optimal	algorithms	here:	http://www.math.clemson.edu/~sgao/papers/GM10.pdf

So	what	do	we	get	from	all	of	this	complexity?	Well,	we	can	try	running	the	implementation,	which
features	both	a	"naive"	\(O(N^2)\)	multi-point	evaluation	and	the	optimized	FFT-based	one,	and	time
both.	Here	are	my	results:

>>>	import	binary_fft	as	b
>>>	import	time,	random
>>>	f	=	b.BinaryField(1033)
>>>	poly	=	[random.randrange(1024)	for	i	in	range(1024)]
>>>	a	=	time.time();	x1	=	b._simple_ft(f,	poly);	time.time()	-	a
0.5752472877502441
>>>	a	=	time.time();	x2	=	b.fft(f,	poly,	list(range(1024)));	time.time()	-	a
0.03820443153381348

And	as	the	size	of	the	polynomial	gets	larger,	the	naive	implementation	(_simple_ft)	gets	slower
much	more	quickly	than	the	FFT:

>>>	f	=	b.BinaryField(2053)
>>>	poly	=	[random.randrange(2048)	for	i	in	range(2048)]
>>>	a	=	time.time();	x1	=	b._simple_ft(f,	poly);	time.time()	-	a
2.2243144512176514
>>>	a	=	time.time();	x2	=	b.fft(f,	poly,	list(range(2048)));	time.time()	-	a
0.07896280288696289

And	voila,	we	have	an	efficient,	scalable	way	to	multi-point	evaluate	and	interpolate	polynomials.	If
we	want	to	use	FFTs	to	recover	erasure-coded	data	where	we	are	missing	some	pieces,	then
algorithms	for	this	also	exist,	though	they	are	somewhat	less	efficient	than	just	doing	a	single	FFT.
Enjoy!
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Control	as	Liability

The	regulatory	and	legal	environment	around	internet-based	services	and	applications	has	changed
considerably	over	the	last	decade.	When	large-scale	social	networking	platforms	first	became
popular	in	the	2000s,	the	general	attitude	toward	mass	data	collection	was	essentially	"why	not?".
This	was	the	age	of	Mark	Zuckerberg	saying	the	age	of	privacy	is	over	and	Eric	Schmidt	arguing,	"If
you	have	something	that	you	don't	want	anyone	to	know,	maybe	you	shouldn't	be	doing	it	in	the	first
place."	And	it	made	personal	sense	for	them	to	argue	this:	every	bit	of	data	you	can	get	about	others
was	a	potential	machine	learning	advantage	for	you,	every	single	restriction	a	weakness,	and	if
something	happened	to	that	data,	the	costs	were	relatively	minor.	Ten	years	later,	things	are	very
different.

It	is	especially	worth	zooming	in	on	a	few	particular	trends.

Privacy.	Over	the	last	ten	years,	a	number	of	privacy	laws	have	been	passed,	most	aggressively
in	Europe	but	also	elsewhere,	but	the	most	recent	is	the	GDPR.	The	GDPR	has	many	parts,	but
among	the	most	prominent	are:	(i)	requirements	for	explicit	consent,	(ii)	requirement	to	have	a
legal	basis	to	process	data,	(iii)	users'	right	to	download	all	their	data,	(iv)	users'	right	to	require
you	to	delete	all	their	data.	Other	jurisdictions	are	exploring	similar	rules.
Data	localization	rules.	India,	Russia	and	many	other	jurisdictions	increasingly	have	or	are
exploring	rules	that	require	data	on	users	within	the	country	to	be	stored	inside	the	country.
And	even	when	explicit	laws	do	not	exist,	there's	a	growing	shift	toward	concern	(eg.	1	2)
around	data	being	moved	to	countries	that	are	perceived	to	not	sufficiently	protect	it.
Sharing	economy	regulation.	Sharing	economy	companies	such	as	Uber	are	having	a	hard
time	arguing	to	courts	that,	given	the	extent	to	which	their	applications	control	and	direct
drivers'	activity,	they	should	not	be	legally	classified	as	employers.
Cryptocurrency	regulation.	A	recent	FINCEN	guidance	attempts	to	clarify	what	categories	of
cryptocurrency-related	activity	are	and	are	not	subject	to	regulatory	licensing	requirements	in
the	United	States.	Running	a	hosted	wallet?	Regulated.	Running	a	wallet	where	the	user
controls	their	funds?	Not	regulated.	Running	an	anonymizing	mixing	service?	If	you're	running
it,	regulated.	If	you're	just	writing	code...	not	regulated.

As	Emin	Gun	Sirer	points	out,	the	FINCEN	cryptocurrency	guidance	is	not	at	all	haphazard;	rather,
it's	trying	to	separate	out	categories	of	applications	where	the	developer	is	actively	controlling	funds,
from	applications	where	the	developer	has	no	control.	The	guidance	carefully	separates	out	how
multisignature	wallets,	where	keys	are	held	both	by	the	operator	and	the	user,	are	sometimes
regulated	and	sometimes	not:

If	the	multiple-signature	wallet	provider	restricts	its	role	to	creating	un-hosted	wallets	that
require	adding	a	second	authorization	key	to	the	wallet	owner's	private	key	in	order	to
validate	and	complete	transactions,	the	provider	is	not	a	money	transmitter	because	it	does
not	accept	and	transmit	value.	On	the	other	hand,	if	...	the	value	is	represented	as	an	entry
in	the	accounts	of	the	provider,	the	owner	does	not	interact	with	the	payment	system
directly,	or	the	provider	maintains	total	independent	control	of	the	value,	the	provider	will
also	qualify	as	a	money	transmitter.

Although	these	events	are	taking	place	across	a	variety	of	contexts	and	industries,	I	would	argue	that
there	is	a	common	trend	at	play.	And	the	trend	is	this:	control	over	users'	data	and	digital
possessions	and	activity	is	rapidly	moving	from	an	asset	to	a	liability.	Before,	every	bit	of
control	you	have	was	good:	it	gives	you	more	flexibility	to	earn	revenue,	if	not	now	then	in	the	future.
Now,	every	bit	of	control	you	have	is	a	liability:	you	might	be	regulated	because	of	it.	If	you	exhibit
control	over	your	users'	cryptocurrency,	you	are	a	money	transmitter.	If	you	have	"sole	discretion
over	fares,	and	can	charge	drivers	a	cancellation	fee	if	they	choose	not	to	take	a	ride,	prohibit	drivers
from	picking	up	passengers	not	using	the	app	and	suspend	or	deactivate	drivers'	accounts",	you	are
an	employer.	If	you	control	your	users'	data,	you're	required	to	make	sure	you	can	argue	just	cause,
have	a	compliance	officer,	and	give	your	users	access	to	download	or	delete	the	data.

If	you	are	an	application	builder,	and	you	are	both	lazy	and	fear	legal	trouble,	there	is	one	easy	way
to	make	sure	that	you	violate	none	of	the	above	new	rules:	don't	build	applications	that	centralize
control.	If	you	build	a	wallet	where	the	user	holds	their	private	keys,	you	really	are	still	"just	a
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software	provider".	If	you	build	a	"decentralized	Uber"	that	really	is	just	a	slick	UI	combining	a
payment	system,	a	reputation	system	and	a	search	engine,	and	don't	control	the	components
yourself,	you	really	won't	get	hit	by	many	of	the	same	legal	issues.	If	you	build	a	website	that	just...
doesn't	collect	data	(Static	web	pages?	But	that's	impossible!)	you	don't	have	to	even	think	about	the
GDPR.

This	kind	of	approach	is	of	course	not	realistic	for	everyone.	There	will	continue	to	be	many	cases
where	going	without	the	conveniences	of	centralized	control	simply	sacrifices	too	much	for	both
developers	and	users,	and	there	are	also	cases	where	the	business	model	considerations	mandate	a
more	centralized	approach	(eg.	it's	easier	to	prevent	non-paying	users	from	using	software	if	the
software	stays	on	your	servers)	win	out.	But	we're	definitely	very	far	from	having	explored	the	full
range	of	possibilities	that	more	decentralized	approaches	offer.

Generally,	unintended	consequences	of	laws,	discouraging	entire	categories	of	activity	when	one
wanted	to	only	surgically	forbid	a	few	specific	things,	are	considered	to	be	a	bad	thing.	Here	though,
I	would	argue	that	the	forced	shift	in	developers'	mindsets,	from	"I	want	to	control	more	things	just
in	case"	to	"I	want	to	control	fewer	things	just	in	case",	also	has	many	positive	consequences.
Voluntarily	giving	up	control,	and	voluntarily	taking	steps	to	deprive	oneself	of	the	ability	to	do
mischief,	does	not	come	naturally	to	many	people,	and	while	ideologically-driven	decentralization-
maximizing	projects	exist	today,	it's	not	at	all	obvious	at	first	glance	that	such	services	will	continue
to	dominate	as	the	industry	mainstreams.	What	this	trend	in	regulation	does,	however,	is	that	it	gives
a	big	nudge	in	favor	of	those	applications	that	are	willing	to	take	the	centralization-minimizing,	user-
sovereignty-maximizing	"can't	be	evil"	route.

Hence,	even	though	these	regulatory	changes	are	arguably	not	pro-freedom,	at	least	if	one	is
concerned	with	the	freedom	of	application	developers,	and	the	transformation	of	the	internet	into	a
subject	of	political	focus	is	bound	to	have	many	negative	knock-on	effects,	the	particular	trend	of
control	becoming	a	liability	is	in	a	strange	way	even	more	pro-cypherpunk	(even	if	not	intentionally!)
than	policies	of	maximizing	total	freedom	for	application	developers	would	have	been.	Though	the
present-day	regulatory	landscape	is	very	far	from	an	optimal	one	from	the	point	of	view	of	almost
anyone's	preferences,	it	has	unintentionally	dealt	the	movement	for	minimizing	unneeded
centralization	and	maximizing	users'	control	of	their	own	assets,	private	keys	and	data	a	surprisingly
strong	hand	to	execute	on	its	vision.	And	it	would	be	highly	beneficial	to	the	movement	to	take
advantage	of	it.



2019	Apr	16 See	all	posts

On	Free	Speech

"A	statement	may	be	both	true	and	dangerous.	The	previous	sentence	is	such	a	statement."	-	David	Friedman

Freedom	of	speech	is	a	topic	that	many	internet	communities	have	struggled	with	over	the	last	two	decades.	Cryptocurrency	and	blockchain	communities,	a	major
part	of	their	raison	d'etre	being	censorship	resistance,	are	especially	poised	to	value	free	speech	very	highly,	and	yet,	over	the	last	few	years,	the	extremely	rapid
growth	of	these	communities	and	the	very	high	financial	and	social	stakes	involved	have	repeatedly	tested	the	application	and	the	limits	of	the	concept.	In	this
post,	I	aim	to	disentangle	some	of	the	contradictions,	and	make	a	case	what	the	norm	of	"free	speech"	really	stands	for.

"Free	speech	laws"	vs	"free	speech"

A	common,	and	in	my	own	view	frustrating,	argument	that	I	often	hear	is	that	"freedom	of	speech"	is	exclusively	a	legal	restriction	on	what	governments	can	act
against,	and	has	nothing	to	say	regarding	the	actions	of	private	entities	such	as	corporations,	privately-owned	platforms,	internet	forums	and	conferences.	One	of
the	larger	examples	of	"private	censorship"	in	cryptocurrency	communities	was	the	decision	of	Theymos,	the	moderator	of	the	/r/bitcoin	subreddit,	to	start	heavily
moderating	the	subreddit,	forbidding	arguments	in	favor	of	increasing	the	Bitcoin	blockchain's	transaction	capacity	via	a	hard	fork.

Here	is	a	timeline	of	the	censorship	as	catalogued	by	John	Blocke:	https://medium.com/johnblocke/a-brief-and-incomplete-history-of-censorship-in-r-bitcoin-
c85a290fe43

Here	is	Theymos's	post	defending	his	policies:	https://www.reddit.com/r/Bitcoin/comments/3h9cq4/its_time_for_a_break_about_the_recent_mess/,	including	the	now
infamous	line	"If	90%	of	/r/Bitcoin	users	find	these	policies	to	be	intolerable,	then	I	want	these	90%	of	/r/Bitcoin	users	to	leave".

A	common	strategy	used	by	defenders	of	Theymos's	censorship	was	to	say	that	heavy-handed	moderation	is	okay	because	/r/bitcoin	is	"a	private	forum"	owned	by
Theymos,	and	so	he	has	the	right	to	do	whatever	he	wants	in	it;	those	who	dislike	it	should	move	to	other	forums:

And	it's	true	that	Theymos	has	not	broken	any	laws	by	moderating	his	forum	in	this	way.	But	to	most	people,	it's	clear	that	there	is	still	some	kind	of	free	speech
violation	going	on.	So	what	gives?	First	of	all,	it's	crucially	important	to	recognize	that	freedom	of	speech	is	not	just	a	law	in	some	countries.	It's	also	a	social
principle.	And	the	underlying	goal	of	the	social	principle	is	the	same	as	the	underlying	goal	of	the	law:	to	foster	an	environment	where	the	ideas	that	win	are	ideas
that	are	good,	rather	than	just	ideas	that	happen	to	be	favored	by	people	in	a	position	of	power.	And	governmental	power	is	not	the	only	kind	of	power	that	we
need	to	protect	from;	there	is	also	a	corporation's	power	to	fire	someone,	an	internet	forum	moderator's	power	to	delete	almost	every	post	in	a	discussion	thread,
and	many	other	kinds	of	power	hard	and	soft.

So	what	is	the	underlying	social	principle	here?	Quoting	Eliezer	Yudkowsky:

There	are	a	very	few	injunctions	in	the	human	art	of	rationality	that	have	no	ifs,	ands,	buts,	or	escape	clauses.	This	is	one	of	them.	Bad	argument	gets
counterargument.	Does	not	get	bullet.	Never.	Never	ever	never	for	ever.

Slatestarcodex	elaborates:

What	does	"bullet"	mean	in	the	quote	above?	Are	other	projectiles	covered?	Arrows?	Boulders	launched	from	catapults?	What	about	melee	weapons	like
swords	or	maces?	Where	exactly	do	we	draw	the	line	for	"inappropriate	responses	to	an	argument"?	A	good	response	to	an	argument	is	one	that
addresses	an	idea;	a	bad	argument	is	one	that	silences	it.	If	you	try	to	address	an	idea,	your	success	depends	on	how	good	the	idea	is;	if	you	try	to	silence
it,	your	success	depends	on	how	powerful	you	are	and	how	many	pitchforks	and	torches	you	can	provide	on	short	notice.	Shooting	bullets	is	a	good	way
to	silence	an	idea	without	addressing	it.	So	is	firing	stones	from	catapults,	or	slicing	people	open	with	swords,	or	gathering	a	pitchfork-wielding	mob.	But
trying	to	get	someone	fired	for	holding	an	idea	is	also	a	way	of	silencing	an	idea	without	addressing	it.

That	said,	sometimes	there	is	a	rationale	for	"safe	spaces"	where	people	who,	for	whatever	reason,	just	don't	want	to	deal	with	arguments	of	a	particular	type,	can
congregate	and	where	those	arguments	actually	do	get	silenced.	Perhaps	the	most	innocuous	of	all	is	spaces	like	ethresear.ch	where	posts	get	silenced	just	for
being	"off	topic"	to	keep	the	discussion	focused.	But	there's	also	a	dark	side	to	the	concept	of	"safe	spaces";	as	Ken	White	writes:

This	may	come	as	a	surprise,	but	I'm	a	supporter	of	‘safe	spaces.'	I	support	safe	spaces	because	I	support	freedom	of	association.	Safe	spaces,	if	designed
in	a	principled	way,	are	just	an	application	of	that	freedom...	But	not	everyone	imagines	"safe	spaces"	like	that.	Some	use	the	concept	of	"safe	spaces"	as
a	sword,	wielded	to	annex	public	spaces	and	demand	that	people	within	those	spaces	conform	to	their	private	norms.	That's	not	freedom	of	association

Aha.	So	making	your	own	safe	space	off	in	a	corner	is	totally	fine,	but	there	is	also	this	concept	of	a	"public	space",	and	trying	to	turn	a	public	space	into	a	safe
space	for	one	particular	special	interest	is	wrong.	So	what	is	a	"public	space"?	It's	definitely	clear	that	a	public	space	is	not	just	"a	space	owned	and/or	run	by	a
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government";	the	concept	of	privately	owned	public	spaces	is	a	well-established	one.	This	is	true	even	informally:	it's	a	common	moral	intuition,	for	example,	that
it's	less	bad	for	a	private	individual	to	commit	violations	such	as	discriminating	against	races	and	genders	than	it	is	for,	say,	a	shopping	mall	to	do	the	same.	In	the
case	or	the	/r/bitcoin	subreddit,	one	can	make	the	case,	regardless	of	who	technically	owns	the	top	moderator	position	in	the	subreddit,	that	the	subreddit	very
much	is	a	public	space.	A	few	arguments	particularly	stand	out:

It	occupies	"prime	real	estate",	specifically	the	word	"bitcoin",	which	makes	people	consider	it	to	be	the	default	place	to	discuss	Bitcoin.
The	value	of	the	space	was	created	not	just	by	Theymos,	but	by	thousands	of	people	who	arrived	on	the	subreddit	to	discuss	Bitcoin	with	an	implicit
expectation	that	it	is,	and	will	continue,	to	be	a	public	space	for	discussing	Bitcoin.
Theymos's	shift	in	policy	was	a	surprise	to	many	people,	and	it	was	not	foreseeable	ahead	of	time	that	it	would	take	place.

If,	instead,	Theymos	had	created	a	subreddit	called	/r/bitcoinsmallblockers,	and	explicitly	said	that	it	was	a	curated	space	for	small	block	proponents	and
attempting	to	instigate	controversial	hard	forks	was	not	welcome,	then	it	seems	likely	that	very	few	people	would	have	seen	anything	wrong	about	this.	They	would
have	opposed	his	ideology,	but	few	(at	least	in	blockchain	communities)	would	try	to	claim	that	it's	improper	for	people	with	ideologies	opposed	to	their	own	to
have	spaces	for	internal	discussion.	But	back	in	reality,	Theymos	tried	to	"annex	a	public	space	and	demand	that	people	within	the	space	confirm	to	his	private
norms",	and	so	we	have	the	Bitcoin	community	block	size	schism,	a	highly	acrimonious	fork	and	chain	split,	and	now	a	cold	peace	between	Bitcoin	and	Bitcoin
Cash.

Deplatforming

About	a	year	ago	at	Deconomy	I	publicly	shouted	down	Craig	Wright,	a	scammer	claiming	to	be	Satoshi	Nakamoto,	finishing	my	explanation	of	why	the	things	he
says	make	no	sense	with	the	question	"why	is	this	fraud	allowed	to	speak	at	this	conference?"

Of	course,	Craig	Wright's	partisans	replied	back	with....	accusations	of	censorship:

Did	I	try	to	"silence"	Craig	Wright?	I	would	argue,	no.	One	could	argue	that	this	is	because	"Deconomy	is	not	a	public	space",	but	I	think	the	much	better	argument
is	that	a	conference	is	fundamentally	different	from	an	internet	forum.	An	internet	forum	can	actually	try	to	be	a	fully	neutral	medium	for	discussion	where
anything	goes;	a	conference,	on	the	other	hand,	is	by	its	very	nature	a	highly	curated	list	of	presentations,	allocating	a	limited	number	of	speaking	slots	and
actively	channeling	a	large	amount	of	attention	to	those	lucky	enough	to	get	a	chance	to	speak.	A	conference	is	an	editorial	act	by	the	organizers,	saying	"here	are
some	ideas	and	views	that	we	think	people	really	should	be	exposed	to	and	hear".	Every	conference	"censors"	almost	every	viewpoint	because	there's	not	enough
space	to	give	them	all	a	chance	to	speak,	and	this	is	inherent	to	the	format;	so	raising	an	objection	to	a	conference's	judgement	in	making	its	selections	is
absolutely	a	legitimate	act.

This	extends	to	other	kinds	of	selective	platforms.	Online	platforms	such	as	Facebook,	Twitter	and	Youtube	already	engage	in	active	selection	through	algorithms
that	influence	what	people	are	more	likely	to	be	recommended.	Typically,	they	do	this	for	selfish	reasons,	setting	up	their	algorithms	to	maximize	"engagement"
with	their	platform,	often	with	unintended	byproducts	like	promoting	flat	earth	conspiracy	theories.	So	given	that	these	platforms	are	already	engaging	in
(automated)	selective	presentation,	it	seems	eminently	reasonable	to	criticize	them	for	not	directing	these	same	levers	toward	more	pro-social	objectives,	or	at	the
least	pro-social	objectives	that	all	major	reasonable	political	tribes	agree	on	(eg.	quality	intellectual	discourse).	Additionally,	the	"censorship"	doesn't	seriously
block	anyone's	ability	to	learn	Craig	Wright's	side	of	the	story;	you	can	just	go	visit	their	website,	here	you	go:	https://coingeek.com/.	If	someone	is	already
operating	a	platform	that	makes	editorial	decisions,	asking	them	to	make	such	decisions	with	the	same	magnitude	but	with	more	pro-social	criteria
seems	like	a	very	reasonable	thing	to	do.

A	more	recent	example	of	this	principle	at	work	is	the	#DelistBSV	campaign,	where	some	cryptocurrency	exchanges,	most	famously	Binance,	removed	support	for
trading	BSV	(the	Bitcoin	fork	promoted	by	Craig	Weight).	Once	again,	many	people,	even	reasonable	people,	accused	this	campaign	of	being	an	exercise	in
censorship,	raising	parallels	to	credit	card	companies	blocking	Wikileaks:
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I	personally	have	been	a	critic	of	the	power	wielded	by	centralized	exchanges.	Should	I	oppose	#DelistBSV	on	free	speech	grounds?	I	would	argue	no,	it's	ok	to
support	it,	but	this	is	definitely	a	much	closer	call.

Many	#DelistBSV	participants	like	Kraken	are	definitely	not	"anything-goes"	platforms;	they	already	make	many	editorial	decisions	about	which	currencies	they
accept	and	refuse.	Kraken	only	accepts	about	a	dozen	currencies,	so	they	are	passively	"censoring"	almost	everyone.	Shapeshift	supports	more	currencies	but	it
does	not	support	SPANK,	or	even	KNC.	So	in	these	two	cases,	delisting	BSV	is	more	like	reallocation	of	a	scarce	resource	(attention/legitimacy)	than	it	is
censorship.	Binance	is	a	bit	different;	it	does	accept	a	very	large	array	of	cryptocurrencies,	adopting	a	philosophy	much	closer	to	anything-goes,	and	it	does	have	a
unique	position	as	market	leader	with	a	lot	of	liquidity.

That	said,	one	can	argue	two	things	in	Binance's	favor.	First	of	all,	censorship	is	retaliating	against	a	truly	malicious	exercise	of	censorship	on	the	part	of	core	BSV
community	members	when	they	threatened	critics	like	Peter	McCormack	with	legal	letters	(see	Peter's	response);	in	"anarchic"	environments	with	large
disagreements	on	what	the	norms	are,	"an	eye	for	an	eye"	in-kind	retaliation	is	one	of	the	better	social	norms	to	have	because	it	ensures	that	people	only	face
punishments	that	they	in	some	sense	have	through	their	own	actions	demonstrated	they	believe	are	legitimate.	Furthermore,	the	delistings	won't	make	it	that	hard
for	people	to	buy	or	sell	BSV;	Coinex	has	said	that	they	will	not	delist	(and	I	would	actually	oppose	second-tier	"anything-goes"	exchanges	delisting).	But	the
delistings	do	send	a	strong	message	of	social	condemnation	of	BSV,	which	is	useful	and	needed.	So	there's	a	case	to	support	all	delistings	so	far,	though	on
reflection	Binance	refusing	to	delist	"because	freedom"	would	have	also	been	not	as	unreasonable	as	it	seems	at	first	glance.

It's	in	general	absolutely	potentially	reasonable	to	oppose	the	existence	of	a	concentration	of	power,	but	support	that	concentration	of	power	being	used	for
purposes	that	you	consider	prosocial	as	long	as	that	concentration	exists;	see	Bryan	Caplan's	exposition	on	reconciling	supporting	open	borders	and	also
supporting	anti-ebola	restrictions	for	an	example	in	a	different	field.	Opposing	concentrations	of	power	only	requires	that	one	believe	those	concentrations	of
power	to	be	on	balance	harmful	and	abusive;	it	does	not	mean	that	one	must	oppose	all	things	that	those	concentrations	of	power	do.

If	someone	manages	to	make	a	completely	permissionless	cross-chain	decentralized	exchange	that	facilitates	trade	between	any	asset	and	any	other	asset,	then
being	"listed"	on	the	exchange	would	not	send	a	social	signal,	because	everyone	is	listed;	and	I	would	support	such	an	exchange	existing	even	if	it	supports	trading
BSV.	The	thing	that	I	do	support	is	BSV	being	removed	from	already	exclusive	positions	that	confer	higher	tiers	of	legitimacy	than	simple	existence.

So	to	conclude:	censorship	in	public	spaces	bad,	even	if	the	public	spaces	are	non-governmental;	censorship	in	genuinely	private	spaces	(especially	spaces	that	are
not	"defaults"	for	a	broader	community)	can	be	okay;	ostracizing	projects	with	the	goal	and	effect	of	denying	access	to	them,	bad;	ostracizing	projects	with	the	goal
and	effect	of	denying	them	scarce	legitimacy	can	be	okay.
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On	Collusion
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Over	the	last	few	years	there	has	been	an	increasing	interest	in	using	deliberately	engineered	economic
incentives	and	mechanism	design	to	align	behavior	of	participants	in	various	contexts.	In	the	blockchain
space,	mechanism	design	first	and	foremost	provides	the	security	for	the	blockchain	itself,	encouraging
miners	or	proof	of	stake	validators	to	participate	honestly,	but	more	recently	it	is	being	applied	in	prediction
markets,	"token	curated	registries"	and	many	other	contexts.	The	nascent	RadicalXChange	movement	has
meanwhile	spawned	experimentation	with	Harberger	taxes,	quadratic	voting,	quadratic	financing	and	more.
More	recently,	there	has	also	been	growing	interest	in	using	token-based	incentives	to	try	to	encourage
quality	posts	in	social	media.	However,	as	development	of	these	systems	moves	closer	from	theory	to
practice,	there	are	a	number	of	challenges	that	need	to	be	addressed,	challenges	that	I	would	argue	have	not
yet	been	adequately	confronted.

As	a	recent	example	of	this	move	from	theory	toward	deployment,	Bihu,	a	Chinese	platform	that	has	recently
released	a	coin-based	mechanism	for	encouraging	people	to	write	posts.	The	basic	mechanism	(see
whitepaper	in	Chinese	here)	is	that	if	a	user	of	the	platform	holds	KEY	tokens,	they	have	the	ability	to	stake
those	KEY	tokens	on	articles;	every	user	can	make	\(k\)	"upvotes"	per	day,	and	the	"weight"	of	each	upvote	is
proportional	to	the	stake	of	the	user	making	the	upvote.	Articles	with	a	greater	quantity	of	stake	upvoting
them	appear	more	prominently,	and	the	author	of	an	article	gets	a	reward	of	KEY	tokens	roughly	proportional
to	the	quantity	of	KEY	upvoting	that	article.	This	is	an	oversimplification	and	the	actual	mechanism	has	some
nonlinearities	baked	into	it,	but	they	are	not	essential	to	the	basic	functioning	of	the	mechanism.	KEY	has
value	because	it	can	be	used	in	various	ways	inside	the	platform,	but	particularly	a	percentage	of	all	ad
revenues	get	used	to	buy	and	burn	KEY	(yay,	big	thumbs	up	to	them	for	doing	this	and	not	making	yet
another	medium	of	exchange	token!).

This	kind	of	design	is	far	from	unique;	incentivizing	online	content	creation	is	something	that	very	many
people	care	about,	and	there	have	been	many	designs	of	a	similar	character,	as	well	as	some	fairly	different
designs.	And	in	this	case	this	particular	platform	is	already	being	used	significantly:

A	few	months	ago,	the	Ethereum	trading	subreddit	/r/ethtrader	introduced	a	somewhat	similar	experimental
feature	where	a	token	called	"donuts"	is	issued	to	users	that	make	comments	that	get	upvoted,	with	a	set
amount	of	donuts	issued	weekly	to	users	in	proportion	to	how	many	upvotes	their	comments	received.	The
donuts	could	be	used	to	buy	the	right	to	set	the	contents	of	the	banner	at	the	top	of	the	subreddit,	and	could
also	be	used	to	vote	in	community	polls.	However,	unlike	what	happens	in	the	KEY	system,	here	the	reward
that	B	receives	when	A	upvotes	B	is	not	proportional	to	A's	existing	coin	supply;	instead,	each	Reddit	account
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has	an	equal	ability	to	contribute	to	other	Reddit	accounts.

These	kinds	of	experiments,	attempting	to	reward	quality	content	creation	in	a	way	that	goes	beyond	the
known	limitations	of	donations/microtipping,	are	very	valuable;	under-compensation	of	user-generated
internet	content	is	a	very	significant	problem	in	society	in	general	(see	"liberal	radicalism"	and	"data	as
labor"),	and	it's	heartening	to	see	crypto	communities	attempting	to	use	the	power	of	mechanism	design	to
make	inroads	on	solving	it.	But	unfortunately,	these	systems	are	also	vulnerable	to	attack.

Self-voting,	plutocracy	and	bribes

Here	is	how	one	might	economically	attack	the	design	proposed	above.	Suppose	that	some	wealthy	user
acquires	some	quantity	\(N\)	of	tokens,	and	as	a	result	each	of	the	user's	\(k\)	upvotes	gives	the	recipient	a
reward	of	\(N	\cdot	q\)	(\(q\)	here	probably	being	a	very	small	number,	eg.	think	\(q	=	0.000001\)).	The	user
simply	upvotes	their	own	sockpuppet	accounts,	giving	themselves	the	reward	of	\(N	\cdot	k	\cdot	q\).	Then,
the	system	simply	collapses	into	each	user	having	an	"interest	rate"	of	\(k	\cdot	q\)	per	period,	and	the
mechanism	accomplishes	nothing	else.

The	actual	Bihu	mechanism	seemed	to	anticipate	this,	and	has	some	superlinear	logic	where	articles	with
more	KEY	upvoting	them	gain	a	disproportionately	greater	reward,	seemingly	to	encourage	upvoting	popular
posts	rather	than	self-upvoting.	It's	a	common	pattern	among	coin	voting	governance	systems	to	add	this	kind
of	superlinearity	to	prevent	self-voting	from	undermining	the	entire	system;	most	DPOS	schemes	have	a
limited	number	of	delegate	slots	with	zero	rewards	for	anyone	who	does	not	get	enough	votes	to	join	one	of
the	slots,	with	similar	effect.	But	these	schemes	invariably	introduce	two	new	weaknesses:

They	subsidize	plutocracy,	as	very	wealthy	individuals	and	cartels	can	still	get	enough	funds	to	self-
upvote.
They	can	be	circumvented	by	users	bribing	other	users	to	vote	for	them	en	masse.

Bribing	attacks	may	sound	farfetched	(who	here	has	ever	accepted	a	bribe	in	real	life?),	but	in	a	mature
ecosystem	they	are	much	more	realistic	than	they	seem.	In	most	contexts	where	bribing	has	taken	place	in
the	blockchain	space,	the	operators	use	a	euphemistic	new	name	to	give	the	concept	a	friendly	face:	it's	not	a
bribe,	it's	a	"staking	pool"	that	"shares	dividends".	Bribes	can	even	be	obfuscated:	imagine	a	cryptocurrency
exchange	that	offers	zero	fees	and	spends	the	effort	to	make	an	abnormally	good	user	interface,	and	does	not
even	try	to	collect	a	profit;	instead,	it	uses	coins	that	users	deposit	to	participate	in	various	coin	voting
systems.	There	will	also	inevitably	be	people	that	see	in-group	collusion	as	just	plain	normal;	see	a	recent
scandal	involving	EOS	DPOS	for	one	example:
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Finally,	there	is	the	possibility	of	a	"negative	bribe",	ie.	blackmail	or	coercion,	threatening	participants	with
harm	unless	they	act	inside	the	mechanism	in	a	certain	way.

In	the	/r/ethtrader	experiment,	fear	of	people	coming	in	and	buying	donuts	to	shift	governance	polls	led	to	the
community	deciding	to	make	only	locked	(ie.	untradeable)	donuts	eligible	for	use	in	voting.	But	there's	an
even	cheaper	attack	than	buying	donuts	(an	attack	that	can	be	thought	of	as	a	kind	of	obfuscated	bribe):
renting	them.	If	an	attacker	is	already	holding	ETH,	they	can	use	it	as	collateral	on	a	platform	like	Compound
to	take	out	a	loan	of	some	token,	giving	you	the	full	right	to	use	that	token	for	whatever	purpose	including
participating	in	votes,	and	when	they're	done	they	simply	send	the	tokens	back	to	the	loan	contract	to	get
their	collateral	back	-	all	without	having	to	endure	even	a	second	of	price	exposure	to	the	token	that	they	just
used	to	swing	a	coin	vote,	even	if	the	coin	vote	mechanism	includes	a	time	lockup	(as	eg.	Bihu	does).	In	every
case,	issues	around	bribing,	and	accidentally	over-empowering	well-connected	and	wealthy	participants,
prove	surprisingly	difficult	to	avoid.

Identity

Some	systems	attempt	to	mitigate	the	plutocratic	aspects	of	coin	voting	by	making	use	of	an	identity	system.
In	the	case	of	the	/r/ethtrader	donut	system,	for	example,	although	governance	polls	are	done	via	coin	vote,
the	mechanism	that	determines	how	many	donuts	(ie.	coins)	you	get	in	the	first	place	is	based	on	Reddit
accounts:	1	upvote	from	1	Reddit	account	=	\(N\)	donuts	earned.	The	ideal	goal	of	an	identity	system	is	to
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make	it	relatively	easy	for	individuals	to	get	one	identity,	but	relatively	difficult	to	get	many	identities.	In	the
/r/ethtrader	donut	system,	that's	Reddit	accounts,	in	the	Gitcoin	CLR	matching	gadget,	it's	Github	accounts
that	are	used	for	the	same	purpose.	But	identity,	at	least	the	way	it	has	been	implemented	so	far,	is	a	fragile
thing....

Oh,	are	you	too	lazy	to	make	a	big	rack	of	phones?	Well	maybe	you're	looking	for	this:

Usual	warning	about	how	sketchy	sites	may	or	may	not	scam	you,	do	your	own	research,	etc.	etc.	applies.

Arguably,	attacking	these	mechanisms	by	simply	controlling	thousands	of	fake	identities	like	a	puppetmaster
is	even	easier	than	having	to	go	through	the	trouble	of	bribing	people.	And	if	you	think	the	response	is	to	just
increase	security	to	go	up	to	government-level	IDs?	Well,	if	you	want	to	get	a	few	of	those	you	can	start
exploring	here,	but	keep	in	mind	that	there	are	specialized	criminal	organizations	that	are	well	ahead	of	you,
and	even	if	all	the	underground	ones	are	taken	down,	hostile	governments	are	definitely	going	to	create	fake
passports	by	the	millions	if	we're	stupid	enough	to	create	systems	that	make	that	sort	of	activity	profitable.
And	this	doesn't	even	begin	to	mention	attacks	in	the	opposite	direction,	identity-issuing	institutions
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attempting	to	disempower	marginalized	communities	by	denying	them	identity	documents...

Collusion

Given	that	so	many	mechanisms	seem	to	fail	in	such	similar	ways	once	multiple	identities	or	even	liquid
markets	get	into	the	picture,	one	might	ask,	is	there	some	deep	common	strand	that	causes	all	of	these
issues?	I	would	argue	the	answer	is	yes,	and	the	"common	strand"	is	this:	it	is	much	harder,	and	more	likely
to	be	outright	impossible,	to	make	mechanisms	that	maintain	desirable	properties	in	a	model	where
participants	can	collude,	than	in	a	model	where	they	can't.	Most	people	likely	already	have	some	intuition
about	this;	specific	instances	of	this	principle	are	behind	well-established	norms	and	often	laws	promoting
competitive	markets	and	restricting	price-fixing	cartels,	vote	buying	and	selling,	and	bribery.	But	the	issue	is
much	deeper	and	more	general.

In	the	version	of	game	theory	that	focuses	on	individual	choice	-	that	is,	the	version	that	assumes	that	each
participant	makes	decisions	independently	and	that	does	not	allow	for	the	possibility	of	groups	of	agents
working	as	one	for	their	mutual	benefit,	there	are	mathematical	proofs	that	at	least	one	stable	Nash
equilibrium	must	exist	in	any	game,	and	mechanism	designers	have	a	very	wide	latitude	to	"engineer"	games
to	achieve	specific	outcomes.	But	in	the	version	of	game	theory	that	allows	for	the	possibility	of	coalitions
working	together,	called	cooperative	game	theory,	there	are	large	classes	of	games	that	do	not	have	any
stable	outcome	that	a	coalition	cannot	profitably	deviate	from.

Majority	games,	formally	described	as	games	of	\(N\)	agents	where	any	subset	of	more	than	half	of	them	can
capture	a	fixed	reward	and	split	it	among	themselves,	a	setup	eerily	similar	to	many	situations	in	corporate
governance,	politics	and	many	other	situations	in	human	life,	are	part	of	that	set	of	inherently	unstable
games.	That	is	to	say,	if	there	is	a	situation	with	some	fixed	pool	of	resources	and	some	currently	established
mechanism	for	distributing	those	resources,	and	it's	unavoidably	possible	for	51%	of	the	participants	can
conspire	to	seize	control	of	the	resources,	no	matter	what	the	current	configuration	is	there	is	always	some
conspiracy	that	can	emerge	that	would	be	profitable	for	the	participants.	However,	that	conspiracy	would
then	in	turn	be	vulnerable	to	potential	new	conspiracies,	possibly	including	a	combination	of	previous
conspirators	and	victims...	and	so	on	and	so	forth.

Round A B C
1 1/3 1/3 1/3
2 1/2 1/2 0
3 2/3 0 1/3
4 0 1/3 2/3

This	fact,	the	instability	of	majority	games	under	cooperative	game	theory,	is	arguably	highly
underrated	as	a	simplified	general	mathematical	model	of	why	there	may	well	be	no	"end	of
history"	in	politics	and	no	system	that	proves	fully	satisfactory;	I	personally	believe	it's	much	more
useful	than	the	more	famous	Arrow's	theorem,	for	example.

There	are	two	ways	to	get	around	this	issue.	The	first	is	to	try	to	restrict	ourselves	to	the	class	of	games	that
are	"identity-free"	and	"collusion-safe",	so	where	we	do	not	need	to	worry	about	either	bribes	or	identities.
The	second	is	to	try	to	attack	the	identity	and	collusion	resistance	problems	directly,	and	actually	solve	them
well	enough	that	we	can	implement	non-collusion-safe	games	with	the	richer	properties	that	they	offer.

Identity-free	and	collusion-safe	game	design

The	class	of	games	that	is	identity-free	and	collusion-safe	is	substantial.	Even	proof	of	work	is	collusion-safe
up	to	the	bound	of	a	single	actor	having	~23.21%	of	total	hashpower,	and	this	bound	can	be	increased	up	to
50%	with	clever	engineering.	Competitive	markets	are	reasonably	collusion-safe	up	until	a	relatively	high
bound,	which	is	easily	reached	in	some	cases	but	in	other	cases	is	not.

In	the	case	of	governance	and	content	curation	(both	of	which	are	really	just	special	cases	of	the	general
problem	of	identifying	public	goods	and	public	bads)	a	major	class	of	mechanism	that	works	well	is	futarchy	-
typically	portrayed	as	"governance	by	prediction	market",	though	I	would	also	argue	that	the	use	of	security
deposits	is	fundamentally	in	the	same	class	of	technique.	The	way	futarchy	mechanisms,	in	their	most	general
form,	work	is	that	they	make	"voting"	not	just	an	expression	of	opinion,	but	also	a	prediction,	with	a	reward
for	making	predictions	that	are	true	and	a	penalty	for	making	predictions	that	are	false.	For	example,	my
proposal	for	"prediction	markets	for	content	curation	DAOs"	suggests	a	semi-centralized	design	where	anyone
can	upvote	or	downvote	submitted	content,	with	content	that	is	upvoted	more	being	more	visible,	where	there
is	also	a	"moderation	panel"	that	makes	final	decisions.	For	each	post,	there	is	a	small	probability
(proportional	to	the	total	volume	of	upvotes+downvotes	on	that	post)	that	the	moderation	panel	will	be	called
on	to	make	a	final	decision	on	the	post.	If	the	moderation	panel	approves	a	post,	everyone	who	upvoted	it	is
rewarded	and	everyone	who	downvoted	it	is	penalized,	and	if	the	moderation	panel	disapproves	a	post	the
reverse	happens;	this	mechanism	encourages	participants	to	make	upvotes	and	downvotes	that	try	to
"predict"	the	moderation	panel's	judgements.

https://en.wikipedia.org/wiki/Nash_equilibrium#Proof_of_existence
https://en.wikipedia.org/wiki/Bondareva%E2%80%93Shapley_theorem
https://web.archive.org/web/20180329012328/https://www.math.mcgill.ca/vetta/CS764.dir/Core.pdf
https://en.wikipedia.org/wiki/Arrow%27s_impossibility_theorem
https://arxiv.org/abs/1507.06183
https://eprint.iacr.org/2016/916.pdf
https://blog.ethereum.org/2014/08/21/introduction-futarchy/
https://ethresear.ch/t/prediction-markets-for-content-curation-daos/1312


Another	possible	example	of	futarchy	is	a	governance	system	for	a	project	with	a	token,	where	anyone	who
votes	for	a	decision	is	obligated	to	purchase	some	quantity	of	tokens	at	the	price	at	the	time	the	vote	begins	if
the	vote	wins;	this	ensures	that	voting	on	a	bad	decision	is	costly,	and	in	the	limit	if	a	bad	decision	wins	a	vote
everyone	who	approved	the	decision	must	essentially	buy	out	everyone	else	in	the	project.	This	ensures	that
an	individual	vote	for	a	"wrong"	decision	can	be	very	costly	for	the	voter,	precluding	the	possibility	of	cheap
bribe	attacks.

A	graphical	description	of	one	form	of	futarchy,	creating	two	markets	representing	the	two	"possible	future	worlds"	and
picking	the	one	with	a	more	favorable	price.	Source	this	post	on	ethresear.ch

However,	that	range	of	things	that	mechanisms	of	this	type	can	do	is	limited.	In	the	case	of	the	content
curation	example	above,	we're	not	really	solving	governance,	we're	just	scaling	the	functionality	of	a
governance	gadget	that	is	already	assumed	to	be	trusted.	One	could	try	to	replace	the	moderation	panel	with
a	prediction	market	on	the	price	of	a	token	representing	the	right	to	purchase	advertising	space,	but	in
practice	prices	are	too	noisy	an	indicator	to	make	this	viable	for	anything	but	a	very	small	number	of	very
large	decisions.	And	often	the	value	that	we're	trying	to	maximize	is	explicitly	something	other	than	maximum
value	of	a	coin.

Let's	take	a	more	explicit	look	at	why,	in	the	more	general	case	where	we	can't	easily	determine	the	value	of	a
governance	decision	via	its	impact	on	the	price	of	a	token,	good	mechanisms	for	identifying	public	goods	and
bads	unfortunately	cannot	be	identity-free	or	collusion-safe.	If	one	tries	to	preserve	the	property	of	a	game
being	identity-free,	building	a	system	where	identities	don't	matter	and	only	coins	do,	there	is	an
impossible	tradeoff	between	either	failing	to	incentivize	legitimate	public	goods	or	over-subsidizing
plutocracy.

The	argument	is	as	follows.	Suppose	that	there	is	some	author	that	is	producing	a	public	good	(eg.	a	series	of
blog	posts)	that	provides	value	to	each	member	of	a	community	of	10000	people.	Suppose	there	exists	some
mechanism	where	members	of	the	community	can	take	an	action	that	causes	the	author	to	receive	a	gain	of
$1.	Unless	the	community	members	are	extremely	altruistic,	for	the	mechanism	to	work	the	cost	of	taking	this
action	must	be	much	lower	than	$1,	as	otherwise	the	portion	of	the	benefit	captured	by	the	member	of	the
community	supporting	the	author	would	be	much	smaller	than	the	cost	of	supporting	the	author,	and	so	the
system	collapses	into	a	tragedy	of	the	commons	where	no	one	supports	the	author.	Hence,	there	must	exist	a
way	to	cause	the	author	to	earn	$1	at	a	cost	much	less	than	$1.	But	now	suppose	that	there	is	also	a	fake
community,	which	consists	of	10000	fake	sockpuppet	accounts	of	the	same	wealthy	attacker.	This	community
takes	all	of	the	same	actions	as	the	real	community,	except	instead	of	supporting	the	author,	they	support
another	fake	account	which	is	also	a	sockpuppet	of	the	attacker.	If	it	was	possible	for	a	member	of	the	"real
community"	to	give	the	author	$1	at	a	personal	cost	of	much	less	than	$1,	it's	possible	for	the	attacker	to	give
themselves	$1	at	a	cost	much	less	than	$1	over	and	over	again,	and	thereby	drain	the	system's	funding.	Any
mechanism	that	can	help	genuinely	under-coordinated	parties	coordinate	will,	without	the	right	safeguards,
also	help	already	coordinated	parties	(such	as	many	accounts	controlled	by	the	same	person)	over-coordinate,
extracting	money	from	the	system.

A	similar	challenge	arises	when	the	goal	is	not	funding,	but	rather	determining	what	content	should	be	most
visible.	What	content	do	you	think	would	get	more	dollar	value	supporting	it:	a	legitimately	high	quality	blog
article	benefiting	thousands	of	people	but	benefiting	each	individual	person	relatively	slightly,	or	this?

https://ethresear.ch/uploads/default/original/2X/4/4236db5226633dcc00bb4924f55db33488707488.png
https://en.wikipedia.org/wiki/Tragedy_of_the_commons


Or	perhaps	this?

Those	who	have	been	following	recent	politics	"in	the	real	world"	might	also	point	out	a	different	kind	of
content	that	benefits	highly	centralized	actors:	social	media	manipulation	by	hostile	governments.	Ultimately,
both	centralized	systems	and	decentralized	systems	are	facing	the	same	fundamental	problem,	which	is	that
the	"marketplace	of	ideas"	(and	of	public	goods	more	generally)	is	very	far	from	an	"efficient
market"	in	the	sense	that	economists	normally	use	the	term,	and	this	leads	to	both	underproduction	of
public	goods	even	in	"peacetime"	but	also	vulnerability	to	active	attacks.	It's	just	a	hard	problem.

This	is	also	why	coin-based	voting	systems	(like	Bihu's)	have	one	major	genuine	advantage	over	identity-based
systems	(like	the	Gitcoin	CLR	or	the	/r/ethtrader	donut	experiment):	at	least	there	is	no	benefit	to	buying
accounts	en	masse,	because	everything	you	do	is	proportional	to	how	many	coins	you	have,	regardless	of	how
many	accounts	the	coins	are	split	between.	However,	mechanisms	that	do	not	rely	on	any	model	of	identity
and	only	rely	on	coins	fundamentally	cannot	solve	the	problem	of	concentrated	interests	outcompeting
dispersed	communities	trying	to	support	public	goods;	an	identity-free	mechanism	that	empowers	distributed
communities	cannot	avoid	over-empowering	centralized	plutocrats	pretending	to	be	distributed	communities.

But	it's	not	just	identity	issues	that	public	goods	games	are	vulnerable	too;	it's	also	bribes.	To	see	why,
consider	again	the	example	above,	but	where	instead	of	the	"fake	community"	being	10001	sockpuppets	of
the	attacker,	the	attacker	only	has	one	identity,	the	account	receiving	funding,	and	the	other	10000	accounts
are	real	users	-	but	users	that	receive	a	bribe	of	$0.01	each	to	take	the	action	that	would	cause	the	attacker	to
gain	an	additional	$1.	As	mentioned	above,	these	bribes	can	be	highly	obfuscated,	even	through	third-party
custodial	services	that	vote	on	a	user's	behalf	in	exchange	for	convenience,	and	in	the	case	of	"coin	vote"
designs	an	obfuscated	bribe	is	even	easier:	one	can	do	it	by	renting	coins	on	the	market	and	using	them	to
participate	in	votes.	Hence,	while	some	kinds	of	games,	particularly	prediction	market	or	security	deposit
based	games,	can	be	made	collusion-safe	and	identity-free,	generalized	public	goods	funding	seems	to	be	a
class	of	problem	where	collusion-safe	and	identity-free	approaches	unfortunately	just	cannot	be	made	to
work.

Collusion	resistance	and	identity

The	other	alternative	is	attacking	the	identity	problem	head-on.	As	mentioned	above,	simply	going	up	to
higher-security	centralized	identity	systems,	like	passports	and	other	government	IDs,	will	not	work	at	scale;
in	a	sufficiently	incentivized	context,	they	are	very	insecure	and	vulnerable	to	the	issuing	governments
themselves!	Rather,	the	kind	of	"identity"	we	are	talking	about	here	is	some	kind	of	robust	multifactorial	set
of	claims	that	an	actor	identified	by	some	set	of	messages	actually	is	a	unique	individual.	A	very	early	proto-
model	of	this	kind	of	networked	identity	is	arguably	social	recovery	in	HTC's	blockchain	phone:



The	basic	idea	is	that	your	private	key	is	secret-shared	between	up	to	five	trusted	contacts,	in	such	a	way	that
mathematically	ensures	that	three	of	them	can	recover	the	original	key,	but	two	or	fewer	can't.	This	qualifies
as	an	"identity	system"	-	it's	your	five	friends	determining	whether	or	not	someone	trying	to	recover	your
account	actually	is	you.	However,	it's	a	special-purpose	identity	system	trying	to	solve	a	problem	-	personal
account	security	-	that	is	different	from	(and	easier	than!)	the	problem	of	attempting	to	identify	unique
humans.	That	said,	the	general	model	of	individuals	making	claims	about	each	other	can	quite	possibly	be
bootstrapped	into	some	kind	of	more	robust	identity	model.	These	systems	could	be	augmented	if	desired
using	the	"futarchy"	mechanic	described	above:	if	someone	makes	a	claim	that	someone	is	a	unique	human,
and	someone	else	disagrees,	and	both	sides	are	willing	to	put	down	a	bond	to	litigate	the	issue,	the	system
can	call	together	a	judgement	panel	to	determine	who	is	right.

But	we	also	want	another	crucially	important	property:	we	want	an	identity	that	you	cannot	credibly	rent	or
sell.	Obviously,	we	can't	prevent	people	from	making	a	deal	"you	send	me	$50,	I'll	send	you	my	key",	but	what
we	can	try	to	do	is	prevent	such	deals	from	being	credible	-	make	it	so	that	the	seller	can	easily	cheat	the
buyer	and	give	the	buyer	a	key	that	doesn't	actually	work.	One	way	to	do	this	is	to	make	a	mechanism	by
which	the	owner	of	a	key	can	send	a	transaction	that	revokes	the	key	and	replaces	it	with	another	key	of	the
owner's	choice,	all	in	a	way	that	cannot	be	proven.	Perhaps	the	simplest	way	to	get	around	this	is	to	either
use	a	trusted	party	that	runs	the	computation	and	only	publishes	results	(along	with	zero	knowledge	proofs
proving	the	results,	so	the	trusted	party	is	trusted	only	for	privacy,	not	integrity),	or	decentralize	the	same
functionality	through	multi-party	computation.	Such	approaches	will	not	solve	collusion	completely;	a	group
of	friends	could	still	come	together	and	sit	on	the	same	couch	and	coordinate	votes,	but	they	will	at	least
reduce	it	to	a	manageable	extent	that	will	not	lead	to	these	systems	outright	failing.

There	is	a	further	problem:	initial	distribution	of	the	key.	What	happens	if	a	user	creates	their	identity	inside
a	third-party	custodial	service	that	then	stores	the	private	key	and	uses	it	to	clandestinely	make	votes	on
things?	This	would	be	an	implicit	bribe,	the	user's	voting	power	in	exchange	for	providing	to	the	user	a
convenient	service,	and	what's	more,	if	the	system	is	secure	in	that	it	successfully	prevents	bribes	by	making
votes	unprovable,	clandestine	voting	by	third-party	hosts	would	also	be	undetectable.	The	only	approach	that
gets	around	this	problem	seems	to	be....	in-person	verification.	For	example,	one	could	have	an	ecosystem	of
"issuers"	where	each	issuer	issues	smart	cards	with	private	keys,	which	the	user	can	immediately	download
onto	their	smartphone	and	send	a	message	to	replace	the	key	with	a	different	key	that	they	do	not	reveal	to
anyone.	These	issuers	could	be	meetups	and	conferences,	or	potentially	individuals	that	have	already	been
deemed	by	some	voting	mechanic	to	be	trustworthy.

Building	out	the	infrastructure	for	making	collusion-resistant	mechanisms	possible,	including	robust
decentralized	identity	systems,	is	a	difficult	challenge,	but	if	we	want	to	unlock	the	potential	of	such
mechanisms,	it	seems	unavoidable	that	we	have	to	do	our	best	to	try.	It	is	true	that	the	current	computer-
security	dogma	around,	for	example,	introducing	online	voting	is	simply	"don't",	but	if	we	want	to	expand	the
role	of	voting-like	mechanisms,	including	more	advanced	forms	such	as	quadratic	voting	and	quadratic
finance,	to	more	roles,	we	have	no	choice	but	to	confront	the	challenge	head-on,	try	really	hard,	and	hopefully
succeed	at	making	something	secure	enough,	for	at	least	some	use	cases.

https://blog.ethereum.org/2014/12/26/secret-sharing-daos-crypto-2-0/
https://www.geekwire.com/2018/online-voting-dont-experts-say-report-americas-election-system-security/
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[Mirror]	Cantor	was	Wrong:	debunking	the
infinite	set	hierarchy

This	is	a	mirror	of	the	post	at	https://medium.com/@VitalikButerin/cantor-was-wrong-debunking-the-
infinite-set-hierarchy-e9ba5015102.

By	Vitalik	Buterin,	PhD	at	University	of	Basel	

A	common	strand	of	mathematics	argues	that,	rather	than	being	one	single	kind	of	infinity,	there	are
actually	an	infinite	hierarchy	of	different	levels	of	infinity.	Whereas	the	size	of	the	set	of	integers	is
just	plain	infinite,	and	the	set	of	rational	numbers	is	just	as	big	as	the	integers	(because	you	can	map
every	rational	number	to	an	integer	by	interleaving	the	digits	of	its	numerator	and	denominator,	eg.	\
(0.456456456....	=	\frac{456}{999}	=	\frac{152}{333}	\rightarrow	135323\)),	the	size	of	the	set	of
real	numbers	is	some	kind	of	even	bigger	infinity,	because	there	is	no	way	to	make	a	similar	mapping
from	real	numbers	to	the	integers.

First	of	all,	I	should	note	that	it's	relatively	easy	to	see	that	the	claim	that	there	is	no	mapping	is
false.	Here's	a	simple	mapping.	For	a	given	real	number,	give	me	a	(deterministic)	python	program
that	will	print	out	digits	of	it	(eg.	for	π,	that	might	be	a	program	that	calculates	better	and	better
approximations	using	the	infinite	series	\(\pi	=	4	-	\frac{4}{3}	+	\frac{4}{5}	-	\frac{4}{7}	+	...\)).	I
can	convert	the	program	into	a	number	(using	n	=	int.from_bytes(open('program.py').read(),	'big'))
and	then	output	the	number.	Done.	There's	the	mapping	from	real	numbers	to	integers.

Now	let's	take	a	look	at	the	most	common	argument	used	to	claim	that	no	such	mapping	can	exist,
namely	Cantor's	diagonal	argument.	Here's	an	exposition	from	UC	Denver;	it's	short	so	I'll	just
screenshot	the	whole	thing:

file:///home/runner/index.html
https://medium.com/@VitalikButerin/cantor-was-wrong-debunking-the-infinite-set-hierarchy-e9ba5015102
http://www.math.ucdenver.edu/~esulliva/Math3000/CantorDiag.pdf


Now,	here's	the	fundamental	flaw	in	this	argument:	decimal	expansions	of	real	numbers	are	not
unique.	To	provide	a	counterexample	in	the	exact	format	that	the	"proof"	requires,	consider	the	set
(numbers	written	in	binary),	with	diagonal	digits	bolded:

x[1]	=	0.000000...

x[2]	=	0.011111...

x[3]	=	0.001111...

x[4]	=	0.000111...

.....

The	diagonal	gives:	01111.....	If	we	flip	every	digit,	we	get	the	number:	\(y	=\)	0.10000......

And	here	lies	the	problem:	just	as	in	decimal,	0.9999....	equals	1,	in	binary	0.01111.....	equals
0.10000.....	And	so	even	though	the	new	decimal	expansion	is	not	in	the	original	list,	the	number	\(y\)

https://en.wikipedia.org/wiki/0.999...


is	exactly	the	same	as	the	number	\(x[2]\).

Note	that	this	directly	implies	that	the	halting	problem	is	in	fact	solvable.	To	see	why,	imagine	a
computer	program	that	someone	claims	will	not	halt.	Let	c[1]	be	the	state	of	the	program	after	one
step,	c[2]	after	two	steps,	etc.	Let	x[1],	x[2],	x[3]....	be	a	full	enumeration	of	all	real	numbers	(which
exists,	as	we	proved	above),	expressed	in	base	\(2^D\)	where	\(D\)	is	the	size	of	the	program's
memory,	so	a	program	state	can	always	be	represented	as	a	single	"digit".	Let	y	=	0.c[1]c[2]c[3]........
This	number	is	by	assumption	part	of	the	list,	so	it	is	one	of	the	x[i]	values,	and	hence	it	can	be
computed	in	some	finite	amount	of	time.	This	has	implications	in	a	number	of	industries,	particularly
in	proving	that	"Turing-complete"	blockchains	are	in	fact	secure.

Patent	on	this	research	is	pending.
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A	CBC	Casper	Tutorial

Special	thanks	to	Vlad	Zamfir,	Aditya	Asgaonkar,	Ameen	Soleimani	and	Jinglan	Wang	for	review

In	order	to	help	more	people	understand	"the	other	Casper"	(Vlad	Zamfir's	CBC	Casper),	and
specifically	the	instantiation	that	works	best	for	blockchain	protocols,	I	thought	that	I	would	write	an
explainer	on	it	myself,	from	a	less	abstract	and	more	"close	to	concrete	usage"	point	of	view.	Vlad's
descriptions	of	CBC	Casper	can	be	found	here	and	here	and	here;	you	are	welcome	and	encouraged
to	look	through	these	materials	as	well.

CBC	Casper	is	designed	to	be	fundamentally	very	versatile	and	abstract,	and	come	to	consensus	on
pretty	much	any	data	structure;	you	can	use	CBC	to	decide	whether	to	choose	0	or	1,	you	can	make	a
simple	block-by-block	chain	run	on	top	of	CBC,	or	a	\(2^{92}\)-dimensional	hypercube	tangle	DAG,
and	pretty	much	anything	in	between.

But	for	simplicity,	we	will	first	focus	our	attention	on	one	concrete	case:	a	simple	chain-based
structure.	We	will	suppose	that	there	is	a	fixed	validator	set	consisting	of	\(N\)	validators	(a	fancy
word	for	"staking	nodes";	we	also	assume	that	each	node	is	staking	the	same	amount	of	coins,	cases
where	this	is	not	true	can	be	simulated	by	assigning	some	nodes	multiple	validator	IDs),	time	is
broken	up	into	ten-second	slots,	and	validator	\(k\)	can	create	a	block	in	slot	\(k\),	\(N	+	k\),	\(2N	+
k\),	etc.	Each	block	points	to	one	specific	parent	block.	Clearly,	if	we	wanted	to	make	something
maximally	simple,	we	could	just	take	this	structure,	impose	a	longest	chain	rule	on	top	of	it,	and	call	it
a	day.

The	green	chain	is	the	longest	chain	(length	6)	so	it	is	considered	to	be	the	"canonical	chain".

However,	what	we	care	about	here	is	adding	some	notion	of	"finality"	-	the	idea	that	some	block	can
be	so	firmly	established	in	the	chain	that	it	cannot	be	overtaken	by	a	competing	block	unless	a	very
large	portion	(eg.	\(\frac{1}{4}\))	of	validators	commit	a	uniquely	attributable	fault	-	act	in	some	way
which	is	clearly	and	cryptographically	verifiably	malicious.	If	a	very	large	portion	of	validators	do	act
maliciously	to	revert	the	block,	proof	of	the	misbehavior	can	be	submitted	to	the	chain	to	take	away
those	validators'	entire	deposits,	making	the	reversion	of	finality	extremely	expensive	(think	hundreds
of	millions	of	dollars).

LMD	GHOST

We	will	take	this	one	step	at	a	time.	First,	we	replace	the	fork	choice	rule	(the	rule	that	chooses
which	chain	among	many	possible	choices	is	"the	canonical	chain",	ie.	the	chain	that	users	should
care	about),	moving	away	from	the	simple	longest-chain-rule	and	instead	using	"latest	message
driven	GHOST".	To	show	how	LMD	GHOST	works,	we	will	modify	the	above	example.	To	make	it
more	concrete,	suppose	the	validator	set	has	size	5,	which	we	label	\(A\),	\(B\),	\(C\),	\(D\),	\(E\),	so
validator	\(A\)	makes	the	blocks	at	slots	0	and	5,	validator	\(B\)	at	slots	1	and	6,	etc.	A	client
evaluating	the	LMD	GHOST	fork	choice	rule	cares	only	about	the	most	recent	(ie.	highest-slot)
message	(ie.	block)	signed	by	each	validator:
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Latest	messages	in	blue,	slots	from	left	to	right	(eg.	\(A\)'s	block	on	the	left	is	at	slot	0,	etc.)

Now,	we	will	use	only	these	messages	as	source	data	for	the	"greedy	heaviest	observed	subtree"
(GHOST)	fork	choice	rule:	start	at	the	genesis	block,	then	each	time	there	is	a	fork	choose	the	side
where	more	of	the	latest	messages	support	that	block's	subtree	(ie.	more	of	the	latest	messages
support	either	that	block	or	one	of	its	descendants),	and	keep	doing	this	until	you	reach	a	block	with
no	children.	We	can	compute	for	each	block	the	subset	of	latest	messages	that	support	either	the
block	or	one	of	its	descendants:

Now,	to	compute	the	head,	we	start	at	the	beginning,	and	then	at	each	fork	pick	the	higher	number:
first,	pick	the	bottom	chain	as	it	has	4	latest	messages	supporting	it	versus	1	for	the	single-block	top
chain,	then	at	the	next	fork	support	the	middle	chain.	The	result	is	the	same	longest	chain	as	before.
Indeed,	in	a	well-running	network	(ie.	the	orphan	rate	is	low),	almost	all	of	the	time	LMD	GHOST	and
the	longest	chain	rule	will	give	the	exact	same	answer.	But	in	more	extreme	circumstances,	this	is	not
always	true.	For	example,	consider	the	following	chain,	with	a	more	substantial	three-block	fork:

Scoring	blocks	by	chain	length.	If	we	follow	the	longest	chain	rule,	the	top	chain	is	longer,	so	the	top	chain	wins.

Scoring	blocks	by	number	of	supporting	latest	messages	and	using	the	GHOST	rule	(latest	message	from	each
validator	shown	in	blue).	The	bottom	chain	has	more	recent	support,	so	if	we	follow	the	LMD	GHOST	rule	the

bottom	chain	wins,	though	it's	not	yet	clear	which	of	the	three	blocks	takes	precedence.



The	LMD	GHOST	approach	is	advantageous	in	part	because	it	is	better	at	extracting	information	in
conditions	of	high	latency.	If	two	validators	create	two	blocks	with	the	same	parent,	they	should
really	be	both	counted	as	cooperating	votes	for	the	parent	block,	even	though	they	are	at	the	same
time	competing	votes	for	themselves.	The	longest	chain	rule	fails	to	capture	this	nuance;	GHOST-
based	rules	do.

Detecting	finality

But	the	LMD	GHOST	approach	has	another	nice	property:	it's	sticky.	For	example,	suppose	that	for
two	rounds,	\(\frac{4}{5}\)	of	validators	voted	for	the	same	chain	(we'll	assume	that	the	one	of	the
five	validators	that	did	not,	\(B\),	is	attacking):

What	would	need	to	actually	happen	for	the	chain	on	top	to	become	the	canonical	chain?	Four	of	five
validators	built	on	top	of	\(E\)'s	first	block,	and	all	four	recognized	that	\(E\)	had	a	high	score	in	the
LMD	fork	choice.	Just	by	looking	at	the	structure	of	the	chain,	we	can	know	for	a	fact	at	least	some	of
the	messages	that	the	validators	must	have	seen	at	different	times.	Here	is	what	we	know	about	the
four	validators'	views:

A's	view C's	view

D's	view E's	view

Blocks	produced	by	each	validator	in	green,	the	latest	messages	we	know	that	they	saw	from	each	of	the	other
validators	in	blue.

Note	that	all	four	of	the	validators	could	have	seen	one	or	both	of	\(B\)'s	blocks,	and	\(D\)	and	\(E\)
could	have	seen	\(C\)'s	second	block,	making	that	the	latest	message	in	their	views	instead	of	\(C\)'s
first	block;	however,	the	structure	of	the	chain	itself	gives	us	no	evidence	that	they	actually	did.
Fortunately,	as	we	will	see	below,	this	ambiguity	does	not	matter	for	us.

\(A\)'s	view	contains	four	latest-messages	supporting	the	bottom	chain,	and	none	supporting	\(B\)'s
block.	Hence,	in	(our	simulation	of)	\(A\)'s	eyes	the	score	in	favor	of	the	bottom	chain	is	at	least	4-1.
The	views	of	\(C\),	\(D\)	and	\(E\)	paint	a	similar	picture,	with	four	latest-messages	supporting	the
bottom	chain.	Hence,	all	four	of	the	validators	are	in	a	position	where	they	cannot	change	their	minds
unless	two	other	validators	change	their	minds	first	to	bring	the	score	to	2-3	in	favor	of	\(B\)'s	block.

Note	that	our	simulation	of	the	validators'	views	is	"out	of	date"	in	that,	for	example,	it	does	not
capture	that	\(D\)	and	\(E\)	could	have	seen	the	more	recent	block	by	\(C\).	However,	this	does	not
alter	the	calculation	for	the	top	vs	bottom	chain,	because	we	can	very	generally	say	that	any
validator's	new	message	will	have	the	same	opinion	as	their	previous	messages,	unless	two	other
validators	have	already	switched	sides	first.



A	minimal	viable	attack.	\(A\)	and	\(C\)	illegally	switch	over	to	support	\(B\)'s	block	(and	can	get
penalized	for	this),	giving	it	a	3-2	advantage,	and	at	this	point	it	becomes	legal	for	\(D\)	and	\(E\)	to

also	switch	over.

Since	fork	choice	rules	such	as	LMD	GHOST	are	sticky	in	this	way,	and	clients	can	detect	when	the
fork	choice	rule	is	"stuck	on"	a	particular	block,	we	can	use	this	as	a	way	of	achieving	asynchronously
safe	consensus.

Safety	Oracles

Actually	detecting	all	possible	situations	where	the	chain	becomes	stuck	on	some	block	(in	CBC	lingo,
the	block	is	"decided"	or	"safe")	is	very	difficult,	but	we	can	come	up	with	a	set	of	heuristics	("safety
oracles")	which	will	help	us	detect	some	of	the	cases	where	this	happens.	The	simplest	of	these	is	the
clique	oracle.	If	there	exists	some	subset	\(V\)	of	the	validators	making	up	portion	\(p\)	of	the	total
validator	set	(with	\(p	>	\frac{1}{2}\))	that	all	make	blocks	supporting	some	block	\(B\)	and	then
make	another	round	of	blocks	still	supporting	\(B\)	that	references	their	first	round	of	blocks,	then	we
can	reason	as	follows:

Because	of	the	two	rounds	of	messaging,	we	know	that	this	subset	\(V\)	all	(i)	support	\(B\)	(ii)	know
that	\(B\)	is	well-supported,	and	so	none	of	them	can	legally	switch	over	unless	enough	others	switch
over	first.	For	some	competing	\(B'\)	to	beat	out	\(B\),	the	support	such	a	\(B'\)	can	legally	have	is
initially	at	most	\(1-p\)	(everyone	not	part	of	the	clique),	and	to	win	the	LMD	GHOST	fork	choice	its
support	needs	to	get	to	\(\frac{1}{2}\),	so	at	least	\(\frac{1}{2}	-	(1-p)	=	p	-	\frac{1}{2}\)	need	to
illegally	switch	over	to	get	it	to	the	point	where	the	LMD	GHOST	rule	supports	\(B'\).

As	a	specific	case,	note	that	the	\(p=\frac{3}{4}\)	clique	oracle	offers	a	\(\frac{1}{4}\)	level	of
safety,	and	a	set	of	blocks	satisfying	the	clique	can	(and	in	normal	operation,	will)	be	generated	as
long	as	\(\frac{3}{4}\)	of	nodes	are	online.	Hence,	in	a	BFT	sense,	the	level	of	fault	tolerance	that	can
be	reached	using	two-round	clique	oracles	is	\(\frac{1}{3}\),	in	terms	of	both	liveness	and	safety.

This	approach	to	consensus	has	many	nice	benefits.	First	of	all,	the	short-term	chain	selection
algorithm,	and	the	"finality	algorithm",	are	not	two	awkwardly	glued	together	distinct	components,	as
they	admittedly	are	in	Casper	FFG;	rather,	they	are	both	part	of	the	same	coherent	whole.	Second,
because	safety	detection	is	client-side,	there	is	no	need	to	choose	any	thresholds	in-protocol;	clients
can	decide	for	themselves	what	level	of	safety	is	sufficient	to	consider	a	block	as	finalized.

Going	Further

CBC	can	be	extended	further	in	many	ways.	First,	one	can	come	up	with	other	safety	oracles;	higher-
round	clique	oracles	can	reach	\(\frac{1}{3}\)	fault	tolerance.	Second,	we	can	add	validator	rotation
mechanisms.	The	simplest	is	to	allow	the	validator	set	to	change	by	a	small	percentage	every	time	the
\(q=\frac{3}{4}\)	clique	oracle	is	satisfied,	but	there	are	other	things	that	we	can	do	as	well.	Third,
we	can	go	beyond	chain-like	structures,	and	instead	look	at	structures	that	increase	the	density	of
messages	per	unit	time,	like	the	Serenity	beacon	chain's	attestation	structure:

In	this	case,	it	becomes	worthwhile	to	separate	attestations	from	blocks;	a	block	is	an	object	that



actually	grows	the	underlying	DAG,	whereas	an	attestation	contributes	to	the	fork	choice	rule.	In	the
Serenity	beacon	chain	spec,	each	block	may	have	hundreds	of	attestations	corresponding	to	it.
However,	regardless	of	which	way	you	do	it,	the	core	logic	of	CBC	Casper	remains	the	same.

To	make	CBC	Casper's	safety	"cryptoeconomically	enforceable",	we	need	to	add	validity	and	slashing
conditions.	First,	we'll	start	with	the	validity	rule.	A	block	contains	both	a	parent	block	and	a	set	of
attestations	that	it	knows	about	that	are	not	yet	part	of	the	chain	(similar	to	"uncles"	in	the	current
Ethereum	PoW	chain).	For	the	block	to	be	valid,	the	block's	parent	must	be	the	result	of	executing	the
LMD	GHOST	fork	choice	rule	given	the	information	included	in	the	chain	including	in	the	block	itself.

Dotted	lines	are	uncle	links,	eg.	when	E	creates	a	block,	E	notices	that	C	is	not	yet	part	of	the	chain,	and	so	includes
a	reference	to	C.

We	now	can	make	CBC	Casper	safe	with	only	one	slashing	condition:	you	cannot	make	two
attestations	\(M_1\)	and	\(M_2\),	unless	either	\(M_1\)	is	in	the	chain	that	\(M_2\)	is	attesting	to	or	\
(M_2\)	is	in	the	chain	that	\(M_2\)	is	attesting	to.

OK Not	OK

The	validity	and	slashing	conditions	are	relatively	easy	to	describe,	though	actually	implementing
them	requires	checking	hash	chains	and	executing	fork	choice	rules	in-consensus,	so	it	is	not	nearly
as	simple	as	taking	two	messages	and	checking	a	couple	of	inequalities	between	the	numbers	that
these	messages	commit	to,	as	you	can	do	in	Casper	FFG	for	the	NO_SURROUND	and	NO_DBL_VOTE	slashing
conditions.

Liveness	in	CBC	Casper	piggybacks	off	of	the	liveness	of	whatever	the	underlying	chain	algorithm	is
(eg.	if	it's	one-block-per-slot,	then	it	depends	on	a	synchrony	assumption	that	all	nodes	will	see
everything	produced	in	slot	\(N\)	before	the	start	of	slot	\(N+1\)).	It's	not	possible	to	get	"stuck"	in
such	a	way	that	one	cannot	make	progress;	it's	possible	to	get	to	the	point	of	finalizing	new	blocks
from	any	situation,	even	one	where	there	are	attackers	and/or	network	latency	is	higher	than	that
required	by	the	underlying	chain	algorithm.

Suppose	that	at	some	time	\(T\),	the	network	"calms	down"	and	synchrony	assumptions	are	once
again	satisfied.	Then,	everyone	will	converge	on	the	same	view	of	the	chain,	with	the	same	head	\(H\).
From	there,	validators	will	begin	to	sign	messages	supporting	\(H\)	or	descendants	of	\(H\).	From
there,	the	chain	can	proceed	smoothly,	and	will	eventually	satisfy	a	clique	oracle,	at	which	point	\(H\)
becomes	finalized.

Chaotic	network	due	to	high	latency.
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Network	latency	subsides,	a	majority	of	validators	see	all	of	the	same	blocks	or	at	least	enough	of	them	to	get	to	the
same	head	when	executing	the	fork	choice,	and	start	building	on	the	head,	further	reinforcing	its	advantage	in	the

fork	choice	rule.

Chain	proceeds	"peacefully"	at	low	latency.	Soon,	a	clique	oracle	will	be	satisfied.

That's	all	there	is	to	it!	Implementation-wise,	CBC	may	arguably	be	considerably	more	complex	than
FFG,	but	in	terms	of	ability	to	reason	about	the	protocol,	and	the	properties	that	it	provides,	it's
surprisingly	simple.
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[Mirror]	Central	Planning	as	Overfitting

This	is	a	mirror	of	the	post	at	https://radicalxchange.org/blog/posts/2018-11-26-4m9b8b/	written	by
myself	and	Glen	Weyl

There	is	an	intuition	shared	by	many	that	"central	planning"	—	command-and-control	techniques	for
allocating	resources	in	economies,	and	fine-grained	knob-turning	interventionism	more	generally	—
is	undesirable.	There's	quite	a	lot	to	this,	but	it	is	often	misapplied	in	a	way	that	also	leads	it	to	go
under-appreciated.	In	this	post	we	try	to	clarify	the	appropriate	scope	of	the	intuition.

Some	recent	examples	of	the	intuition	being	misapplied	are:

People	arguing	that	relatively	simple	entitlement	programs	like	Social	Security	are	burdensome
government	intervention,	while	elaborate	and	often	discretionary	tax	breaks	conditional	on
specific	behaviors	are	a	good	step	towards	less	government.
People	arguing	that	block	size	limits	in	cryptocurrencies,	which	impose	a	hard	cap	on	the
number	of	transactions	that	each	block	can	contain,	are	a	form	of	central	planning,	but	who	do
not	argue	against	other	centrally	planned	parameters,	eg.	the	targeted	ten	minute	(or	whatever)
average	time	interval	between	blocks.
People	arguing	that	a	lack	of	block	size	limits	constitutes	central	planning	(!!)
People	arguing	that	fixed	transaction	fees	constitute	central	planning,	but	variable	transaction
fees	that	arise	out	of	an	equilibrium	itself	created	by	a	fixed	block	size	limit	do	not.
We	were	recently	at	a	discussion	in	policy	circles	in	Washington,	where	one	of	us	was	arguing
for	a	scheme	based	on	Harberger	taxes	for	spectrum	licenses,	debating	against	someone
defending	more	conventional	perpetual	monopoly	licenses	on	spectrum	aggregated	at	large
levels	that	would	tend	to	create	a	few	national	cellular	carriers.	The	latter	side	argued	that	the
Harberger	tax	scheme	constituted	unacceptable	bureaucratic	interventionism,	but	seemed	to
believe	that	permanent	government-issued	monopoly	privileges	are	a	property	right	as	natural
as	apples	falling	from	a	tree.

While	we	do	not	entirely	dismiss	this	last	example,	for	reasons	we	will	return	to	later,	it	does	seem
overplayed.	Similarly	and	conversely,	we	see	many	examples	where,	in	the	name	of	defending	or
promoting	"markets"	(or	at	least	"economic	rationality")	many	professional	economists	advocate
schemes	that	seem	much	more	to	us	like	central	planning	than	the	systems	they	seek	to	replace:

The	most	systematic	example	of	this	is	the	literature	on	"optimal	mechanism	design,"	which
began	with	the	already	extremely	complicated	and	fragile	Vickrey-Clarke-Groves	mechanism
and	has	only	gotten	more	byzantine	from	there.	While	Vickrey's	motivation	for	these	ideas	was
to	discover	relatively	simple	rules	that	would	correct	the	flaws	of	standard	capitalism,	he
acknowledged	in	his	paper	that	the	design	was	highly	complex	in	its	direct	application	and
urged	future	researchers	to	find	simplifications.	Instead	of	following	this	counsel,	many	scholars
have	proposed,	for	example,	schemes	that	rely	on	a	central	authority	being	able	to	specify	an
infinite	dimensional	set	of	prior	beliefs.	These	schemes,	we	submit,	constitute	"central	planning"
in	precisely	the	sense	we	should	be	concerned	with.
Furthermore,	these	designs	are	not	just	matters	of	theory,	but	in	practice	many	applied
mechanism	designers	have	created	systems	with	similar	properties.	The	recent	United	States
Spectrum	Incentive	auctions	(designed	by	a	few	prominent	economists	and	computer	scientists)
centralized	the	enforcement	of	potential	conflicts	between	transmission	rights	using	an
extremely	elaborate	and	opaque	computational	engine,	rather	than	allowing	conflicts	to	be
resolved	through	(for	example)	common	law	liability	lawsuits	as	other	interference	between
property	claims	and	land	uses	are.	A	recent	design	for	the	allocation	of	courses	to	students	at
the	University	of	Pennsylvania	designed	by	a	similar	team	requires	students	to	express	their
preferences	over	courses	on	a	novel	numerical	scale,	allowing	them	only	narrow	language	for
expressing	complementarities	and	substitutability	between	courses	and	then	uses	a	state-of-the-
art	optimization	engine	to	allocate	courses.	Auction	systems	designed	by	economists	and
computer	scientists	at	large	technology	companies,	like	Facebook	and	Google,	are	even	richer
and	less	transparent,	and	have	created	substantial	backlash,	inspiring	a	whole	industry	of	firms
that	help	advertisers	optimize	their	bidding	in	elaborate	ways	against	these	systems.
This	problem	does	not	merely	arise	in	mechanism	design,	however.	In	the	fields	of	industrial
organization	(the	basis	of	much	antitrust	economics)	and	the	field	of	macroeconomics	(the	basis
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of	much	monetary	policy),	extremely	elaborate	models	with	hundreds	of	parameters	are
empirically	estimated	and	used	to	simulate	the	effects	of	mergers	or	changes	in	monetary
policy.	These	models	are	usually	difficult	to	explain	even	to	experts	in	the	field,	much	less
democratically-elected	politicians,	judges	or,	god	forbid,	voters.	And	yet	the	confidence	we	have
in	these	models,	the	empirical	evidence	validating	their	accuracy,	etc.	is	almost	nothing.
Nonetheless,	economists	consistently	promote	such	methods	as	"the	state	of	the	art"	and	they
are	generally	viewed	positively	by	defenders	of	the	"market	economy".

To	understand	why	we	think	the	concept	of	"intervention"	is	being	misapplied	here,	we	need	to
understand	two	different	ways	of	measuring	the	extent	to	which	some	scheme	is	"interventionist".
The	first	approach	is	to	try	to	measure	the	absolute	magnitude	of	distortion	relative	to	some
imagined	state	of	nature	(anarcho-primitivism,	or	a	blockchain	with	no	block	size	limits,	or...).
However,	this	approach	clearly	fails	to	capture	the	intuitions	of	why	central	planning	is	undesirable.
For	example,	property	rights	in	the	physical	world	are	a	large	intervention	into	almost	every	person's
behavior,	considerably	limiting	the	actions	that	we	can	take	every	day.	Many	of	these	restrictions	are
actually	of	quite	recent	historical	provenance	(beginning	with	agriculture,	and	mostly	in	the	West
and	not	the	East	or	Middle	East).	However,	opponents	of	central	planning	often	tend	to	be	the
strongest	proponents	of	property	rights!

We	can	shed	some	light	on	this	puzzle	by	looking	at	another	way	of	measuring	the	"central-planny-
ness"	of	some	social	structure:	in	short,	measure	the	number	of	knobs.	Property	rights	actually	score
quite	well	here:	every	piece	of	property	is	allocated	to	some	person	or	legal	entity,	they	can	use	it	as
they	wish,	and	no	one	else	can	touch	it	without	their	permission.	There	are	choices	to	make	around
the	edges	(eg.	adverse	possession	rights),	but	generally	there	isn't	too	much	room	for	changing	the
scheme	around	(though	note	that	privatization	schemes,	ie.	transitions	from	something	other	than
property	rights	to	property	rights	like	the	auctions	we	discussed	above,	have	very	many	knobs,	and
so	there	we	can	see	more	risks).	Command-and-control	regulations	with	ten	thousand	clauses	(or
market	designs	that	specify	elaborate	probabilistic	objects,	or	optimization	protocols,	etc.),	or
attempts	to	limit	use	of	specific	features	of	the	blockchain	to	drive	out	specific	categories	of	users,
are	much	less	desirable,	as	such	strategies	leave	many	more	choices	to	central	planners.	A	block	size
limit	and	a	fixed	transaction	fee	(or	carbon	taxes	and	a	cap-and-trade	scheme)	have	the	exact	same
level	of	"central-planny-ness"	to	them:	one	variable	(either	quantity	or	price)	is	fixed	in	the	protocol,
and	the	other	variable	is	left	to	the	market.

Here	are	some	key	underlying	reasons	why	we	believe	that	simple	social	systems	with	fewer	knobs
are	so	desirable:

They	have	fewer	moving	parts	that	can	fail	or	otherwise	have	unexpected	effects.
They	are	less	likely	to	overfit.	If	a	social	system	is	too	complex,	there	are	many	parameters	to
set	and	relatively	few	experiences	to	draw	from	when	setting	the	parameters,	making	it	more
likely	that	the	parameters	will	be	set	to	overfit	to	one	context,	and	generalize	poorly	to	other
places	or	to	future	times.	We	know	little,	and	we	should	not	design	systems	that	demand	us	to
know	a	lot.
They	are	more	resistant	to	corruption.	If	a	social	system	is	simpler,	it	is	more	difficult	(not
impossible,	but	still	more	difficult)	to	set	parameters	in	ways	that	encode	attempts	to	privilege
or	anti-privilege	specific	individuals,	factions	or	communities.	This	is	not	only	good	because	it
leads	to	fairness,	it	is	also	good	because	it	leads	to	less	zero-sum	conflict.
They	can	more	easily	achieve	legitimacy.	Because	simpler	systems	are	easier	to	understand,
and	easier	for	people	to	understand	that	a	given	implementation	is	not	unfairly	privileging
special	interests,	it	is	easier	to	create	common	knowledge	that	the	system	is	fair,	creating	a
stronger	sense	of	trust.	Legitimacy	is	perhaps	the	central	virtue	of	social	institutions,	as	it
sustains	cooperation	and	coordination,	enables	the	possibility	of	democracy	(how	can	you
democratically	participate	and	endorse	a	system	you	do	not	understand?)	and	allows	for	a
bottoms-up,	rather	than	top-down,	creation	of	a	such	a	system,	ensuring	it	can	be	implemented
without	much	coercion	or	violence.

These	effects	are	not	always	achieved	(for	example,	even	if	a	system	has	very	few	knobs,	it's	often
the	case	that	there	exists	a	knob	that	can	be	turned	to	privilege	well-connected	and	wealthy	people
as	a	class	over	everyone	else),	but	the	simpler	a	system	is,	the	more	likely	the	effects	are	to	be
achieved.

While	avoiding	over-complexity	and	overfit	in	personal	decision-making	is	also	important,	avoiding
these	issues	in	large-scale	social	systems	is	even	more	important,	because	of	the	inevitable	possibility
of	powerful	forces	attempting	to	manipulate	knobs	for	the	benefit	of	special	interests,	and	the	need
to	achieve	common	knowledge	that	the	system	has	not	been	greatly	corrupted,	to	the	point	where	the
fairness	of	the	system	is	obvious	even	to	unsophisticated	observers.
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This	is	not	to	condemn	all	forms	or	uses	of	complexity	in	social	systems.	Most	science	and	the	inner
workings	of	many	technical	systems	are	likely	to	be	opaque	to	the	public	but	this	does	not	mean
science	or	technology	is	useless	in	social	life;	far	from	it.	However,	these	systems,	to	gain	legitimacy,
usually	show	that	they	can	reliably	achieve	some	goal,	which	is	transparent	and	verifiable.	Planes
land	safely	and	on	time,	computational	systems	seem	to	deliver	calculations	that	are	correct,	etc.	It	is
by	this	process	of	verification,	rather	than	by	the	transparency	of	the	system	per	se,	that	such
systems	gain	their	legitimacy.	However,	for	many	social	systems,	truly	large-scale,	repeatable	tests
are	difficult	if	not	impossible.	As	such,	simplicity	is	usually	critical	to	legitimacy.

Different	Notions	of	Simplicity
However,	there	is	one	class	of	social	systems	that	seem	to	be	desirable,	and	that	intellectual
advocates	of	minimizing	central	planning	tend	to	agree	are	desirable,	that	don't	quite	fit	the	simple
"few	knobs"	characterization	that	we	made	above.	For	example,	consider	common	law.	Common	law
is	built	up	over	thousands	of	precedents,	and	contains	a	large	number	of	concepts	(eg.	see	this	list
under	"property	law",	itself	only	a	part	of	common	law;	have	you	heard	of	"quicquid	plantatur	solo,
solo	cedit"	before?).	However,	proponents	of	private	property	are	very	frequently	proponents	of
common	law.	So	what	gives?

Here,	we	need	to	make	a	distinction	between	redundant	complexity,	or	many	knobs	that	really	all
serve	a	relatively	small	number	of	similar	goals,	and	optimizing	complexity,	in	the	extreme	one	knob
per	problem	that	the	system	has	encountered.	In	computational	complexity	theory,	we	typically	talk
about	Kolmogorov	complexity,	but	there	are	other	notions	of	complexity	that	are	also	useful	here,
particularly	VC	dimension	-	roughly,	the	size	of	the	largest	set	of	situations	for	which	we	can	turn	the
knobs	in	a	particular	way	to	achieve	any	particular	set	of	outcomes.	Many	successful	machine
learning	techniques,	such	as	Support	Vector	Machines	and	Boosting,	are	quite	complex,	both	in	the
formal	Kolmogorov	sense	and	in	terms	of	the	outcomes	they	produce,	but	can	be	proven	to	have	low
VC	dimension.

VC	dimension	does	a	nice	job	capturing	some	of	the	arguments	for	simplicity	mentioned	above	more
explicitly,	for	example:

A	system	with	low	VC	dimension	may	have	some	moving	parts	that	fail,	but	if	it	does,	its
different	constituent	parts	can	correct	for	each	other.	By	construction,	it	has	built	in	resilience
through	redundancy
Low	VC	dimension	is	literally	a	measure	of	resistance	to	overfit.
Low	VC	dimension	leads	to	resistance	to	corruption,	because	if	VC	dimension	is	low,	a	corrupt
or	self-interested	party	in	control	of	some	knobs	will	not	as	easily	be	able	to	achieve	some
particular	outcome	that	they	desire.	In	particular,	this	agent	will	be	"checked	and	balanced"	by
other	parts	of	the	system	that	redundantly	achieve	the	originally	desired	ends.
They	can	achieve	legitimacy	because	people	can	randomly	check	a	few	parts	and	verify	in	detail
that	those	parts	work	in	ways	that	are	reasonable,	and	assume	that	the	rest	of	the	system	works
in	a	similar	way.	An	example	of	this	was	the	ratification	of	the	United	States	Constitution	which,
while	quite	elaborate,	was	primarily	elaborate	in	the	redundancy	with	which	it	applied	the
principle	of	checks	and	balances	of	power.	Thus	most	citizens	only	read	one	or	a	few	of	The
Federalist	Papers	that	explained	and	defended	the	Constitution,	and	yet	got	a	reasonable	sense
for	what	was	going	on.

This	is	not	as	clean	and	convenient	as	a	system	with	low	Kolmogorov	complexity,	but	still	much
better	than	a	system	with	high	complexity	where	the	complexity	is	"optimizing"	(for	an	example	of
this	in	the	blockchain	context,	see	Vitalik's	opposition	and	alternative	to	on-chain	governance).	The
primary	disadvantage	we	see	in	Kolmogorov	complex	but	VC	simple	designs	is	for	new	social
institutions,	where	it	may	be	hard	to	persuade	the	public	that	these	are	VC	simple.	VC	simplicity	is
usually	easier	as	a	basis	for	legitimacy	when	an	institutions	has	clearly	been	built	up	without	any
clear	design	over	a	long	period	of	time	or	by	a	large	committee	of	people	with	conflicting	interests
(as	with	the	United	States	Constitution).	Thus	when	offering	innovations	we	tend	to	focus	more	on
Kolmogorov	simplicity	and	hope	many	redundant	each	Kolmogorov-simple	elements	will	add	up	to	a
VC-simple	system.	However,	we	may	just	not	have	the	imagination	to	think	of	how	VC	simplicity
might	be	effectively	explained.

There	are	forms	of	the	"avoid	central	planning"	intuition	that	are	misunderstandings	and	ultimately
counterproductive.	For	example,	try	to	automatically	seize	upon	designs	that	seem	at	first	glance	to
"look	like	a	market",	because	not	all	markets	are	created	equal.	For	example,	one	of	us	has	argued
for	using	fixed	prices	in	certain	settings	to	reduce	uncertainty,	and	the	other	has	(for	similar
information	sharing	reasons)	argued	for	auctions	that	are	a	synthesis	of	standard	descending	price
Dutch	and	ascending	price	English	auctions	(Channel	auctions).	That	said,	it	is	also	equally	a	large
error	to	throw	the	intuition	away	entirely.	Rather,	it	is	a	valuable	and	important	insight	that	can
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easily	is	central	to	the	methodology	we	have	been	recently	trying	to	develop.	Simplicity	to	Whom?	Or
Why	Humanities	Matter

However,	the	academic	critics	of	this	type	of	work	are	not	simply	confused.	There	is	a	reasonable
basis	for	unease	with	discussions	of	"simplicity"	because	they	inevitably	contain	a	degree	of
subjectivity.	What	is	"simple"	to	describe	or	appears	to	have	few	knobs	in	one	language	for
describing	it	is	devilishly	complex	in	another,	and	vice	versa.	A	few	examples	should	help	illuminate
the	point:

We	have	repeatedly	referred	to	"knobs",	which	are	roughly	real	valued	parameters.	But	real-
valued	parameters	can	encode	an	arbitrary	amount	of	complexity.	For	example,	I	could	claim	my
system	has	only	one	knob,	it	is	just	that	slight	changes	in	the	1000th	decimal	place	of	the	setting
of	that	knob	end	up	determining	incredibly	important	properties	of	the	system.	This	may	seem
cheap,	but	more	broadly	it	is	the	case	that	non-linear	mappings	between	systems	can	make	one
system	seem	"simple"	and	another	"complex"	and	in	general	there	is	just	no	way	to	say	which	is
right.
Many	think	of	the	electoral	system	of	the	United	States	as	"simple",	and	yet,	if	one	reflects	on	it
or	tries	to	explain	it	to	a	foreigner,	it	is	almost	impossible	to	describe.	It	is	familiar,	not	simple,
and	we	just	have	given	a	label	to	it	("the	American	system")	that	lets	us	refer	to	it	in	a	few
words.	Systems	like	Quadratic	Voting,	or	ranked	choice	voting,	are	often	described	as	complex,
but	this	seems	to	have	more	to	do	with	lack	of	familiarity	than	complexity.
Many	scientific	concepts,	such	as	the	"light	cone",	are	the	simplest	thing	possible	once	one
understands	special	relativity	and	yet	are	utterly	foreign	and	bizarre	without	having	wrapped
one's	hands	around	this	theory.

Even	Kolmogorov	complexity	(length	of	the	shortest	computer	program	that	encodes	some	given
system)	is	relative	to	some	programming	language.	Now,	to	some	extent,	VC	dimension	offers	a
solution:	it	says	that	a	class	of	systems	is	simple	if	it	is	not	too	flexible.	But	consider	what	happens
when	you	try	to	apply	this;	to	do	so,	let's	return	to	our	example	upfront	about	Harberger	taxes	v.
perpetual	licenses	for	spectrum.

Harberger	taxes	strike	us	as	quite	simple:	there	is	a	single	tax	rate	(and	the	theory	even	says	this	is
tied	down	by	the	rate	at	which	assets	turnover,	at	least	if	we	want	to	maximally	favor	allocative
efficiency)	and	the	system	can	be	described	in	a	sentence	or	two.	It	seems	pretty	clear	that	such	a
system	could	not	be	contorted	to	achieve	arbitrary	ends.	However,	an	opponent	could	claim	that	we
chose	the	Harberger	tax	from	an	array	of	millions	of	possible	mechanisms	of	a	similar	class	to
achieve	a	specific	objective,	and	it	just	sounds	simple	(as	with	our	examples	of	"deceptive"	simplicity
above).

To	counter	this	argument,	we	would	respond	that	the	Harberger	tax,	or	very	similar	ideas,	have	been
repeatedly	discovered	or	used	(to	some	success)	throughout	human	history,	beginning	with	the
Greeks,	and	that	we	do	not	propose	this	system	simply	for	spectrum	licenses	but	in	a	wide	range	of
contexts.	The	chances	that	in	all	these	contexts	we	are	cherry-picking	the	system	to	"fit"	that	setting
seems	low.	We	would	submit	to	the	critic	to	judge	whether	it	is	really	plausible	that	all	these
historical	circumstances	and	these	wide	range	of	applications	just	"happen"	to	coincide.

Focusing	on	familiarity	(ie.	conservatism),	rather	than	simplicity	in	some	abstract	mathematical
sense,	also	carries	many	of	the	benefits	of	simplicity	as	we	described	above;	after	all,	familiarity	is
simplicity,	if	the	language	we	are	using	to	describe	ideas	includes	references	to	our	shared	historical
experience.	Familiar	mechanisms	also	have	the	benefit	that	we	have	more	knowledge	of	how	similar
ideas	historically	worked	in	practice.	So	why	not	just	be	conservative,	and	favor	perpetual	property
licenses	strongly	over	Harberger	taxes?

There	are	three	flaws	in	that	logic,	it	seems	to	us.	First,	to	the	extent	it	is	applied,	it	should	be
applied	uniformly	to	all	innovation,	not	merely	to	new	social	institutions.	Technologies	like	the
internet	have	contributed	greatly	to	human	progress,	but	have	also	led	to	significant	social
upheavals;	this	is	not	a	reason	to	stop	trying	to	advance	our	technologies	and	systems	for
communication,	and	it	is	not	a	reason	to	stop	trying	to	advance	our	social	technologies	for	allocating
scarce	resources.

Second,	the	benefits	of	innovation	are	real,	and	social	institutions	stand	to	benefit	from	growing
human	intellectual	progress	as	much	as	everything	else.	The	theoretical	case	for	Harberger	taxes
providing	efficiency	benefits	is	strong,	and	there	is	great	social	value	in	doing	small	and	medium-
scale	experiments	to	try	ideas	like	them	out.	Investing	in	experiments	today	increases	what	we	know,
and	so	increases	the	scope	of	what	can	be	done	"conservatively"	tomorrow.

Third,	and	most	importantly,	the	cultural	context	in	which	you	as	a	decision	maker	have	grown	up
today	is	far	from	the	only	culture	that	has	existed	on	earth.	Even	at	present,	Singapore,	China,
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Taiwan	and	Scandinavia	have	had	significant	success	with	quite	different	property	regimes	than	the
United	States.	Video	game	developers	and	internet	protocol	designers	have	had	to	solve	incentive
problems	of	a	similar	character	to	what	we	see	today	in	the	blockchain	space	and	have	come	up	with
many	kinds	of	solutions,	and	throughout	history,	we	have	seen	a	wide	variety	of	social	systems	used
for	different	purposes,	with	a	wide	range	of	resulting	outcomes.	By	learning	about	the	different	ways
in	which	societies	have	lived,	understood	what	is	natural	and	imagined	their	politics,	we	can	gain	the
benefits	of	learning	from	historical	experience	and	yet	at	the	same	time	open	ourselves	to	a	much
broader	space	of	possible	ideas	to	work	with.

This	is	why	we	believe	that	balance	and	collaboration	between	different	modes	of	learning	and
understanding,	both	the	mathematical	one	of	economists	and	computer	scientists,	and	the	historical
experiences	studied	by	historians,	anthropologists,	political	scientists,	etc	is	critical	to	avoid	the	mix
of	and	often	veering	between	extreme	conservatism	and	dangerous	utopianism	that	has	become
characteristic	of	much	intellectual	discourse	in	e.g.	the	economics	community,	the	"rationalist"
community,	and	in	many	cases	blockchain	protocol	design.
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Layer	1	Should	Be	Innovative	in	the	Short	Term	but	Less	in	the
Long	Term

See	update	2018-08-29

One	of	the	key	tradeoffs	in	blockchain	design	is	whether	to	build	more	functionality	into	base-layer	blockchains	themselves	("layer	1"),	or	to
build	it	into	protocols	that	live	on	top	of	the	blockchain,	and	can	be	created	and	modified	without	changing	the	blockchain	itself	("layer	2").
The	tradeoff	has	so	far	shown	itself	most	in	the	scaling	debates,	with	block	size	increases	(and	sharding)	on	one	side	and	layer-2	solutions
like	Plasma	and	channels	on	the	other,	and	to	some	extent	blockchain	governance,	with	loss	and	theft	recovery	being	solvable	by	either	the
DAO	fork	or	generalizations	thereof	such	as	EIP	867,	or	by	layer-2	solutions	such	as	Reversible	Ether	(RETH).	So	which	approach	is
ultimately	better?	Those	who	know	me	well,	or	have	seen	me	out	myself	as	a	dirty	centrist,	know	that	I	will	inevitably	say	"some	of	both".
However,	in	the	longer	term,	I	do	think	that	as	blockchains	become	more	and	more	mature,	layer	1	will	necessarily	stabilize,	and	layer	2
will	take	on	more	and	more	of	the	burden	of	ongoing	innovation	and	change.

There	are	several	reasons	why.	The	first	is	that	layer	1	solutions	require	ongoing	protocol	change	to	happen	at	the	base	protocol	layer,
base	layer	protocol	change	requires	governance,	and	it	has	still	not	been	shown	that,	in	the	long	term,	highly	"activist"	blockchain
governance	can	continue	without	causing	ongoing	political	uncertainty	or	collapsing	into	centralization.

To	take	an	example	from	another	sphere,	consider	Moxie	Marlinspike's	defense	of	Signal's	centralized	and	non-federated	nature.	A
document	by	a	company	defending	its	right	to	maintain	control	over	an	ecosystem	it	depends	on	for	its	key	business	should	of	course	be
viewed	with	massive	grains	of	salt,	but	one	can	still	benefit	from	the	arguments.	Quoting:

One	of	the	controversial	things	we	did	with	Signal	early	on	was	to	build	it	as	an	unfederated	service.	Nothing	about	any	of	the
protocols	we've	developed	requires	centralization;	it's	entirely	possible	to	build	a	federated	Signal	Protocol-based	messenger,	but
I	no	longer	believe	that	it	is	possible	to	build	a	competitive	federated	messenger	at	all.

And:

Their	retort	was	"that's	dumb,	how	far	would	the	internet	have	gotten	without	interoperable	protocols	defined	by	3rd	parties?"	I
thought	about	it.	We	got	to	the	first	production	version	of	IP,	and	have	been	trying	for	the	past	20	years	to	switch	to	a	second
production	version	of	IP	with	limited	success.	We	got	to	HTTP	version	1.1	in	1997,	and	have	been	stuck	there	until	now.	Likewise,
SMTP,	IRC,	DNS,	XMPP,	are	all	similarly	frozen	in	time	circa	the	late	1990s.	To	answer	his	question,	that's	how	far	the	internet
got.	It	got	to	the	late	90s.	That	has	taken	us	pretty	far,	but	it's	undeniable	that	once	you	federate	your	protocol,	it	becomes	very
difficult	to	make	changes.	And	right	now,	at	the	application	level,	things	that	stand	still	don't	fare	very	well	in	a	world	where	the
ecosystem	is	moving	...	So	long	as	federation	means	stasis	while	centralization	means	movement,	federated	protocols	are	going	to
have	trouble	existing	in	a	software	climate	that	demands	movement	as	it	does	today.

At	this	point	in	time,	and	in	the	medium	term	going	forward,	it	seems	clear	that	decentralized	application	platforms,	cryptocurrency
payments,	identity	systems,	reputation	systems,	decentralized	exchange	mechanisms,	auctions,	privacy	solutions,	programming	languages
that	support	privacy	solutions,	and	most	other	interesting	things	that	can	be	done	on	blockchains	are	spheres	where	there	will	continue	to
be	significant	and	ongoing	innovation.	Decentralized	application	platforms	often	need	continued	reductions	in	confirmation	time,	payments
need	fast	confirmations,	low	transaction	costs,	privacy,	and	many	other	built-in	features,	exchanges	are	appearing	in	many	shapes	and
sizes	including	on-chain	automated	market	makers,	frequent	batch	auctions,	combinatorial	auctions	and	more.	Hence,	"building	in"	any	of
these	into	a	base	layer	blockchain	would	be	a	bad	idea,	as	it	would	create	a	high	level	of	governance	overhead	as	the	platform	would	have
to	continually	discuss,	implement	and	coordinate	newly	discovered	technical	improvements.	For	the	same	reason	federated	messengers
have	a	hard	time	getting	off	the	ground	without	re-centralizing,	blockchains	would	also	need	to	choose	between	adopting	activist
governance,	with	the	perils	that	entails,	and	falling	behind	newly	appearing	alternatives.

Even	Ethereum's	limited	level	of	application-specific	functionality,	precompiles,	has	seen	some	of	this	effect.	Less	than	a	year	ago,
Ethereum	adopted	the	Byzantium	hard	fork,	including	operations	to	facilitate	elliptic	curve	operations	needed	for	ring	signatures,	ZK-
SNARKs	and	other	applications,	using	the	alt-bn128	curve.	Now,	Zcash	and	other	blockchains	are	moving	toward	BLS-12-381,	and
Ethereum	would	need	to	fork	again	to	catch	up.	In	part	to	avoid	having	similar	problems	in	the	future,	the	Ethereum	community	is	looking
to	upgrade	the	EVM	to	E-WASM,	a	virtual	machine	that	is	sufficiently	more	efficient	that	there	is	far	less	need	to	incorporate	application-
specific	precompiles.

But	there	is	also	a	second	argument	in	favor	of	layer	2	solutions,	one	that	does	not	depend	on	speed	of	anticipated	technical	development:
sometimes	there	are	inevitable	tradeoffs,	with	no	single	globally	optimal	solution.	This	is	less	easily	visible	in	Ethereum	1.0-style
blockchains,	where	there	are	certain	models	that	are	reasonably	universal	(eg.	Ethereum's	account-based	model	is	one).	In	sharded
blockchains,	however,	one	type	of	question	that	does	not	exist	in	Ethereum	today	crops	up:	how	to	do	cross-shard	transactions?	That	is,
suppose	that	the	blockchain	state	has	regions	A	and	B,	where	few	or	no	nodes	are	processing	both	A	and	B.	How	does	the	system	handle
transactions	that	affect	both	A	and	B?

The	current	answer	involves	asynchronous	cross-shard	communication,	which	is	sufficient	for	transferring	assets	and	some	other
applications,	but	insufficient	for	many	others.	Synchronous	operations	(eg.	to	solve	the	train	and	hotel	problem)	can	be	bolted	on	top	with
cross-shard	yanking,	but	this	requires	multiple	rounds	of	cross-shard	interaction,	leading	to	significant	delays.	We	can	solve	these	problems
with	a	synchronous	execution	scheme,	but	this	comes	with	several	tradeoffs:

The	system	cannot	process	more	than	one	transaction	for	the	same	account	per	block
Transactions	must	declare	in	advance	what	shards	and	addresses	they	affect
There	is	a	high	risk	of	any	given	transaction	failing	(and	still	being	required	to	pay	fees!)	if	the	transaction	is	only	accepted	in	some	of
the	shards	that	it	affects	but	not	others

It	seems	very	likely	that	a	better	scheme	can	be	developed,	but	it	would	be	more	complex,	and	may	well	have	limitations	that	this	scheme
does	not.	There	are	known	results	preventing	perfection;	at	the	very	least,	Amdahl's	law	puts	a	hard	limit	on	the	ability	of	some
applications	and	some	types	of	interaction	to	process	more	transactions	per	second	through	parallelization.

So	how	do	we	create	an	environment	where	better	schemes	can	be	tested	and	deployed?	The	answer	is	an	idea	that	can	be	credited	to
Justin	Drake:	layer	2	execution	engines.	Users	would	be	able	to	send	assets	into	a	"bridge	contract",	which	would	calculate	(using	some
indirect	technique	such	as	interactive	verification	or	ZK-SNARKs)	state	roots	using	some	alternative	set	of	rules	for	processing	the
blockchain	(think	of	this	as	equivalent	to	layer-two	"meta-protocols"	like	Mastercoin/OMNI	and	Counterparty	on	top	of	Bitcoin,	except
because	of	the	bridge	contract	these	protocols	would	be	able	to	handle	assets	whose	"base	ledger"	is	defined	on	the	underlying	protocol),
and	which	would	process	withdrawals	if	and	only	if	the	alternative	ruleset	generates	a	withdrawal	request.
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Note	that	anyone	can	create	a	layer	2	execution	engine	at	any	time,	different	users	can	use	different	execution	engines,	and	one	can	switch
from	one	execution	engine	to	any	other,	or	to	the	base	protocol,	fairly	quickly.	The	base	blockchain	no	longer	has	to	worry	about	being	an
optimal	smart	contract	processing	engine;	it	need	only	be	a	data	availability	layer	with	execution	rules	that	are	quasi-Turing-complete	so
that	any	layer	2	bridge	contract	can	be	built	on	top,	and	that	allow	basic	operations	to	carry	state	between	shards	(in	fact,	only	ETH
transfers	being	fungible	across	shards	is	sufficient,	but	it	takes	very	little	effort	to	also	allow	cross-shard	calls,	so	we	may	as	well	support
them),	but	does	not	require	complexity	beyond	that.	Note	also	that	layer	2	execution	engines	can	have	different	state	management	rules
than	layer	1,	eg.	not	having	storage	rent;	anything	goes,	as	it's	the	responsibility	of	the	users	of	that	specific	execution	engine	to	make	sure
that	it	is	sustainable,	and	if	they	fail	to	do	so	the	consequences	are	contained	to	within	the	users	of	that	particular	execution	engine.

In	the	long	run,	layer	1	would	not	be	actively	competing	on	all	of	these	improvements;	it	would	simply	provide	a	stable	platform	for	the
layer	2	innovation	to	happen	on	top.	Does	this	mean	that,	say,	sharding	is	a	bad	idea,	and	we	should	keep	the	blockchain	size	and
state	small	so	that	even	10	year	old	computers	can	process	everyone's	transactions?	Absolutely	not.	Even	if	execution	engines	are
something	that	gets	partially	or	fully	moved	to	layer	2,	consensus	on	data	ordering	and	availability	is	still	a	highly	generalizable	and
necessary	function;	to	see	how	difficult	layer	2	execution	engines	are	without	layer	1	scalable	data	availability	consensus,	see	the
difficulties	in	Plasma	research,	and	its	difficulty	of	naturally	extending	to	fully	general	purpose	blockchains,	for	an	example.	And	if	people
want	to	throw	a	hundred	megabytes	per	second	of	data	into	a	system	where	they	need	consensus	on	availability,	then	we	need	a	hundred
megabytes	per	second	of	data	availability	consensus.

Additionally,	layer	1	can	still	improve	on	reducing	latency;	if	layer	1	is	slow,	the	only	strategy	for	achieving	very	low	latency	is	state
channels,	which	often	have	high	capital	requirements	and	can	be	difficult	to	generalize.	State	channels	will	always	beat	layer	1	blockchains
in	latency	as	state	channels	require	only	a	single	network	message,	but	in	those	cases	where	state	channels	do	not	work	well,	layer	1
blockchains	can	still	come	closer	than	they	do	today.

Hence,	the	other	extreme	position,	that	blockchain	base	layers	can	be	truly	absolutely	minimal,	and	not	bother	with	either	a	quasi-Turing-
complete	execution	engine	or	scalability	to	beyond	the	capacity	of	a	single	node,	is	also	clearly	false;	there	is	a	certain	minimal	level	of
complexity	that	is	required	for	base	layers	to	be	powerful	enough	for	applications	to	build	on	top	of	them,	and	we	have	not	yet	reached	that
level.	Additional	complexity	is	needed,	though	it	should	be	chosen	very	carefully	to	make	sure	that	it	is	maximally	general	purpose,	and	not
targeted	toward	specific	applications	or	technologies	that	will	go	out	of	fashion	in	two	years	due	to	loss	of	interest	or	better	alternatives.

And	even	in	the	future	base	layers	will	need	to	continue	to	make	some	upgrades,	especially	if	new	technologies	(eg.	STARKs	reaching
higher	levels	of	maturity)	allow	them	to	achieve	stronger	properties	than	they	could	before,	though	developers	today	can	take	care	to	make
base	layer	platforms	maximally	forward-compatible	with	such	potential	improvements.	So	it	will	continue	to	be	true	that	a	balance	between
layer	1	and	layer	2	improvements	is	needed	to	continue	improving	scalability,	privacy	and	versatility,	though	layer	2	will	continue	to	take
up	a	larger	and	larger	share	of	the	innovation	over	time.

Update	2018.08.29:	Justin	Drake	pointed	out	to	me	another	good	reason	why	some	features	may	be	best	implemented	on	layer	1:	those
features	are	public	goods,	and	so	could	not	be	efficiently	or	reliably	funded	with	feature-specific	use	fees,	and	hence	are	best	paid	for	by
subsidies	paid	out	of	issuance	or	burned	transaction	fees.	One	possible	example	of	this	is	secure	random	number	generation,	and	another	is
generation	of	zero	knowledge	proofs	for	more	efficient	client	validation	of	correctness	of	various	claims	about	blockchain	contents	or	state.
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A	Guide	to	99%	Fault	Tolerant	Consensus

Special	thanks	to	Emin	Gun	Sirer	for	review

We've	heard	for	a	long	time	that	it's	possible	to	achieve	consensus	with	50%	fault	tolerance	in	a
synchronous	network	where	messages	broadcasted	by	any	honest	node	are	guaranteed	to	be
received	by	all	other	honest	nodes	within	some	known	time	period	(if	an	attacker	has	more	than	50%,
they	can	perform	a	"51%	attack",	and	there's	an	analogue	of	this	for	any	algorithm	of	this	type).
We've	also	heard	for	a	long	time	that	if	you	want	to	relax	the	synchrony	assumption,	and	have	an
algorithm	that's	"safe	under	asynchrony",	the	maximum	achievable	fault	tolerance	drops	to	33%
(PBFT,	Casper	FFG,	etc	all	fall	into	this	category).	But	did	you	know	that	if	you	add	even	more
assumptions	(specifically,	you	require	observers,	ie.	users	that	are	not	actively	participating	in	the
consensus	but	care	about	its	output,	to	also	be	actively	watching	the	consensus,	and	not	just
downloading	its	output	after	the	fact),	you	can	increase	fault	tolerance	all	the	way	to	99%?

This	has	in	fact	been	known	for	a	long	time;	Leslie	Lamport's	famous	1982	paper	"The	Byzantine
Generals	Problem"	(link	here)	contains	a	description	of	the	algorithm.	The	following	will	be	my
attempt	to	describe	and	reformulate	the	algorithm	in	a	simplified	form.

Suppose	that	there	are	\(N\)	consensus-participating	nodes,	and	everyone	agrees	who	these	nodes
are	ahead	of	time	(depending	on	context,	they	could	have	been	selected	by	a	trusted	party	or,	if
stronger	decentralization	is	desired,	by	some	proof	of	work	or	proof	of	stake	scheme).	We	label	these
nodes	\(0	...N-1\).	Suppose	also	that	there	is	a	known	bound	\(D\)	on	network	latency	plus	clock
disparity	(eg.	\(D\)	=	8	seconds).	Each	node	has	the	ability	to	publish	a	value	at	time	\(T\)	(a	malicious
node	can	of	course	propose	values	earlier	or	later	than	\(T\)).	All	nodes	wait	\((N-1)	\cdot	D\)	seconds,
running	the	following	process.	Define	\(x	:	i\)	as	"the	value	\(x\)	signed	by	node	\(i\)",	\(x	:	i	:	j\)	as	"the
value	\(x\)	signed	by	\(i\),	and	that	value	and	signature	together	signed	by	\(j\)",	etc.	The	proposals
published	in	the	first	stage	will	be	of	the	form	\(v:	i\)	for	some	\(v\)	and	\(i\),	containing	the	signature
of	the	node	that	proposed	it.

If	a	validator	\(i\)	receives	some	message	\(v	:	i[1]	:	...	:	i[k]\),	where	\(i[1]	...	i[k]\)	is	a	list	of	indices
that	have	(sequentially)	signed	the	message	already	(just	\(v\)	by	itself	would	count	as	\(k=0\),	and	\
(v:i\)	as	\(k=1\)),	then	the	validator	checks	that	(i)	the	time	is	less	than	\(T	+	k	\cdot	D\),	and	(ii)	they
have	not	yet	seen	a	valid	message	containing	\(v\);	if	both	checks	pass,	they	publish	\(v	:	i[1]	:	...	:	i[k]
:	i\).

At	time	\(T	+	(N-1)	\cdot	D\),	nodes	stop	listening.	At	this	point,	there	is	a	guarantee	that	honest
nodes	have	all	"validly	seen"	the	same	set	of	values.

Node	1	(red)	is	malicious,	and	nodes	0	and	2	(grey)	are	honest.	At	the	start,	the	two	honest	nodes	make	their
proposals	\(y\)	and	\(x\),	and	the	attacker	proposes	both	\(w\)	and	\(z\)	late.	\(w\)	reaches	node	0	on	time	but	not

node	2,	and	\(z\)	reaches	neither	node	on	time.	At	time	\(T	+	D\),	nodes	0	and	2	rebroadcast	all	values	they've	seen
that	they	have	not	yet	broadcasted,	but	add	their	signatures	on	(\(x\)	and	\(w\)	for	node	0,	\(y\)	for	node	2).	Both

honest	nodes	saw	\({x,	y,	w}\).

If	the	problem	demands	choosing	one	value,	they	can	use	some	"choice"	function	to	pick	a	single
value	out	of	the	values	they	have	seen	(eg.	they	take	the	one	with	the	lowest	hash).	The	nodes	can
then	agree	on	this	value.

Now,	let's	explore	why	this	works.	What	we	need	to	prove	is	that	if	one	honest	node	has	seen	a
particular	value	(validly),	then	every	other	honest	node	has	also	seen	that	value	(and	if	we	prove	this,
then	we	know	that	all	honest	nodes	have	seen	the	same	set	of	values,	and	so	if	all	honest	nodes	are
running	the	same	choice	function,	they	will	choose	the	same	value).	Suppose	that	any	honest	node
receives	a	message	\(v	:	i[1]	:	...	:	i[k]\)	that	they	perceive	to	be	valid	(ie.	it	arrives	before	time	\(T	+	k
\cdot	D\)).	Suppose	\(x\)	is	the	index	of	a	single	other	honest	node.	Either	\(x\)	is	part	of	\({i[1]	...
i[k]}\)	or	it	is	not.
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In	the	first	case	(say	\(x	=	i[j]\)	for	this	message),	we	know	that	the	honest	node	\(x\)	had	already
broadcasted	that	message,	and	they	did	so	in	response	to	a	message	with	\(j-1\)	signatures	that
they	received	before	time	\(T	+	(j-1)	\cdot	D\),	so	they	broadcast	their	message	at	that	time,	and
so	the	message	must	have	been	received	by	all	honest	nodes	before	time	\(T	+	j	\cdot	D\).
In	the	second	case,	since	the	honest	node	sees	the	message	before	time	\(T	+	k	\cdot	D\),	then
they	will	broadcast	the	message	with	their	signature	and	guarantee	that	everyone,	including	\
(x\),	will	see	it	before	time	\(T	+	(k+1)	\cdot	D\).

Notice	that	the	algorithm	uses	the	act	of	adding	one's	own	signature	as	a	kind	of	"bump"	on	the
timeout	of	a	message,	and	it's	this	ability	that	guarantees	that	if	one	honest	node	saw	a	message	on
time,	they	can	ensure	that	everyone	else	sees	the	message	on	time	as	well,	as	the	definition	of	"on
time"	increments	by	more	than	network	latency	with	every	added	signature.

In	the	case	where	one	node	is	honest,	can	we	guarantee	that	passive	observers	(ie.	non-consensus-
participating	nodes	that	care	about	knowing	the	outcome)	can	also	see	the	outcome,	even	if	we
require	them	to	be	watching	the	process	the	whole	time?	With	the	scheme	as	written,	there's	a
problem.	Suppose	that	a	commander	and	some	subset	of	\(k\)	(malicious)	validators	produce	a
message	\(v	:	i[1]	:	....	:	i[k]\),	and	broadcast	it	directly	to	some	"victims"	just	before	time	\(T	+	k	\cdot
D\).	The	victims	see	the	message	as	being	"on	time",	but	when	they	rebroadcast	it,	it	only	reaches	all
honest	consensus-participating	nodes	after	\(T	+	k	\cdot	D\),	and	so	all	honest	consensus-
participating	nodes	reject	it.

But	we	can	plug	this	hole.	We	require	\(D\)	to	be	a	bound	on	two	times	network	latency	plus	clock
disparity.	We	then	put	a	different	timeout	on	observers:	an	observer	accepts	\(v	:	i[1]	:	....	:	i[k]\)
before	time	\(T	+	(k	-	0.5)	\cdot	D\).	Now,	suppose	an	observer	sees	a	message	an	accepts	it.	They
will	be	able	to	broadcast	it	to	an	honest	node	before	time	\(T	+	k	\cdot	D\),	and	the	honest	node	will
issue	the	message	with	their	signature	attached,	which	will	reach	all	other	observers	before	time	\(T
+	(k	+	0.5)	\cdot	D\),	the	timeout	for	messages	with	\(k+1\)	signatures.

Retrofitting	onto	other	consensus	algorithms

The	above	could	theoretically	be	used	as	a	standalone	consensus	algorithm,	and	could	even	be	used
to	run	a	proof-of-stake	blockchain.	The	validator	set	of	round	\(N+1\)	of	the	consensus	could	itself	be
decided	during	round	\(N\)	of	the	consensus	(eg.	each	round	of	a	consensus	could	also	accept
"deposit"	and	"withdraw"	transactions,	which	if	accepted	and	correctly	signed	would	add	or	remove
validators	into	the	next	round).	The	main	additional	ingredient	that	would	need	to	be	added	is	a
mechanism	for	deciding	who	is	allowed	to	propose	blocks	(eg.	each	round	could	have	one	designated
proposer).	It	could	also	be	modified	to	be	usable	as	a	proof-of-work	blockchain,	by	allowing
consensus-participating	nodes	to	"declare	themselves"	in	real	time	by	publishing	a	proof	of	work
solution	on	top	of	their	public	key	at	th	same	time	as	signing	a	message	with	it.

However,	the	synchrony	assumption	is	very	strong,	and	so	we	would	like	to	be	able	to	work	without	it
in	the	case	where	we	don't	need	more	than	33%	or	50%	fault	tolerance.	There	is	a	way	to	accomplish
this.	Suppose	that	we	have	some	other	consensus	algorithm	(eg.	PBFT,	Casper	FFG,	chain-based
PoS)	whose	output	can	be	seen	by	occasionally-online	observers	(we'll	call	this	the	threshold-
dependent	consensus	algorithm,	as	opposed	to	the	algorithm	above,	which	we'll	call	the	latency-
dependent	consensus	algorithm).	Suppose	that	the	threshold-dependent	consensus	algorithm	runs
continuously,	in	a	mode	where	it	is	constantly	"finalizing"	new	blocks	onto	a	chain	(ie.	each	finalized
value	points	to	some	previous	finalized	value	as	a	"parent";	if	there's	a	sequence	of	pointers	\(A
\rightarrow	...	\rightarrow	B\),	we'll	call	\(A\)	a	descendant	of	\(B\)).

We	can	retrofit	the	latency-dependent	algorithm	onto	this	structure,	giving	always-online	observers
access	to	a	kind	of	"strong	finality"	on	checkpoints,	with	fault	tolerance	~95%	(you	can	push	this
arbitrarily	close	to	100%	by	adding	more	validators	and	requiring	the	process	to	take	longer).

Every	time	the	time	reaches	some	multiple	of	4096	seconds,	we	run	the	latency-dependent	algorithm,
choosing	512	random	nodes	to	participate	in	the	algorithm.	A	valid	proposal	is	any	valid	chain	of
values	that	were	finalized	by	the	threshold-dependent	algorithm.	If	a	node	sees	some	finalized	value
before	time	\(T	+	k	\cdot	D\)	(\(D\)	=	8	seconds)	with	\(k\)	signatures,	it	accepts	the	chain	into	its	set
of	known	chains	and	rebroadcasts	it	with	its	own	signature	added;	observers	use	a	threshold	of	\(T	+



(k	-	0.5)	\cdot	D\)	as	before.

The	"choice"	function	used	at	the	end	is	simple:

Finalized	values	that	are	not	descendants	of	what	was	already	agreed	to	be	a	finalized	value	in
the	previous	round	are	ignored
Finalized	values	that	are	invalid	are	ignored
To	choose	between	two	valid	finalized	values,	pick	the	one	with	the	lower	hash

If	5%	of	validators	are	honest,	there	is	only	a	roughly	1	in	1	trillion	chance	that	none	of	the	512
randomly	selected	nodes	will	be	honest,	and	so	as	long	as	the	network	latency	plus	clock	disparity	is
less	than	\(\frac{D}{2}\)	the	above	algorithm	will	work,	correctly	coordinating	nodes	on	some	single
finalized	value,	even	if	multiple	conflicting	finalized	values	are	presented	because	the	fault	tolerance
of	the	threshold-dependent	algorithm	is	broken.

If	the	fault	tolerance	of	the	threshold-dependent	consensus	algorithm	is	met	(usually	50%	or	67%
honest),	then	the	threshold-dependent	consensus	algorithm	will	either	not	finalize	any	new
checkpoints,	or	it	will	finalize	new	checkpoints	that	are	compatible	with	each	other	(eg.	a	series	of
checkpoints	where	each	points	to	the	previous	as	a	parent),	so	even	if	network	latency	exceeds	\
(\frac{D}{2}\)	(or	even	\(D\)),	and	as	a	result	nodes	participating	in	the	latency-dependent	algorithm
disagree	on	which	value	they	accept,	the	values	they	accept	are	still	guaranteed	to	be	part	of	the
same	chain	and	so	there	is	no	actual	disagreement.	Once	latency	recovers	back	to	normal	in	some
future	round,	the	latency-dependent	consensus	will	get	back	"in	sync".

If	the	assumptions	of	both	the	threshold-dependent	and	latency-dependent	consensus	algorithms	are
broken	at	the	same	time	(or	in	consecutive	rounds),	then	the	algorithm	can	break	down.	For	example,
suppose	in	one	round,	the	threshold-dependent	consensus	finalizes	\(Z	\rightarrow	Y	\rightarrow	X\)
and	the	latency-dependent	consensus	disagrees	between	\(Y\)	and	\(X\),	and	in	the	next	round	the
threshold-dependent	consensus	finalizes	a	descendant	\(W\)	of	\(X\)	which	is	not	a	descendant	of	\(Y\);
in	the	latency-dependent	consensus,	the	nodes	who	agreed	\(Y\)	will	not	accept	\(W\),	but	the	nodes
that	agreed	\(X\)	will.	However,	this	is	unavoidable;	the	impossibility	of	safe-under-asynchrony
consensus	with	more	than	\(\frac{1}{3}\)	fault	tolerance	is	a	well	known	result	in	Byzantine	fault
tolerance	theory,	as	is	the	impossibility	of	more	than	\(\frac{1}{2}\)	fault	tolerance	even	allowing
synchrony	assumptions	but	assuming	offline	observers.

https://groups.csail.mit.edu/tds/papers/Lynch/jacm88.pdf
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STARKs,	Part	3:	Into	the	Weeds

Special	thanks	to	Eli	ben	Sasson	for	his	kind	assistance,	as	usual.	Special	thanks	to	Chih-Cheng	Liang	and	Justin
Drake	for	review,	and	to	Ben	Fisch	for	suggesting	the	reverse	MIMC	technique	for	a	VDF	(paper	here)

Trigger	warning:	math	and	lots	of	python

As	a	followup	to	Part	1	and	Part	2	of	this	series,	this	post	will	cover	what	it	looks	like	to	actually	implement	a	STARK,
complete	with	an	implementation	in	python.	STARKs	("Scalable	Transparent	ARgument	of	Knowledge"	are	a	technique
for	creating	a	proof	that	\(f(x)=y\)	where	\(f\)	may	potentially	take	a	very	long	time	to	calculate,	but	where	the	proof
can	be	verified	very	quickly.	A	STARK	is	"doubly	scalable":	for	a	computation	with	\(t\)	steps,	it	takes	roughly	\(O(t
\cdot	\log{t})\)	steps	to	produce	a	proof,	which	is	likely	optimal,	and	it	takes	~\(O(\log^2{t})\)	steps	to	verify,	which
for	even	moderately	large	values	of	\(t\)	is	much	faster	than	the	original	computation.	STARKs	can	also	have	a	privacy-
preserving	"zero	knowledge"	property,	though	the	use	case	we	will	apply	them	to	here,	making	verifiable	delay
functions,	does	not	require	this	property,	so	we	do	not	need	to	worry	about	it.

First,	some	disclaimers:

This	code	has	not	been	thoroughly	audited;	soundness	in	production	use	cases	is	not	guaranteed
This	code	is	very	suboptimal	(it's	written	in	Python,	what	did	you	expect)
STARKs	"in	real	life"	(ie.	as	implemented	in	Eli	and	co's	production	implementations)	tend	to	use	binary	fields
and	not	prime	fields	for	application-specific	efficiency	reasons;	however,	they	do	stress	in	their	writings	the	prime
field-based	approach	to	STARKs	described	here	is	legitimate	and	can	be	used
There	is	no	"one	true	way"	to	do	a	STARK.	It's	a	broad	category	of	cryptographic	and	mathematical	constructs,
with	different	setups	optimal	for	different	applications	and	constant	ongoing	research	to	reduce	prover	and
verifier	complexity	and	improve	soundness.
This	article	absolutely	expects	you	to	know	how	modular	arithmetic	and	prime	fields	work,	and	be	comfortable
with	the	concepts	of	polynomials,	interpolation	and	evaluation.	If	you	don't,	go	back	to	Part	2,	and	also	this
earlier	post	on	quadratic	arithmetic	programs

Now,	let's	get	to	it.

MIMC

Here	is	the	function	we'll	be	doing	a	STARK	of:

def	mimc(inp,	steps,	round_constants):
				start_time	=	time.time()
				for	i	in	range(steps-1):
								inp	=	(inp**3	+	round_constants[i	%	len(round_constants)])	%	modulus
				print("MIMC	computed	in	%.4f	sec"	%	(time.time()	-	start_time))
				return	inp

We	choose	MIMC	(see	paper)	as	the	example	because	it	is	both	(i)	simple	to	understand	and	(ii)	interesting	enough	to
be	useful	in	real	life.	The	function	can	be	viewed	visually	as	follows:

Note:	in	many	discussions	of	MIMC,	you	will	typically	see	XOR	used	instead	of	+;	this	is	because	MIMC	is	typically	done	over	binary
fields,	where	addition	is	XOR;	here	we	are	doing	it	over	prime	fields.

In	our	example,	the	round	constants	will	be	a	relatively	small	list	(eg.	64	items)	that	gets	cycled	through	over	and	over
again	(that	is,	after	k[64]	it	loops	back	to	using	k[1]).

MIMC	with	a	very	large	number	of	rounds,	as	we're	doing	here,	is	useful	as	a	verifiable	delay	function	-	a	function
which	is	difficult	to	compute,	and	particularly	non-parallelizable	to	compute,	but	relatively	easy	to	verify.	MIMC	by
itself	achieves	this	property	to	some	extent	because	MIMC	can	be	computed	"backward"	(recovering	the	"input"	from
its	corresponding	"output"),	but	computing	it	backward	takes	about	100	times	longer	to	compute	than	the	forward
direction	(and	neither	direction	can	be	significantly	sped	up	by	parallelization).	So	you	can	think	of	computing	the
function	in	the	backward	direction	as	being	the	act	of	"computing"	the	non-parallelizable	proof	of	work,	and
computing	the	function	in	the	forward	direction	as	being	the	process	of	"verifying"	it.
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\(x	\rightarrow	x^{(2p-1)/3}\)	gives	the	inverse	of	\(x	\rightarrow	x^3\);	this	is	true	because	of	Fermat's	Little	Theorem,	a	theorem	that
despite	its	supposed	littleness	is	arguably	much	more	important	to	mathematics	than	Fermat's	more	famous	"Last	Theorem".

What	we	will	try	to	achieve	here	is	to	make	verification	much	more	efficient	by	using	a	STARK	-	instead	of	the	verifier
having	to	run	MIMC	in	the	forward	direction	themselves,	the	prover,	after	completing	the	computation	in	the
"backward	direction",	would	compute	a	STARK	of	the	computation	in	the	"forward	direction",	and	the	verifier	would
simply	verify	the	STARK.	The	hope	is	that	the	overhead	of	computing	a	STARK	can	be	less	than	the	difference	in	speed
running	MIMC	forwards	relative	to	backwards,	so	a	prover's	time	would	still	be	dominated	by	the	initial	"backward"
computation,	and	not	the	(highly	parallelizable)	STARK	computation.	Verification	of	a	STARK	can	be	relatively	fast	(in
our	python	implementation,	~0.05-0.3	seconds),	no	matter	how	long	the	original	computation	is.

All	calculations	are	done	modulo	\(2^{256}	-	351	\cdot	2^{32}	+	1\);	we	are	using	this	prime	field	modulus	because	it
is	the	largest	prime	below	\(2^{256}\)	whose	multiplicative	group	contains	an	order	\(2^{32}\)	subgroup	(that	is,
there's	a	number	\(g\)	such	that	successive	powers	of	\(g\)	modulo	this	prime	loop	around	back	to	\(1\)	after	exactly	\
(2^{32}\)	cycles),	and	which	is	of	the	form	\(6k+5\).	The	first	property	is	necessary	to	make	sure	that	our	efficient
versions	of	the	FFT	and	FRI	algorithms	can	work,	and	the	second	ensures	that	MIMC	actually	can	be	computed
"backwards"	(see	the	use	of	\(x	\rightarrow	x^{(2p-1)/3}\)	above).

Prime	field	operations

We	start	off	by	building	a	convenience	class	that	does	prime	field	operations,	as	well	as	operations	with	polynomials
over	prime	fields.	The	code	is	here.	First	some	trivial	bits:

class	PrimeField():
				def	__init__(self,	modulus):
								#	Quick	primality	test
								assert	pow(2,	modulus,	modulus)	==	2
								self.modulus	=	modulus

				def	add(self,	x,	y):
								return	(x+y)	%	self.modulus

				def	sub(self,	x,	y):
								return	(x-y)	%	self.modulus

				def	mul(self,	x,	y):
								return	(x*y)	%	self.modulus

And	the	Extended	Euclidean	Algorithm	for	computing	modular	inverses	(the	equivalent	of	computing	\(\frac{1}{x}\)	in
a	prime	field):

#	Modular	inverse	using	the	extended	Euclidean	algorithm
def	inv(self,	a):
				if	a	==	0:
								return	0
				lm,	hm	=	1,	0
				low,	high	=	a	%	self.modulus,	self.modulus
				while	low	>	1:
								r	=	high//low
								nm,	new	=	hm-lm*r,	high-low*r
								lm,	low,	hm,	high	=	nm,	new,	lm,	low
				return	lm	%	self.modulus

The	above	algorithm	is	relatively	expensive;	fortunately,	for	the	special	case	where	we	need	to	do	many	modular
inverses,	there's	a	simple	mathematical	trick	that	allows	us	to	compute	many	inverses,	called	Montgomery	batch
inversion:
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Using	Montgomery	batch	inversion	to	compute	modular	inverses.	Inputs	purple,	outputs	green,	multiplication	gates	black;	the	red
square	is	the	only	modular	inversion.

The	code	below	implements	this	algorithm,	with	some	slightly	ugly	special	case	logic	so	that	if	there	are	zeroes	in	the
set	of	what	we	are	inverting,	it	sets	their	inverse	to	0	and	moves	along.

def	multi_inv(self,	values):
				partials	=	[1]
				for	i	in	range(len(values)):
								partials.append(self.mul(partials[-1],	values[i]	or	1))
				inv	=	self.inv(partials[-1])
				outputs	=	[0]	*	len(values)
				for	i	in	range(len(values),	0,	-1):
								outputs[i-1]	=	self.mul(partials[i-1],	inv)	if	values[i-1]	else	0
								inv	=	self.mul(inv,	values[i-1]	or	1)
				return	outputs

This	batch	inverse	algorithm	will	prove	important	later	on,	when	we	start	dealing	with	dividing	sets	of	evaluations	of
polynomials.

Now	we	move	on	to	some	polynomial	operations.	We	treat	a	polynomial	as	an	array,	where	element	\(i\)	is	the	\(i\)th
degree	term	(eg.	\(x^{3}	+	2x	+	1\)	becomes	[1,	2,	0,	1]).	Here's	the	operation	of	evaluating	a	polynomial	at	one
point:

#	Evaluate	a	polynomial	at	a	point
def	eval_poly_at(self,	p,	x):
				y	=	0
				power_of_x	=	1
				for	i,	p_coeff	in	enumerate(p):
								y	+=	power_of_x	*	p_coeff
								power_of_x	=	(power_of_x	*	x)	%	self.modulus
				return	y	%	self.modulus

Challenge
What	is	the	output	of	f.eval_poly_at([4,	5,	6],	2)	if	the	modulus	is	31?

Mouseover	below	for	answer	

\(6	\cdot	2^{2}	+	5	\cdot	2	+	4	=	38,	38	\bmod	31	=	7\).

There	is	also	code	for	adding,	subtracting,	multiplying	and	dividing	polynomials;	this	is	textbook	long
addition/subtraction/multiplication/division.	The	one	non-trivial	thing	is	Lagrange	interpolation,	which	takes	as	input	a
set	of	x	and	y	coordinates,	and	returns	the	minimal	polynomial	that	passes	through	all	of	those	points	(you	can	think	of
it	as	being	the	inverse	of	polynomial	evaluation):

#	Build	a	polynomial	that	returns	0	at	all	specified	xs
def	zpoly(self,	xs):
				root	=	[1]
				for	x	in	xs:
								root.insert(0,	0)
								for	j	in	range(len(root)-1):
												root[j]	-=	root[j+1]	*	x
				return	[x	%	self.modulus	for	x	in	root]

def	lagrange_interp(self,	xs,	ys):
				#	Generate	master	numerator	polynomial,	eg.	(x	-	x1)	*	(x	-	x2)	*	...	*	(x	-	xn)
				root	=	self.zpoly(xs)

				#	Generate	per-value	numerator	polynomials,	eg.	for	x=x2,
				#	(x	-	x1)	*	(x	-	x3)	*	...	*	(x	-	xn),	by	dividing	the	master
				#	polynomial	back	by	each	x	coordinate
				nums	=	[self.div_polys(root,	[-x,	1])	for	x	in	xs]



				#	Generate	denominators	by	evaluating	numerator	polys	at	each	x
				denoms	=	[self.eval_poly_at(nums[i],	xs[i])	for	i	in	range(len(xs))]
				invdenoms	=	self.multi_inv(denoms)

				#	Generate	output	polynomial,	which	is	the	sum	of	the	per-value	numerator
				#	polynomials	rescaled	to	have	the	right	y	values
				b	=	[0	for	y	in	ys]
				for	i	in	range(len(xs)):
								yslice	=	self.mul(ys[i],	invdenoms[i])
								for	j	in	range(len(ys)):
												if	nums[i][j]	and	ys[i]:
																b[j]	+=	nums[i][j]	*	yslice
				return	[x	%	self.modulus	for	x	in	b]

See	the	"M	of	N"	section	of	this	article	for	a	description	of	the	math.	Note	that	we	also	have	special-case	methods
lagrange_interp_4	and	lagrange_interp_2	to	speed	up	the	very	frequent	operations	of	Lagrange	interpolation	of	degree
\(<	2\)	and	degree	\(<	4\)	polynomials.

Fast	Fourier	Transforms

If	you	read	the	above	algorithms	carefully,	you	might	notice	that	Lagrange	interpolation	and	multi-point	evaluation
(that	is,	evaluating	a	degree	\(<	N\)	polynomial	at	\(N\)	points)	both	take	quadratic	time	to	execute,	so	for	example
doing	a	Lagrange	interpolation	of	one	thousand	points	takes	a	few	million	steps	to	execute,	and	a	Lagrange
interpolation	of	one	million	points	takes	a	few	trillion.	This	is	an	unacceptably	high	level	of	inefficiency,	so	we	will	use
a	more	efficient	algorithm,	the	Fast	Fourier	Transform.

The	FFT	only	takes	\(O(n	\cdot	log(n))\)	time	(ie.	~10,000	steps	for	1,000	points,	~20	million	steps	for	1	million
points),	though	it	is	more	restricted	in	scope;	the	x	coordinates	must	be	a	complete	set	of	roots	of	unity	of	some
order	\(N	=	2^{k}\).	That	is,	if	there	are	\(N\)	points,	the	x	coordinates	must	be	successive	powers	\(1,	p,	p^{2},
p^{3}\)...	of	some	\(p\)	where	\(p^{N}	=	1\).	The	algorithm	can,	surprisingly	enough,	be	used	for	multi-point
evaluation	or	interpolation,	with	one	small	parameter	tweak.

Challenge	Find	a	16th	root	of	unity	mod	337	that	is	not	an	8th	root	of	unity.

Mouseover	below	for	answer	

59,	146,	30,	297,	278,	191,	307,	40

You	could	have	gotten	this	list	by	doing	something	like	[print(x)	for	x	in	range(337)	if	pow(x,	16,	337)	==
1	and	pow(x,	8,	337)	!=	1],	though	there	is	a	smarter	way	that	works	for	much	larger	moduluses:	first,
identify	a	single	primitive	root	mod	337	(that	is,	not	a	perfect	square),	by	looking	for	a	value	x	such	that
pow(x,	336	//	2,	337)	!=	1	(these	are	easy	to	find;	one	answer	is	5),	and	then	taking	the	(336	/	16)'th	power
of	it.

Here's	the	algorithm	(in	a	slightly	simplified	form;	see	code	here	for	something	slightly	more	optimized):

def	fft(vals,	modulus,	root_of_unity):
				if	len(vals)	==	1:
								return	vals
				L	=	fft(vals[::2],	modulus,	pow(root_of_unity,	2,	modulus))
				R	=	fft(vals[1::2],	modulus,	pow(root_of_unity,	2,	modulus))
				o	=	[0	for	i	in	vals]
				for	i,	(x,	y)	in	enumerate(zip(L,	R)):
								y_times_root	=	y*pow(root_of_unity,	i,	modulus)
								o[i]	=	(x+y_times_root)	%	modulus
								o[i+len(L)]	=	(x-y_times_root)	%	modulus
				return	o

def	inv_fft(vals,	modulus,	root_of_unity):
				f	=	PrimeField(modulus)
				#	Inverse	FFT
				invlen	=	f.inv(len(vals))
				return	[(x*invlen)	%	modulus	for	x	in
												fft(vals,	modulus,	f.inv(root_of_unity))]

You	can	try	running	it	on	a	few	inputs	yourself	and	check	that	it	gives	results	that,	when	you	use	eval_poly_at	on
them,	give	you	the	answers	you	expect	to	get.	For	example:

>>>	fft.fft([3,1,4,1,5,9,2,6],	337,	85,	inv=True)
[46,	169,	29,	149,	126,	262,	140,	93]
>>>	f	=	poly_utils.PrimeField(337)
>>>	[f.eval_poly_at([46,	169,	29,	149,	126,	262,	140,	93],	f.exp(85,	i))	for	i	in	range(8)]
[3,	1,	4,	1,	5,	9,	2,	6]

A	Fourier	transform	takes	as	input	[x[0]	....	x[n-1]],	and	its	goal	is	to	output	x[0]	+	x[1]	+	...	+	x[n-1]	as	the	first
element,	x[0]	+	x[1]	*	2	+	...	+	x[n-1]	*	w**(n-1)	as	the	second	element,	etc	etc;	a	fast	Fourier	transform
accomplishes	this	by	splitting	the	data	in	half,	doing	an	FFT	on	both	halves,	and	then	gluing	the	result	back	together.
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A	diagram	of	how	information	flows	through	the	FFT	computation.	Notice	how	the	FFT	consists	of	a	"gluing"	step	followed	by	two
copies	of	the	FFT	on	two	halves	of	the	data,	and	so	on	recursively	until	you're	down	to	one	element.

I	recommend	this	for	more	intuition	on	how	or	why	the	FFT	works	and	polynomial	math	in	general,	and	this	thread	for
some	more	specifics	on	DFT	vs	FFT,	though	be	warned	that	most	literature	on	Fourier	transforms	talks	about	Fourier
transforms	over	real	and	complex	numbers,	not	prime	fields.	If	you	find	this	too	hard	and	don't	want	to	understand	it,
just	treat	it	as	weird	spooky	voodoo	that	just	works	because	you	ran	the	code	a	few	times	and	verified	that	it	works,
and	you'll	be	fine	too.

Thank	Goodness	It's	FRI-day	(that's	"Fast	Reed-Solomon	Interactive	Oracle	Proofs	of
Proximity")

Reminder:	now	may	be	a	good	time	to	review	and	re-read	Part	2

Now,	we'll	get	into	the	code	for	making	a	low-degree	proof.	To	review,	a	low-degree	proof	is	a	(probabilistic)	proof
that	at	least	some	high	percentage	(eg.	80%)	of	a	given	set	of	values	represent	the	evaluations	of	some	specific
polynomial	whose	degree	is	much	lower	than	the	number	of	values	given.	Intuitively,	just	think	of	it	as	a	proof	that
"some	Merkle	root	that	we	claim	represents	a	polynomial	actually	does	represent	a	polynomial,	possibly	with	a	few
errors".	As	input,	we	have:

A	set	of	values	that	we	claim	are	the	evaluation	of	a	low-degree	polynomial
A	root	of	unity;	the	x	coordinates	at	which	the	polynomial	is	evaluated	are	successive	powers	of	this	root	of	unity
A	value	\(N\)	such	that	we	are	proving	the	degree	of	the	polynomial	is	strictly	less	than	\(N\)
The	modulus

Our	approach	is	a	recursive	one,	with	two	cases.	First,	if	the	degree	is	low	enough,	we	just	provide	the	entire	list	of
values	as	a	proof;	this	is	the	"base	case".	Verification	of	the	base	case	is	trivial:	do	an	FFT	or	Lagrange	interpolation	or
whatever	else	to	interpolate	the	polynomial	representing	those	values,	and	verify	that	its	degree	is	\(<	N\).	Otherwise,
if	the	degree	is	higher	than	some	set	minimum,	we	do	the	vertical-and-diagonal	trick	described	at	the	bottom	of	Part
2.

We	start	off	by	putting	the	values	into	a	Merkle	tree	and	using	the	Merkle	root	to	select	a	pseudo-random	x	coordinate
(special_x).	We	then	calculate	the	"column":

#	Calculate	the	set	of	x	coordinates
xs	=	get_power_cycle(root_of_unity,	modulus)

column	=	[]
for	i	in	range(len(xs)//4):
				x_poly	=	f.lagrange_interp_4(
								[xs[i+len(xs)*j//4]	for	j	in	range(4)],
								[values[i+len(values)*j//4]	for	j	in	range(4)],
				)
				column.append(f.eval_poly_at(x_poly,	special_x))

This	packs	a	lot	into	a	few	lines	of	code.	The	broad	idea	is	to	re-interpret	the	polynomial	\(P(x)\)	as	a	polynomial	\(Q(x,
y)\),	where	\(P(x)	=	Q(x,	x^4)\).	If	\(P\)	has	degree	\(<	N\),	then	\(P'(y)	=	Q(special\_x,	y)\)	will	have	degree	\(<
\frac{N}{4}\).	Since	we	don't	want	to	take	the	effort	to	actually	compute	\(Q\)	in	coefficient	form	(that	would	take	a
still-relatively-nasty-and-expensive	FFT!),	we	instead	use	another	trick.	For	any	given	value	of	\(x^{4}\),	there	are	4
corresponding	values	of	\(x\):	\(x\),	\(modulus	-	x\),	and	\(x\)	multiplied	by	the	two	modular	square	roots	of	\(-1\).	So	we
already	have	four	values	of	\(Q(?,	x^4)\),	which	we	can	use	to	interpolate	the	polynomial	\(R(x)	=	Q(x,	x^4)\),	and	from
there	calculate	\(R(special\_x)	=	Q(special\_x,	x^4)	=	P'(x^4)\).	There	are	\(\frac{N}{4}\)	possible	values	of	\(x^{4}\),
and	this	lets	us	easily	calculate	all	of	them.

http://web.cecs.pdx.edu/~maier/cs584/Lectures/lect07b-11-MG.pdf
https://dsp.stackexchange.com/questions/41558/what-are-some-of-the-differences-between-dft-and-fft-that-make-fft-so-fast?rq=1
https://vitalik.ca/general/2017/11/22/starks_part_2.html
https://github.com/ethereum/research/blob/master/mimc_stark/fri.py
https://vitalik.ca/general/2017/11/22/starks_part_2.html


A	diagram	from	part	2;	it	helps	to	keep	this	in	mind	when	understanding	what's	going	on	here

Our	proof	consists	of	some	number	(eg.	40)	of	random	queries	from	the	list	of	values	of	\(x^{4}\)	(using	the	Merkle
root	of	the	column	as	a	seed),	and	for	each	query	we	provide	Merkle	branches	of	the	five	values	of	\(Q(?,	x^4)\):

m2	=	merkelize(column)

#	Pseudo-randomly	select	y	indices	to	sample
#	(m2[1]	is	the	Merkle	root	of	the	column)
ys	=	get_pseudorandom_indices(m2[1],	len(column),	40)

#	Compute	the	Merkle	branches	for	the	values	in	the	polynomial	and	the	column
branches	=	[]
for	y	in	ys:
				branches.append([mk_branch(m2,	y)]	+
																				[mk_branch(m,	y	+	(len(xs)	//	4)	*	j)	for	j	in	range(4)])

The	verifier's	job	will	be	to	verify	that	these	five	values	actually	do	lie	on	the	same	degree	\(<	4\)	polynomial.	From
there,	we	recurse	and	do	an	FRI	on	the	column,	verifying	that	the	column	actually	does	have	degree	\(<	\frac{N}
{4}\).	That	really	is	all	there	is	to	FRI.

As	a	challenge	exercise,	you	could	try	creating	low-degree	proofs	of	polynomial	evaluations	that	have	errors	in	them,
and	see	how	many	errors	you	can	get	away	passing	the	verifier	with	(hint,	you'll	need	to	modify	the	prove_low_degree
function;	with	the	default	prover,	even	one	error	will	balloon	up	and	cause	verification	to	fail).

The	STARK

Reminder:	now	may	be	a	good	time	to	review	and	re-read	Part	1

Now,	we	get	to	the	actual	meat	that	puts	all	of	these	pieces	together:	def	mk_mimc_proof(inp,	steps,	round_constants)
(code	here),	which	generates	a	proof	of	the	execution	result	of	running	the	MIMC	function	with	the	given	input	for
some	number	of	steps.	First,	some	asserts:

assert	steps	<=	2**32	//	extension_factor
assert	is_a_power_of_2(steps)	and	is_a_power_of_2(len(round_constants))
assert	len(round_constants)	<	steps

The	extension	factor	is	the	extent	to	which	we	will	be	"stretching"	the	computational	trace	(the	set	of	"intermediate
values"	of	executing	the	MIMC	function).	We	need	the	step	count	multiplied	by	the	extension	factor	to	be	at	most	\
(2^{32}\),	because	we	don't	have	roots	of	unity	of	order	\(2^{k}\)	for	\(k	>	32\).

Our	first	computation	will	be	to	generate	the	computational	trace;	that	is,	all	of	the	intermediate	values	of	the
computation,	from	the	input	going	all	the	way	to	the	output.

#	Generate	the	computational	trace
computational_trace	=	[inp]
for	i	in	range(steps-1):
				computational_trace.append((computational_trace[-1]**3	+	round_constants[i	%	len(round_constants)])	%	modulus)
output	=	computational_trace[-1]

We	then	convert	the	computation	trace	into	a	polynomial,	"laying	down"	successive	values	in	the	trace	on	successive
powers	of	a	root	of	unity	\(g\)	where	\(g^{steps}\)	=	1,	and	we	then	evaluate	the	polynomial	in	a	larger	set,	of
successive	powers	of	a	root	of	unity	\(g_2\)	where	\((g_2)^{steps	\cdot	8}	=	1\)	(note	that	\((g_2)^{8}	=	g\)).

computational_trace_polynomial	=	inv_fft(computational_trace,	modulus,	subroot)
p_evaluations	=	fft(computational_trace_polynomial,	modulus,	root_of_unity)

https://vitalik.ca/general/2017/11/09/starks_part_1.html
https://github.com/ethereum/research/blob/master/mimc_stark/mimc_stark.py


Black:	powers	of	\(g_1\).	Purple:	powers	of	\(g_2\).	Orange:	1.	You	can	look	at	successive	roots	of	unity	as	being	arranged	in	a	circle	in
this	way.	We	are	"laying"	the	computational	trace	along	powers	of	\(g_1\),	and	then	extending	it	compute	the	values	of	the	same

polynomial	at	the	intermediate	values	(ie.	the	powers	of	\(g_2\)).

We	can	convert	the	round	constants	of	MIMC	into	a	polynomial.	Because	these	round	constants	loop	around	very
frequently	(in	our	tests,	every	64	steps),	it	turns	out	that	they	form	a	degree-64	polynomial,	and	we	can	fairly	easily
compute	its	expression,	and	its	extension:

skips2	=	steps	//	len(round_constants)
constants_mini_polynomial	=	fft(round_constants,	modulus,	f.exp(subroot,	skips2),	inv=True)
constants_polynomial	=	[0	if	i	%	skips2	else	constants_mini_polynomial[i//skips2]	for	i	in	range(steps)]
constants_mini_extension	=	fft(constants_mini_polynomial,	modulus,	f.exp(root_of_unity,	skips2))

Suppose	there	are	8192	steps	of	execution	and	64	round	constants.	Here	is	what	we	are	doing:	we	are	doing	an	FFT	to
compute	the	round	constants	as	a	function	of	\((g_1)^{128}\).	We	then	add	zeroes	in	between	the	constants	to	make	it
a	function	of	\(g_1\)	itself.	Because	\((g_1)^{128}\)	loops	around	every	64	steps,	we	know	this	function	of	\(g_1\)	will
as	well.	We	only	compute	512	steps	of	the	extension,	because	we	know	that	the	extension	repeats	after	512	steps	as
well.

We	now,	as	in	the	Fibonacci	example	in	Part	1,	calculate	\(C(P(x))\),	except	this	time	it's	\(C(P(x),	P(g_1	\cdot	x),
K(x))\):

#	Create	the	composed	polynomial	such	that
#	C(P(x),	P(g1*x),	K(x))	=	P(g1*x)	-	P(x)**3	-	K(x)
c_of_p_evaluations	=	[(p_evaluations[(i+extension_factor)%precision]	-
																										f.exp(p_evaluations[i],	3)	-
																										constants_mini_extension[i	%	len(constants_mini_extension)])
																						%	modulus	for	i	in	range(precision)]
print('Computed	C(P,	K)	polynomial')

Note	that	here	we	are	no	longer	working	with	polynomials	in	coefficient	form;	we	are	working	with	the	polynomials	in
terms	of	their	evaluations	at	successive	powers	of	the	higher-order	root	of	unity.

c_of_p	is	intended	to	be	\(Q(x)	=	C(P(x),	P(g_1	\cdot	x),	K(x))	=	P(g_1	\cdot	x)	-	P(x)^3	-	K(x)\);	the	goal	is	that	for	every
\(x\)	that	we	are	laying	the	computational	trace	along	(except	for	the	last	step,	as	there's	no	step	"after"	the	last	step),
the	next	value	in	the	trace	is	equal	to	the	previous	value	in	the	trace	cubed,	plus	the	round	constant.	Unlike	the
Fibonacci	example	in	Part	1,	where	if	one	computational	step	was	at	coordinate	\(k\),	the	next	step	is	at	coordinate	\
(k+1\),	here	we	are	laying	down	the	computational	trace	along	successive	powers	of	the	lower-order	root	of	unity	\
(g_1\),	so	if	one	computational	step	is	located	at	\(x	=	(g_1)^i\),	the	"next"	step	is	located	at	\((g_1)^{i+1}\)	=	\
((g_1)^i	\cdot	g_1	=	x	\cdot	g_1\).	Hence,	for	every	power	of	the	lower-order	root	of	unity	\(g_1\)	(except	the	last),	we
want	it	to	be	the	case	that	\(P(x\cdot	g_1)	=	P(x)^3	+	K(x)\),	or	\(P(x\cdot	g_1)	-	P(x)^3	-	K(x)	=	Q(x)	=	0\).	Thus,	\
(Q(x)\)	will	be	equal	to	zero	at	all	successive	powers	of	the	lower-order	root	of	unity	\(g\)	(except	the	last).

There	is	an	algebraic	theorem	that	proves	that	if	\(Q(x)\)	is	equal	to	zero	at	all	of	these	x	coordinates,	then	it	is	a
multiple	of	the	minimal	polynomial	that	is	equal	to	zero	at	all	of	these	x	coordinates:	\(Z(x)	=	(x	-	x_1)	\cdot	(x	-	x_2)
\cdot	...	\cdot	(x	-	x_n)\).	Since	proving	that	\(Q(x)\)	is	equal	to	zero	at	every	single	coordinate	we	want	to	check	is	too
hard	(as	verifying	such	a	proof	would	take	longer	than	just	running	the	original	computation!),	instead	we	use	an
indirect	approach	to	(probabilistically)	prove	that	\(Q(x)\)	is	a	multiple	of	\(Z(x)\).	And	how	do	we	do	that?	By	providing
the	quotient	\(D(x)	=	\frac{Q(x)}{Z(x)}\)	and	using	FRI	to	prove	that	it's	an	actual	polynomial	and	not	a	fraction,	of
course!

We	chose	the	particular	arrangement	of	lower	and	higher	order	roots	of	unity	(rather	than,	say,	laying	the
computational	trace	along	the	first	few	powers	of	the	higher	order	root	of	unity)	because	it	turns	out	that	computing	\



(Z(x)\)	(the	polynomial	that	evaluates	to	zero	at	all	points	along	the	computational	trace	except	the	last),	and	dividing
by	\(Z(x)\)	is	trivial	there:	the	expression	of	\(Z\)	is	a	fraction	of	two	terms.

#	Compute	D(x)	=	Q(x)	/	Z(x)
#	Z(x)	=	(x^steps	-	1)	/	(x	-	x_atlast_step)
z_num_evaluations	=	[xs[(i	*	steps)	%	precision]	-	1	for	i	in	range(precision)]
z_num_inv	=	f.multi_inv(z_num_evaluations)
z_den_evaluations	=	[xs[i]	-	last_step_position	for	i	in	range(precision)]
d_evaluations	=	[cp	*	zd	*	zni	%	modulus	for	cp,	zd,	zni	in	zip(c_of_p_evaluations,	z_den_evaluations,	z_num_inv)]
print('Computed	D	polynomial')

Notice	that	we	compute	the	numerator	and	denominator	of	\(Z\)	directly	in	"evaluation	form",	and	then	use	the	batch
modular	inversion	to	turn	dividing	by	\(Z\)	into	a	multiplication	(\(\cdot	z_d	\cdot	z_ni\)),	and	then	pointwise	multiply
the	evaluations	of	\(Q(x)\)	by	these	inverses	of	\(Z(x)\).	Note	that	at	the	powers	of	the	lower-order	root	of	unity	except
the	last	(ie.	along	the	portion	of	the	low-degree	extension	that	is	part	of	the	original	computational	trace),	\(Z(x)	=	0\),
so	this	computation	involving	its	inverse	will	break.	This	is	unfortunate,	though	we	will	plug	the	hole	by	simply
modifying	the	random	checks	and	FRI	algorithm	to	not	sample	at	those	points,	so	the	fact	that	we	calculated	them
wrong	will	never	matter.

Because	\(Z(x)\)	can	be	expressed	so	compactly,	we	get	another	benefit:	the	verifier	can	compute	\(Z(x)\)	for	any
specific	\(x\)	extremely	quickly,	without	needing	any	precomputation.	It's	okay	for	the	prover	to	have	to	deal	with
polynomials	whose	size	equals	the	number	of	steps,	but	we	don't	want	to	ask	the	verifier	to	do	the	same,	as	we	want
verification	to	be	succinct	(ie.	ultra-fast,	with	proofs	as	small	as	possible).

Probabilistically	checking	\(D(x)	\cdot	Z(x)	=	Q(x)\)	at	a	few	randomly	selected	points	allows	us	to	verify	the
transition	constraints	-	that	each	computational	step	is	a	valid	consequence	of	the	previous	step.	But	we	also	want
to	verify	the	boundary	constraints	-	that	the	input	and	the	output	of	the	computation	is	what	the	prover	says	they
are.	Just	asking	the	prover	to	provide	evaluations	of	\(P(1)\),	\(D(1)\),	\(P(last\_step)\)	and	\(D(last\_step)\)	(where	\
(last\_step\)	(or	\(g^{steps-1}\))	is	the	coordinate	corresponding	to	the	last	step	in	the	computation)	is	too	fragile;
there's	no	proof	that	those	values	are	on	the	same	polynomial	as	the	rest	of	the	data.	So	instead	we	use	a	similar	kind
of	polynomial	division	trick:

#	Compute	interpolant	of	((1,	input),	(x_atlast_step,	output))
interpolant	=	f.lagrange_interp_2([1,	last_step_position],	[inp,	output])
i_evaluations	=	[f.eval_poly_at(interpolant,	x)	for	x	in	xs]

zeropoly2	=	f.mul_polys([-1,	1],	[-last_step_position,	1])
inv_z2_evaluations	=	f.multi_inv([f.eval_poly_at(quotient,	x)	for	x	in	xs])

#	B	=	(P	-	I)	/	Z2
b_evaluations	=	[((p	-	i)	*	invq)	%	modulus	for	p,	i,	invq	in	zip(p_evaluations,	i_evaluations,	inv_z2_evaluations)]
print('Computed	B	polynomial')

The	argument	is	as	follows.	The	prover	wants	to	prove	\(P(1)	=	input\)	and	\(P(last\_step)	=	output\).	If	we	take	\(I(x)\)
as	the	interpolant	-	the	line	that	crosses	the	two	points	\((1,	input)\)	and	\((last\_step,	output)\),	then	\(P(x)	-	I(x)\)
would	be	equal	to	zero	at	those	two	points.	Thus,	it	suffices	to	prove	that	\(P(x)	-	I(x)\)	is	a	multiple	of	\((x	-	1)	\cdot	(x	-
last\_step)\),	and	we	do	that	by...	providing	the	quotient!

Purple:	computational	trace	polynomial	(P).	Green:	interpolant	(I)	(notice	how	the	interpolant	is	constructed	to	equal	the	input	(which
should	be	the	first	step	of	the	computational	trace)	at	x=1	and	the	output	(which	should	be	the	last	step	of	the	computational	trace)	at	\
(x=g^{steps-1}\).	Red:	\(P	-	I\).	Yellow:	the	minimal	polynomial	that	equals	\(0\)	at	\(x=1\)	and	\(x=g^{steps-1}\)	(that	is,	\(Z_2\)).	Pink:

\(\frac{P	-	I}{Z_2}\).



Challenge	Suppose	you	wanted	to	also	prove	that	the	value	in	the	computational	trace	after	the	703rd
computational	step	is	equal	to	8018284612598740.	How	would	you	modify	the	above	algorithm	to	do	that?	
Mouseover	below	for	answer	

Set	\(I(x)\)	to	be	the	interpolant	of	\((1,	input),	(g^{703},	8018284612598740),	(last\_step,	output)\),	and
make	a	proof	by	providing	the	quotient	\(B(x)	=	\frac{P(x)	-	I(x)}{(x	-	1)	\cdot	(x	-	g^{703})	\cdot	(x	-
last\_step)}\)	

Now,	we	commit	to	the	Merkle	root	of	\(P\),	\(D\)	and	\(B\)	combined	together.

#	Compute	their	Merkle	roots
mtree	=	merkelize([pval.to_bytes(32,	'big')	+
																			dval.to_bytes(32,	'big')	+
																			bval.to_bytes(32,	'big')	for
																			pval,	dval,	bval	in	zip(p_evaluations,	d_evaluations,	b_evaluations)])
print('Computed	hash	root')

Now,	we	need	to	prove	that	\(P\),	\(D\)	and	\(B\)	are	all	actually	polynomials,	and	of	the	right	max-degree.	But	FRI
proofs	are	big	and	expensive,	and	we	don't	want	to	have	three	FRI	proofs.	So	instead,	we	compute	a	pseudorandom
linear	combination	of	\(P\),	\(D\)	and	\(B\)	(using	the	Merkle	root	of	\(P\),	\(D\)	and	\(B\)	as	a	seed),	and	do	an	FRI	proof
on	that:

k1	=	int.from_bytes(blake(mtree[1]	+	b'\x01'),	'big')
k2	=	int.from_bytes(blake(mtree[1]	+	b'\x02'),	'big')
k3	=	int.from_bytes(blake(mtree[1]	+	b'\x03'),	'big')
k4	=	int.from_bytes(blake(mtree[1]	+	b'\x04'),	'big')

#	Compute	the	linear	combination.	We	don't	even	bother	calculating	it
#	in	coefficient	form;	we	just	compute	the	evaluations
root_of_unity_to_the_steps	=	f.exp(root_of_unity,	steps)
powers	=	[1]
for	i	in	range(1,	precision):
				powers.append(powers[-1]	*	root_of_unity_to_the_steps	%	modulus)

l_evaluations	=	[(d_evaluations[i]	+
																		p_evaluations[i]	*	k1	+	p_evaluations[i]	*	k2	*	powers[i]	+
																		b_evaluations[i]	*	k3	+	b_evaluations[i]	*	powers[i]	*	k4)	%	modulus
																		for	i	in	range(precision)]

Unless	all	three	of	the	polynomials	have	the	right	low	degree,	it's	almost	impossible	that	a	randomly	selected	linear
combination	of	them	will	(you	have	to	get	extremely	lucky	for	the	terms	to	cancel),	so	this	is	sufficient.

We	want	to	prove	that	the	degree	of	D	is	less	than	\(2	\cdot	steps\),	and	that	of	\(P\)	and	\(B\)	are	less	than	\(steps\),	so
we	actually	make	a	random	linear	combination	of	\(P\),	\(P	\cdot	x^{steps}\),	\(B\),	\(B^{steps}\)	and	\(D\),	and	check
that	the	degree	of	this	combination	is	less	than	\(2	\cdot	steps\).

Now,	we	do	some	spot	checks	of	all	of	the	polynomials.	We	generate	some	random	indices,	and	provide	the	Merkle
branches	of	the	polynomial	evaluated	at	those	indices:

#	Do	some	spot	checks	of	the	Merkle	tree	at	pseudo-random	coordinates,	excluding
#	multiples	of	`extension_factor`
branches	=	[]
samples	=	spot_check_security_factor
positions	=	get_pseudorandom_indices(l_mtree[1],	precision,	samples,
																																					exclude_multiples_of=extension_factor)
for	pos	in	positions:
				branches.append(mk_branch(mtree,	pos))
				branches.append(mk_branch(mtree,	(pos	+	skips)	%	precision))
				branches.append(mk_branch(l_mtree,	pos))
print('Computed	%d	spot	checks'	%	samples)

The	get_pseudorandom_indices	function	returns	some	random	indices	in	the	range	[0...precision-1],	and	the
exclude_multiples_of	parameter	tells	it	to	not	give	values	that	are	multiples	of	the	given	parameter	(here,
extension_factor).	This	ensures	that	we	do	not	sample	along	the	original	computational	trace,	where	we	are	likely	to
get	wrong	answers.

The	proof	(~250-500	kilobytes	altogether)	consists	of	a	set	of	Merkle	roots,	the	spot-checked	branches,	and	a	low-
degree	proof	of	the	random	linear	combination:

o	=	[mtree[1],
					l_mtree[1],
					branches,
					prove_low_degree(l_evaluations,	root_of_unity,	steps	*	2,	modulus,	exclude_multiples_of=extension_factor)]

The	largest	parts	of	the	proof	in	practice	are	the	Merkle	branches,	and	the	FRI	proof,	which	consists	of	even	more
branches.	And	here's	the	"meat"	of	the	verifier:

for	i,	pos	in	enumerate(positions):
				x	=	f.exp(G2,	pos)
				x_to_the_steps	=	f.exp(x,	steps)
				mbranch1	=		verify_branch(m_root,	pos,	branches[i*3])
				mbranch2	=		verify_branch(m_root,	(pos+skips)%precision,	branches[i*3+1])



				l_of_x	=	verify_branch(l_root,	pos,	branches[i*3	+	2],	output_as_int=True)

				p_of_x	=	int.from_bytes(mbranch1[:32],	'big')
				p_of_g1x	=	int.from_bytes(mbranch2[:32],	'big')
				d_of_x	=	int.from_bytes(mbranch1[32:64],	'big')
				b_of_x	=	int.from_bytes(mbranch1[64:],	'big')

				zvalue	=	f.div(f.exp(x,	steps)	-	1,
																			x	-	last_step_position)
				k_of_x	=	f.eval_poly_at(constants_mini_polynomial,	f.exp(x,	skips2))

				#	Check	transition	constraints	Q(x)	=	Z(x)	*	D(x)
				assert	(p_of_g1x	-	p_of_x	**	3	-	k_of_x	-	zvalue	*	d_of_x)	%	modulus	==	0

				#	Check	boundary	constraints	B(x)	*	Z2(x)	+	I(x)	=	P(x)
				interpolant	=	f.lagrange_interp_2([1,	last_step_position],	[inp,	output])
				zeropoly2	=	f.mul_polys([-1,	1],	[-last_step_position,	1])
				assert	(p_of_x	-	b_of_x	*	f.eval_poly_at(zeropoly2,	x)	-
												f.eval_poly_at(interpolant,	x))	%	modulus	==	0

				#	Check	correctness	of	the	linear	combination
				assert	(l_of_x	-	d_of_x	-
												k1	*	p_of_x	-	k2	*	p_of_x	*	x_to_the_steps	-
												k3	*	b_of_x	-	k4	*	b_of_x	*	x_to_the_steps)	%	modulus	==	0

At	every	one	of	the	positions	that	the	prover	provides	a	Merkle	proof	for,	the	verifier	checks	the	Merkle	proof,	and
checks	that	\(C(P(x),	P(g_1	\cdot	x),	K(x))	=	Z(x)	\cdot	D(x)\)	and	\(B(x)	\cdot	Z_2(x)	+	I(x)	=	P(x)\)	(reminder:	for	\(x\)
that	are	not	along	the	original	computation	trace,	\(Z(x)\)	will	not	be	zero,	and	so	\(C(P(x),	P(g_1	\cdot	x),	K(x))\)	likely
will	not	evaluate	to	zero).	The	verifier	also	checks	that	the	linear	combination	is	correct,	and	calls
verify_low_degree_proof(l_root,	root_of_unity,	fri_proof,	steps	*	2,	modulus,
exclude_multiples_of=extension_factor)	to	verify	the	FRI	proof.	And	we're	done!

Well,	not	really;	soundness	analysis	to	prove	how	many	spot-checks	for	the	cross-polynomial	checking	and	for	the	FRI
are	necessary	is	really	tricky.	But	that's	all	there	is	to	the	code,	at	least	if	you	don't	care	about	making	even	crazier
optimizations.	When	I	run	the	code	above,	we	get	a	STARK	proving	"overhead"	of	about	300-400x	(eg.	a	MIMC
computation	that	takes	0.2	seconds	to	calculate	takes	60	second	to	prove),	suggesting	that	with	a	4-core	machine
computing	the	STARK	of	the	MIMC	computation	in	the	forward	direction	could	actually	be	faster	than	computing
MIMC	in	the	backward	direction.	That	said,	these	are	both	relatively	inefficient	implementations	in	python,	and	the
proving	to	running	time	ratio	for	properly	optimized	implementations	may	be	different.	Also,	it's	worth	pointing	out
that	the	STARK	proving	overhead	for	MIMC	is	remarkably	low,	because	MIMC	is	almost	perfectly	"arithmetizable"	-
it's	mathematical	form	is	very	simple.	For	"average"	computations,	which	contain	less	arithmetically	clean	operations
(eg.	checking	if	a	number	is	greater	or	less	than	another	number),	the	overhead	is	likely	much	higher,	possibly	around
10000-50000x.
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On	Radical	Markets

Recently	I	had	the	fortune	to	have	received	an	advance	copy	of	Eric	Posner	and	Glen	Weyl's	new
book,	Radical	Markets,	which	could	be	best	described	as	an	interesting	new	way	of	looking	at	the
subject	that	is	sometimes	called	"political	economy"	-	tackling	the	big	questions	of	how	markets	and
politics	and	society	intersect.	The	general	philosophy	of	the	book,	as	I	interpret	it,	can	be	expressed
as	follows.	Markets	are	great,	and	price	mechanisms	are	an	awesome	way	of	guiding	the	use	of
resources	in	society	and	bringing	together	many	participants'	objectives	and	information	into	a
coherent	whole.	However,	markets	are	socially	constructed	because	they	depend	on	property	rights
that	are	socially	constructed,	and	there	are	many	different	ways	that	markets	and	property	rights	can
be	constructed,	some	of	which	are	unexplored	and	potentially	far	better	than	what	we	have	today.
Contra	doctrinaire	libertarians,	freedom	is	a	high-dimensional	design	space.

The	book	interests	me	for	multiple	reasons.	First,	although	I	spend	most	of	my	time	in	the
blockchain/crypto	space	heading	up	the	Ethereum	project	and	in	some	cases	providing	various	kinds
of	support	to	projects	in	the	space,	I	do	also	have	broader	interests,	of	which	the	use	of	economics
and	mechanism	design	to	make	more	open,	free,	egalitarian	and	efficient	systems	for	human
cooperation,	including	improving	or	replacing	present-day	corporations	and	governments,	is	a	major
one.	The	intersection	of	interests	between	the	Ethereum	community	and	Posner	and	Weyl's	work	is
multifaceted	and	plentiful;	Radical	Markets	dedicates	an	entire	chapter	to	the	idea	of	"markets	for
personal	data",	redefining	the	economic	relationship	between	ourselves	and	services	like	Facebook,
and	well,	look	what	the	Ethereum	community	is	working	on:	markets	for	personal	data.

Second,	blockchains	may	well	be	used	as	a	technical	backbone	for	some	of	the	solutions	described	in
the	book,	and	Ethereum-style	smart	contracts	are	ideal	for	the	kinds	of	complex	systems	of	property
rights	that	the	book	explores.	Third,	the	economic	ideas	and	challenges	that	the	book	brings	up	are
ideas	that	have	also	been	explored,	and	will	be	continue	to	be	explored,	at	great	length	by	the
blockchain	community	for	its	own	purposes.	Posner	and	Weyl's	ideas	often	have	the	feature	that	they
allow	economic	incentive	alignment	to	serve	as	a	substitute	for	subjective	ad-hoc	bureaucracy	(eg.
Harberger	taxes	can	essentially	replace	eminent	domain),	and	given	that	blockchains	lack	access	to
trusted	human-controlled	courts,	these	kinds	of	solutions	may	prove	to	be	be	even	more	ideal	for
blockchain-based	markets	than	they	are	for	"real	life".

I	will	warn	that	readers	are	not	at	all	guaranteed	to	find	the	book's	proposals	acceptable;	at	least	the
first	three	have	already	been	highly	controversial	and	they	do	contravene	many	people's	moral
preconceptions	about	how	property	should	and	should	work	and	where	money	and	markets	can	and
can't	be	used.	The	authors	are	no	strangers	to	controversy;	Posner	has	on	previous	occasions	even
proven	willing	to	argue	against	such	notions	as	human	rights	law.	That	said,	the	book	does	go	to
considerable	lengths	to	explain	why	each	proposal	improves	efficiency	if	it	could	be	done,	and	offer
multiple	versions	of	each	proposal	in	the	hopes	that	there	is	at	least	one	(even	if	partial)
implementation	of	each	idea	that	any	given	reader	can	find	agreeable.

What	do	Posner	and	Weyl	talk	about?
The	book	is	split	into	five	major	sections,	each	arguing	for	a	particular	reform:	self-assessed	property
taxes,	quadratic	voting,	a	new	kind	of	immigration	program,	breaking	up	big	financial	conglomerates
that	currently	make	banks	and	other	industries	act	like	monopolies	even	if	they	appear	at	first	glance
to	be	competitive,	and	markets	for	selling	personal	data.	Properly	summarizing	all	five	sections	and
doing	them	justice	would	take	too	long,	so	I	will	focus	on	a	deep	summary	of	one	specific	section,
dealing	with	a	new	kind	of	property	taxation,	to	give	the	reader	a	feel	for	the	kinds	of	ideas	that	the
book	is	about.

Harberger	taxes

See	also:	"Property	Is	Only	Another	Name	for	Monopoly",	Posner	and	Weyl

Markets	and	private	property	are	two	ideas	that	are	often	considered	together,	and	it	is	difficult	in
modern	discourse	to	imagine	one	without	(or	even	with	much	less	of)	the	other.	In	the	19th	century,
however,	many	economists	in	Europe	were	both	libertarian	and	egalitarian,	and	it	was	quite	common
to	appreciate	markets	while	maintaining	skepticism	toward	the	excesses	of	private	property.	A	rather
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interesting	example	of	this	is	the	Bastiat-Proudhon	debate	from	1849-1850	where	the	two	dispute	the
legitimacy	of	charging	interest	on	loans,	with	one	side	focusing	on	the	mutual	gains	from	voluntary
contracts	and	the	other	focusing	on	their	suspicion	of	the	potential	for	people	with	capital	to	get	even
richer	without	working,	leading	to	unbalanced	capital	accumulation.

As	it	turns	out,	it	is	absolutely	possible	to	have	a	system	that	contains	markets	but	not	property
rights:	at	the	end	of	every	year,	collect	every	piece	of	property,	and	at	the	start	of	the	next	year	have
the	government	auction	every	piece	out	to	the	highest	bidder.	This	kind	of	system	is	intuitively	quite
unrealistic	and	impractical,	but	it	has	the	benefit	that	it	achieves	perfect	allocative	efficiency:
every	year,	every	object	goes	to	the	person	who	can	derive	the	most	value	from	it	(ie.	the	highest
bidder).	It	also	gives	the	government	a	large	amount	of	revenue	that	could	be	used	to	completely
substitute	income	and	sales	taxes	or	fund	a	basic	income.

Now	you	might	ask:	doesn't	the	existing	property	system	also	achieve	allocative	efficiency?	After	all,
if	I	have	an	apple,	and	I	value	it	at	$2,	and	you	value	it	at	$3,	then	you	could	offer	me	$2.50	and	I
would	accept.	However,	this	fails	to	take	into	account	imperfect	information:	how	do	you	know	that	I
value	it	at	$2,	and	not	$2.70?	You	could	offer	to	buy	it	for	$2.99	so	that	you	can	be	sure	that	you'll
get	it	if	you	really	are	the	one	who	values	the	apple	more,	but	then	you	would	be	gaining	practically
nothing	from	the	transaction.	And	if	you	ask	me	to	set	the	price,	how	do	I	know	that	you	value	it	at
$3,	and	not	$2.30?	And	if	I	set	the	price	to	$2.01	to	be	sure,	I	would	be	gaining	practically	nothing
from	the	transaction.	Unfortunately,	there	is	a	result	known	as	the	Myerson-Satterthwaite	Theorem
which	means	that	no	solution	is	efficient;	that	is,	any	bargaining	algorithm	in	such	a	situation	must	at
least	sometimes	lead	to	inefficiency	from	mutually	beneficial	deals	falling	through.

If	there	are	many	buyers	you	have	to	negotiate	with,	things	get	even	harder.	If	a	developer	(in	the
real	estate	sense)	is	trying	to	make	a	large	project	that	requires	buying	100	existing	properties,	and
99	have	already	agreed,	the	remaining	one	has	a	strong	incentive	to	charge	a	very	high	price,	much
higher	than	their	actual	personal	valuation	of	the	property,	hoping	that	the	developer	will	have	no
choice	but	to	pay	up.

Well,	not	necessarily	no	choice.	But	a	very	inconvenient	and	both	privately	and	socially	wasteful	choice.

Re-auctioning	everything	once	a	year	completely	solves	this	problem	of	allocative	efficiency,	but	at	a
very	high	cost	to	investment	efficiency:	there's	no	point	in	building	a	house	in	the	first	place	if	six
months	later	it	will	get	taken	away	from	you	and	re-sold	in	an	auction.	All	property	taxes	have	this
problem;	if	building	a	house	costs	you	$90	and	brings	you	$100	of	benefit,	but	then	you	have	to	pay
$15	more	property	tax	if	you	build	the	house,	then	you	will	not	build	the	house	and	that	$10	gain	is
lost	to	society.

One	of	the	more	interesting	ideas	from	the	19th	century	economists,	and	specifically	Henry	George,
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was	a	kind	of	property	tax	that	did	not	have	this	problem:	the	land	value	tax.	The	idea	is	to	charge
tax	on	the	value	of	land,	but	not	the	improvements	to	the	land;	if	you	own	a	$100,000	plot	of	dirt	you
would	have	to	pay	$5,000	per	year	taxes	on	it	regardless	of	whether	you	used	the	land	to	build	a
condominium	or	simply	as	a	place	to	walk	your	pet	doge.

A	doge.

Weyl	and	Posner	are	not	convinced	that	Georgian	land	taxes	are	viable	in	practice:

Consider,	for	example,	the	Empire	State	Building.	What	is	the	pure	value	of	the	land
beneath	it?	One	could	try	to	infer	its	value	by	comparing	it	to	the	value	of	adjoining	land.
But	the	building	itself	defines	the	neighborhood	around	it;	removing	the	building	would
almost	certainly	change	the	value	of	its	surrounding	land.	The	land	and	the	building,	even
the	neighborhood,	are	so	tied	together,	it	would	be	hard	to	figure	out	a	separate	value	for
each	of	them.

Arguably	this	does	not	exclude	the	possibility	of	a	different	kind	of	Georgian-style	land	tax:	a	tax
based	on	the	average	of	property	values	across	a	sufficiently	large	area.	That	would	preserve	the
property	that	improving	a	single	piece	of	land	would	not	(greatly)	perversely	increase	the	taxes	that
they	have	to	pay,	without	having	to	find	a	way	to	distinguish	land	from	improvements	in	an	absolute
sense.	But	in	any	case,	Posner	and	Weyl	move	on	to	their	main	proposal:	self-assessed	property
taxes.

Consider	a	system	where	property	owners	themselves	specify	what	the	value	of	their	property	is,	and
pay	a	tax	rate	of,	say,	2%	of	that	value	per	year.	But	here	is	the	twist:	whatever	value	they	specify	for
their	property,	they	have	to	be	willing	to	sell	it	to	anyone	at	that	price.

If	the	tax	rate	is	equal	to	the	chance	per	year	that	the	property	gets	sold,	then	this	achieves	optimal
allocative	efficiency:	raising	your	self-assessed	property	value	by	$1	increases	the	tax	you	pay	by
$0.02,	but	it	also	means	there	is	a	2%	chance	that	someone	will	buy	the	property	and	pay	$1	more,	so
there	is	no	incentive	to	cheat	in	either	direction.	It	does	harm	investment	efficiency,	but	vastly	less	so
than	all	property	being	re-auctioned	every	year.

Posner	and	Weyl	then	point	out	that	if	more	investment	efficiency	is	desired,	a	hybrid	solution	with	a
lower	property	tax	is	possible:

When	the	tax	is	reduced	incrementally	to	improve	investment	efficiency,	the	loss	in
allocative	efficiency	is	less	than	the	gain	in	investment	efficiency.	The	reason	is	that	the
most	valuable	sales	are	ones	where	the	buyer	is	willing	to	pay	significantly	more	than	the
seller	is	willing	to	accept.	These	transactions	are	the	first	ones	enabled	by	a	reduction	in
the	price	as	even	a	small	price	reduction	will	avoid	blocking	these	most	valuable
transactions.	In	fact,	it	can	be	shown	that	the	size	of	the	social	loss	from	monopoly	power
grows	quadratically	in	the	extent	of	this	power.	Thus,	reducing	the	markup	by	a	third
eliminates	close	to	\(\frac{5}{9}	=	(3^2-2^2)/(3^2\))	of	the	allocative	harm	from	private
ownership.

This	concept	of	quadratic	deadweight	loss	is	a	truly	important	insight	in	economics,	and	is	arguably
the	deep	reason	why	"moderation	in	all	things"	is	such	an	attractive	principle:	the	first	step	you	take
away	from	an	extreme	will	generally	be	the	most	valuable.
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The	book	then	proceeds	to	give	a	series	of	side	benefits	that	this	tax	would	have,	as	well	as	some
downsides.	One	interesting	side	benefit	is	that	it	removes	an	information	asymmetry	flaw	that	exists
with	property	sales	today,	where	owners	have	the	incentive	to	expend	effort	on	making	their
property	look	good	even	in	potentially	misleading	ways.	With	a	properly	set	Harberger	tax,	if	you
somehow	mange	to	trick	the	world	into	thinking	your	house	is	5%	more	valuable,	you'll	get	5%	more
when	you	sell	it	but	until	that	point	you'll	have	to	pay	5%	more	in	taxes,	or	else	someone	will	much
more	quickly	snap	it	up	from	you	at	the	original	price.

The	downsides	are	smaller	than	they	seem;	for	example,	one	natural	disadvantage	is	that	it	exposes
property	owners	to	uncertainty	due	to	the	possibility	that	someone	will	snap	up	their	property	at	any
time,	but	that	is	hardly	an	unknown	as	it's	a	risk	that	renters	already	face	every	day.	But	Weyl	and
Posner	do	propose	more	moderate	ways	of	introducing	the	tax	that	don't	have	these	issues.	First,	the
tax	can	be	applied	to	types	of	property	that	are	currently	government	owned;	it's	a	potentially
superior	alternative	to	both	continued	government	ownership	and	traditional	full-on	privatization.
Second,	the	tax	can	be	applied	to	forms	of	property	that	are	already	"industrial"	in	usage:	radio
spectrum	licenses,	domain	names,	intellectual	property,	etc.

The	Rest	of	the	Book

The	remaining	chapters	bring	up	similar	ideas	that	are	similar	in	spirit	to	the	discussion	on
Harberger	taxes	in	their	use	of	modern	game-theoretic	principles	to	make	mathematically	optimized
versions	of	existing	social	institutions.	One	of	the	proposals	is	for	something	called	quadratic	voting,
which	I	summarize	as	follows.

Suppose	that	you	can	vote	as	many	times	as	you	want,	but	voting	costs	"voting	tokens"	(say	each
citizen	is	assigned	\(N\)	voting	tokens	per	year),	and	it	costs	tokens	in	a	nonlinear	way:	your	first	vote
costs	one	token,	your	second	vote	costs	two	tokens,	and	so	forth.	If	someone	feels	more	strongly
about	something,	the	argument	goes,	they	would	be	willing	to	pay	more	for	a	single	vote;	quadratic
voting	takes	advantage	of	this	by	perfectly	aligning	quantity	of	votes	with	cost	of	votes:	if	you're
willing	to	pay	up	to	15	tokens	for	a	vote,	then	you	will	keep	buying	votes	until	your	last	one	costs	15
tokens,	and	so	you	will	cast	15	votes	in	total.	If	you're	willing	to	pay	up	to	30	tokens	for	a	vote,	then
you	will	keep	buying	votes	until	you	can't	buy	any	more	for	a	price	less	than	or	equal	to	30	tokens,
and	so	you	will	end	up	casting	30	votes.	The	voting	is	"quadratic"	because	the	total	amount	you	pay
for	\(N\)	votes	goes	up	proportionately	to	\(N^2\).



After	this,	the	book	describes	a	market	for	immigration	visas	that	could	greatly	expand	the	number	of
immigrants	admitted	while	making	sure	local	residents	benefit	and	at	the	same	time	aligning
incentives	to	encourage	visa	sponsors	to	choose	immigrants	that	are	more	ikely	to	succeed	in	the
country	and	less	likely	to	commit	crimes,	then	an	enhancement	to	antitrust	law,	and	finally	the	idea
of	setting	up	markets	for	personal	data.

Markets	in	Everything

There	are	plenty	of	ways	that	one	could	respond	to	each	individual	proposal	made	in	the	book.	I
personally,	for	example,	find	the	immigration	visa	scheme	that	Posner	and	Weyl	propose	well-
intentioned	and	see	how	it	could	improve	on	the	status	quo,	but	also	overcomplicated,	and	it	seems
simpler	to	me	to	have	a	scheme	where	visas	are	auctioned	or	sold	every	year,	with	an	additional
requirement	for	migrants	to	obtain	liability	insurance.	Robin	Hanson	recently	proposed	greatly
expanding	liability	insurance	mandates	as	an	alternative	to	many	kinds	of	regulation,	and	while
imposing	new	mandates	on	an	entire	society	seems	unrealistic,	a	new	expanded	immigration
program	seems	like	the	perfect	place	to	start	considering	them.	Paying	people	for	personal	data	is
interesting,	but	there	are	concerns	about	adverse	selection:	to	put	it	politely,	the	kinds	of	people	that
are	willing	to	sit	around	submitting	lots	of	data	to	Facebook	all	year	to	earn	$16.92	(Facebook's
current	annualized	revenue	per	user)	are	not	the	kinds	of	people	that	advertisers	are	willing	to	burn
hundreds	of	dollars	per	person	trying	to	market	rolexes	and	Lambos	to.	However,	what	I	find	more
interesting	is	the	general	principle	that	the	book	tries	to	promote.

Over	the	last	hundred	years,	there	truly	has	been	a	large	amount	of	research	into	designing
economic	mechanisms	that	have	desirable	properties	and	that	outperform	simple	two-sided	buy-and-
sell	markets.	Some	of	this	research	has	been	put	into	use	in	some	specific	industries;	for	example,
combinatorial	auctions	are	used	in	airports,	radio	spectrum	auctions	and	several	other	industrial	use
cases,	but	it	hasn't	really	seeped	into	any	kind	of	broader	policy	design;	the	political	systems	and
property	rights	that	we	have	are	still	largely	the	same	as	we	had	two	centuries	ago.	So	can	we	use
modern	economic	insights	to	reform	base-layer	markets	and	politics	in	such	a	deep	way,	and	if	so,
should	we?

Normally,	I	love	markets	and	clean	incentive	alignment,	and	dislike	politics	and	bureaucrats	and	ugly
hacks,	and	I	love	economics,	and	I	so	love	the	idea	of	using	economic	insights	to	design	markets	that
work	better	so	that	we	can	reduce	the	role	of	politics	and	bureaucrats	and	ugly	hacks	in	society.
Hence,	naturally,	I	love	this	vision.	So	let	me	be	a	good	intellectual	citizen	and	do	my	best	to	try	to
make	a	case	against	it.

There	is	a	limit	to	how	complex	economic	incentive	structures	and	markets	can	be	because	there	is	a
limit	to	users'	ability	to	think	and	re-evaluate	and	give	ongoing	precise	measurements	for	their
valuations	of	things,	and	people	value	reliability	and	certainty.	Quoting	Steve	Waldman	criticizing
Uber	surge	pricing:

Finally,	we	need	to	consider	questions	of	economic	calculation.	In	macroeconomics,	we
sometimes	face	tradeoffs	between	an	increasing	and	unpredictably	variable	price-level	and
full	employment.	Wisely	or	not,	our	current	policy	is	to	stabilize	the	price	level,	even	at
short-term	cost	to	output	and	employment,	because	stable	prices	enable	longer-term
economic	calculation.	That	vague	good,	not	visible	on	a	supply/demand	diagram,	is	deemed
worth	very	large	sacrifices.	The	same	concern	exists	in	a	microeconomic	context.	If	the
"ride-sharing	revolution"	really	takes	hold,	a	lot	of	us	will	have	decisions	to	make	about
whether	to	own	a	car	or	rely	upon	the	Sidecars,	Lyfts,	and	Ubers	of	the	world	to	take	us	to
work	every	day.	To	make	those	calculations,	we	will	need	something	like	predictable
pricing.	Commuting	to	our	minimum	wage	jobs	(average	is	over!)	by	Uber	may	be	OK	at
standard	pricing,	but	not	so	OK	on	a	surge.	In	the	desperate	utopia	of	the	"free-market
economist",	there	is	always	a	solution	to	this	problem.	We	can	define	futures	markets	on
Uber	trips,	and	so	hedge	our	exposure	to	price	volatility!	In	practice	that	is	not	so	likely...

And:

It's	clear	that	in	a	lot	of	contexts,	people	have	a	strong	preference	for	price-predictability
over	immediate	access.	The	vast	majority	of	services	that	we	purchase	and	consume	are
not	price-rationed	in	any	fine-grained	way.	If	your	hairdresser	or	auto	mechanic	is	busy,
you	get	penciled	in	for	next	week...

Strong	property	rights	are	valuable	for	the	same	reason:	beyond	the	arguments	about	allocative	and
investment	efficiency,	they	provide	the	mental	convenience	and	planning	benefits	of	predictability.

It's	worth	noting	that	even	Uber	itself	doesn't	do	surge	pricing	in	the	"market-based"	way	that
economists	would	recommend.	Uber	is	not	a	market	where	drivers	can	set	their	own	prices,	riders
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can	see	what	prices	are	available,	and	themselves	choose	their	tradeoff	between	price	and	waiting
time.	Why	does	Uber	not	do	this?	One	argument	is	that,	as	Steve	Waldman	says,	"Uber	itself	is	a
cartel",	and	wants	to	have	the	power	to	adjust	market	prices	not	just	for	efficiency	but	also	reasons
such	as	profit	maximization,	strategically	setting	prices	to	drive	out	competing	platforms	(and	taxis
and	public	transit),	and	public	relations.	As	Waldman	further	points	out,	one	Uber	competitor,
Sidecar,	does	have	the	ability	for	drivers	to	set	prices,	and	I	would	add	that	I	have	seen	ride-sharing
apps	in	China	where	passengers	can	offer	drivers	higher	prices	to	try	to	coax	them	to	get	a	car
faster.

A	possible	counter-argument	that	Uber	might	give	is	that	drivers	themselves	are	actually	less	good	at
setting	optimal	prices	than	Uber's	own	algorithms,	and	in	general	people	value	the	convenience	of
one-click	interfaces	over	the	mental	complexity	of	thinking	about	prices.	If	we	assume	that	Uber	won
its	market	dominance	over	competitors	like	Sidecar	fairly,	then	the	market	itself	has	decided	that	the
economic	gain	from	marketizing	more	things	is	not	worth	the	mental	transaction	costs.

Harberger	taxes,	at	least	to	me,	seem	like	they	would	lead	to	these	exact	kinds	of	issues	multipled	by
ten;	people	are	not	experts	at	property	valuation,	and	would	have	to	spend	a	significant	amount	of
time	and	mental	effort	figuring	out	what	self-assessed	value	to	put	for	their	house,	and	they	would
complain	much	more	if	they	accidentally	put	a	value	that's	too	low	and	suddenly	find	that	their	house
is	gone.	If	Harberger	taxes	were	to	be	applied	to	smaller	property	items	as	well,	people	would	need
to	juggle	a	large	amount	of	mental	valuations	of	everything.	A	similar	critique	could	apply	to	many
kinds	of	personal	data	markets,	and	possibly	even	to	quadratic	voting	if	implemented	in	its	full	form.

I	could	challenge	this	by	saying	"ah,	even	if	that's	true,	this	is	the	21st	century,	we	could	have
companies	that	build	AIs	that	make	pricing	decisions	on	your	behalf,	and	people	could	choose	the	AI
that	seems	to	work	best;	there	could	even	be	a	public	option";	and	Posner	and	Weyl	themselves
suggest	that	this	is	likely	the	way	to	go.	And	this	is	where	the	interesting	conversation	starts.

Tales	from	Crypto	Land

One	reason	why	this	discussion	particularly	interests	me	is	that	the	cryptocurrency	and	blockchain
space	itself	has,	in	some	cases,	run	up	against	similar	challenges.	In	the	case	of	Harberger	taxes,	we
actually	did	consider	almost	exactly	that	same	proposal	in	the	context	of	the	Ethereum	Name	System
(our	decentralized	alternative	to	DNS),	but	the	proposal	was	ultimately	rejected.	I	asked	the	ENS
developers	why	it	was	rejected.	Paraphrasing	their	reply,	the	challenge	is	as	follows.

Many	ENS	domain	names	are	of	a	type	that	would	only	be	interesting	to	precisely	two	classes	of
actors:	(i)	the	"legitimate	owner"	of	some	given	name,	and	(ii)	scammers.	Furthermore,	in	some
particular	cases,	the	legitimate	owner	is	uniquely	underfunded,	and	scammers	are	uniquely
dangerous.	One	particular	case	is	MyEtherWallet,	an	Ethereum	wallet	provider.	MyEtherWallet
provides	an	important	public	good	to	the	Ethereum	ecosystem,	making	Ethereum	easier	to	use	for
many	thousands	of	people,	but	is	able	to	capture	only	a	very	small	portion	of	the	value	that	it
provides;	as	a	result,	the	budget	that	it	has	for	outbidding	others	for	the	domain	name	is	low.	If	a
scammer	gets	their	hands	on	the	domain,	users	trusting	MyEtherWallet	could	easily	be	tricked	into
sending	all	of	their	ether	(or	other	Ethereum	assets)	to	a	scammer.	Hence,	because	there	is	generally
one	clear	"legitimate	owner"	for	any	domain	name,	a	pure	property	rights	regime	presents	little
allocative	efficiency	loss,	and	there	is	a	strong	overriding	public	interest	toward	stability	of	reference
(ie.	a	domain	that's	legitimate	one	day	doesn't	redirect	to	a	scam	the	next	day),	so	any	level	of
Harberger	taxation	may	well	bring	more	harm	than	good.

I	suggested	to	the	ENS	developers	the	idea	of	applying	Harberger	taxes	to	short	domains	(eg.
abc.eth),	but	not	long	ones;	the	reply	was	that	it	would	be	too	complicated	to	have	two	classes	of
names.	That	said,	perhaps	there	is	some	version	of	the	proposal	that	could	satisfy	the	specific
constraints	here;	I	would	be	interested	to	hear	Posner	and	Weyl's	feedback	on	this	particular
application.

Another	story	from	the	blockchain	and	Ethereum	space	that	has	a	more	pro-radical-market
conclusion	is	that	of	transaction	fees.	The	notion	of	mental	transaction	costs,	the	idea	that	the
inconvenience	of	even	thinking	about	whether	or	not	some	small	payment	for	a	given	digital	good	is
worth	it	is	enough	of	a	burden	to	prevent	"micro-markets"	from	working,	is	often	used	as	an
argument	for	why	mass	adoption	of	blockchain	tech	would	be	difficult:	every	transaction	requires	a
small	fee,	and	the	mental	expenditure	of	figuring	out	what	fee	to	pay	is	itself	a	major	usability
barrier.	These	arguments	increased	further	at	the	end	of	last	year,	when	both	Bitcoin	and	Ethereum
transaction	fees	briefly	spiked	up	by	a	factor	of	over	100	due	to	high	usage	(talk	about	surge
pricing!),	and	those	who	accidentally	did	not	pay	high	enough	fees	saw	their	transactions	get	stuck
for	days.
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That	said,	this	is	a	problem	that	we	have	now,	arguably,	to	a	large	extent	overcome.	After	the	spikes
at	the	end	of	last	year,	Ethereum	wallets	developed	more	advanced	algorithms	for	choosing	what
transaction	fees	to	pay	to	ensure	that	one's	transaction	gets	included	in	the	chain,	and	today	most
users	are	happy	to	simply	defer	to	them.	In	my	own	personal	experience,	the	mental	transaction
costs	of	worrying	about	transaction	fees	do	not	really	exist,	much	like	a	driver	of	a	car	does	not	worry
about	the	gasoline	consumed	by	every	single	turn,	acceleration	and	braking	made	by	their	car.

Personal	price-setting	AIs	for	interacting	with	open	markets:	already	a	reality	in	the	Ethereum	transaction	fee
market

A	third	kind	of	"radical	market"	that	we	are	considering	implementing	in	the	context	of	Ethereum's
consensus	system	is	one	for	incentivizing	deconcentration	of	validator	nodes	in	proof	of	stake
consensus.	It's	important	for	blockchains	to	be	decentralized,	a	similar	challenge	to	what	antitrust
law	tries	to	solve,	but	the	tools	at	our	disposal	are	different.	Posner	and	Weyl's	solution	to	antitrust,
banning	institutional	investment	funds	from	owning	shares	in	multiple	competitors	in	the	same
industry,	is	far	too	subjective	and	human-judgement-dependent	to	work	in	a	blockchain,	but	for	our
specific	context	we	have	a	different	solution:	if	a	validator	node	commits	an	error,	it	gets	penalized
an	amount	proportional	to	the	number	of	other	nodes	that	have	committed	an	error	around	the	same
time.	This	incentivizes	nodes	to	set	themselves	up	in	such	a	way	that	their	failure	rate	is	maximally
uncorrelated	with	everyone	else's	failure	rate,	reducing	the	chance	that	many	nodes	fail	at	the	same
time	and	threaten	to	the	blockchain's	integrity.	I	want	to	ask	Posner	and	Weyl:	though	our	exact
approach	is	fairly	application-specific,	could	a	similarly	elegant	"market-based"	solution	be
discovered	to	incentivize	market	deconcentration	in	general?

All	in	all,	I	am	optimistic	that	the	various	behavioral	kinks	around	implementing	"radical	markets"	in
practice	could	be	worked	out	with	the	help	of	good	defaults	and	personal	AIs,	though	I	do	think	that
if	this	vision	is	to	be	pushed	forward,	the	greatest	challenge	will	be	finding	progressively	larger	and
more	meaningful	places	to	test	it	out	and	show	that	the	model	works.	I	particularly	welcome	the	use
of	the	blockchain	and	crypto	space	as	a	testing	ground.

Another	Kind	of	Radical	Market

The	book	as	a	whole	tends	to	focus	on	centralized	reforms	that	could	be	implemented	on	an	economy
from	the	top	down,	even	if	their	intended	long-term	effect	is	to	push	more	decision-making	power	to
individuals.	The	proposals	involve	large-scale	restructurings	of	how	property	rights	work,	how	voting
works,	how	immigration	and	antitrust	law	works,	and	how	individuals	see	their	relationship	with
property,	money,	prices	and	society.	But	there	is	also	the	potential	to	use	economics	and	game
theory	to	come	up	with	decentralized	economic	institutions	that	could	be	adopted	by	smaller	groups
of	people	at	a	time.

Perhaps	the	most	famous	examples	of	decentralized	institutions	from	game	theory	and	economics
land	are	(i)	assurance	contracts,	and	(ii)	prediction	markets.	An	assurance	contract	is	a	system	where
some	public	good	is	funded	by	giving	anyone	the	opportunity	to	pledge	money,	and	only	collecting
the	pledges	if	the	total	amount	pledged	exceeds	some	threshold.	This	ensures	that	people	can	donate
money	knowing	that	either	they	will	get	their	money	back	or	there	actually	will	be	enough	to	achieve
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some	objective.	A	possible	extension	of	this	concept	is	Alex	Tabarrok's	dominant	assurance	contracts,
where	an	entrepreneur	offers	to	refund	participants	more	than	100%	of	their	deposits	if	a	given
assurance	contract	does	not	raise	enough	money.

Prediction	markets	allow	people	to	bet	on	the	probability	that	events	will	happen,	potentially	even
conditional	on	some	action	being	taken	("I	bet	$20	that	unemployment	will	go	down	if	candidate	X
wins	the	election");	there	are	techniques	for	people	interested	in	the	information	to	subsidize	the
markets.	Any	attempt	to	manipulate	the	probability	that	a	prediction	market	shows	simply	creates	an
opportunity	for	people	to	earn	free	money	(yes	I	know,	risk	aversion	and	capital	efficiency	etc	etc;
still	close	to	free)	by	betting	against	the	manipulator.

Posner	and	Weyl	do	give	one	example	of	what	I	would	call	a	decentralized	institution:	a	game	for
choosing	who	gets	an	asset	in	the	event	of	a	divorce	or	a	company	splitting	in	half,	where	both	sides
provide	their	own	valuation,	the	person	with	the	higher	valuation	gets	the	item,	but	they	must	then
give	an	amount	equal	to	half	the	average	of	the	two	valuations	to	the	loser.	There's	some	economic
reasoning	by	which	this	solution,	while	not	perfect,	is	still	close	to	mathematically	optimal.

One	particular	category	of	decentralized	institutions	I've	been	interested	in	is	improving
incentivization	for	content	posting	and	content	curation	in	social	media.	Some	ideas	that	I	have	had
include:

Proof	of	stake	conditional	hashcash	(when	you	send	someone	an	email,	you	give	them	the
opportunity	to	burn	$0.5	of	your	money	if	they	think	it's	spam)
Prediction	markets	for	content	curation	(use	prediction	markets	to	predict	the	results	of	a
moderation	vote	on	content,	thereby	encouraging	a	market	of	fast	content	pre-moderators	while
penalizing	manipulative	pre-moderation)
Conditional	payments	for	paywalled	content	(after	you	pay	for	a	piece	of	downloadable	content
and	view	it,	you	can	decide	after	the	fact	if	payments	should	go	to	the	author	or	to
proportionately	refund	previous	readers)

And	ideas	I	have	had	in	other	contexts:

Call-out	assurance	contracts
DAICOs	(a	more	decentralized	and	safer	alternative	to	ICOs)

Twitter	scammers:	can	prediction	markets	incentivize	an	autonomous	swarm	of	human	and	AI-driven	moderators	to
flag	these	posts	and	warn	users	not	to	send	them	ether	within	a	few	seconds	of	the	post	being	made?	And	could
such	a	system	be	generalized	to	the	entire	internet,	where	these	is	no	single	centralized	moderator	that	can	easily

take	posts	down?

Some	ideas	others	have	had	for	decentralized	institutions	in	general	include:

TrustDavis	(adding	skin-in-the-game	to	e-commerce	reputations	by	making	e-commerce	ratings
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be	offers	to	insure	others	against	the	receiver	of	the	rating	committing	fraud)
Circles	(decentralized	basic	income	through	locally	fungible	coin	issuance)
Markets	for	CAPTCHA	services
Digitized	peer	to	peer	rotating	savings	and	credit	associations
Token	curated	registries
Crowdsourced	smart	contract	truth	oracles
Using	blockchain-based	smart	contracts	to	coordinate	unions

I	would	be	interested	in	hearing	Posner	and	Weyl's	opinion	on	these	kinds	of	"radical	markets",	that
groups	of	people	can	spin	up	and	start	using	by	themselves	without	requiring	potentially	contentious
society-wide	changes	to	political	and	property	rights.	Could	decentralized	institutions	like	these	be
used	to	solve	the	key	defining	challenges	of	the	twenty	first	century:	promoting	beneficial	scientific
progress,	developing	informational	public	goods,	reducing	global	wealth	inequality,	and	the	big	meta-
problem	behind	fake	news,	government-driven	and	corporate-driven	social	media	censorship,	and
regulation	of	cryptocurrency	products:	how	do	we	do	quality	assurance	in	an	open	society?

All	in	all,	I	highly	recommend	Radical	Markets	(and	by	the	way	I	also	recommend	Eliezer
Yudkowsky's	Inadequate	Equilibria)	to	anyone	interested	in	these	kinds	of	issues,	and	look	forward	to
seeing	the	discussion	that	the	book	generates.
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Governance,	Part	2:	Plutocracy	Is	Still	Bad

Coin	holder	voting,	both	for	governance	of	technical	features,	and	for	more	extensive	use	cases	like
deciding	who	runs	validator	nodes	and	who	receives	money	from	development	bounty	funds,	is
unfortunately	continuing	to	be	popular,	and	so	it	seems	worthwhile	for	me	to	write	another	post
explaining	why	I	(and	Vlad	Zamfir	and	others)	do	not	consider	it	wise	for	Ethereum	(or	really,	any
base-layer	blockchain)	to	start	adopting	these	kinds	of	mechanisms	in	a	tightly	coupled	form	in	any
significant	way.

I	wrote	about	the	issues	with	tightly	coupled	voting	in	a	blog	post	last	year,	that	focused	on
theoretical	issues	as	well	as	focusing	on	some	practical	issues	experienced	by	voting	systems	over
the	previous	two	years.	Now,	the	latest	scandal	in	DPOS	land	seems	to	be	substantially	worse.
Because	the	delegate	rewards	in	EOS	are	now	so	high	(5%	annual	inflation,	about	$400m	per	year),
the	competition	on	who	gets	to	run	nodes	has	essentially	become	yet	another	frontier	of	US-China
geopolitical	economic	warfare.

And	that's	not	my	own	interpretation;	I	quote	from	this	article	(original	in	Chinese):

EOS	supernode	voting:	multibillion-dollar	profits	leading	to	crypto	community
inter-country	warfare

Looking	at	community	recognition,	Chinese	nodes	feel	much	less	represented	in	the
community	than	US	and	Korea.	Since	the	EOS.IO	official	Twitter	account	was	founded,
there	has	never	been	any	interaction	with	the	mainland	Chinese	EOS	community.	For	a
listing	of	the	EOS	officially	promoted	events	and	interactions	with	communities	see	the
picture	below.

With	no	support	from	the	developer	community,	facing	competition	from	Korea,	the
Chinese	EOS	supernodes	have	invented	a	new	strategy:	buying	votes.

The	article	then	continues	to	describe	further	strategies,	like	forming	"alliances"	that	all	vote	(or	buy
votes)	for	each	other.

Of	course,	it	does	not	matter	at	all	who	the	specific	actors	are	that	are	buying	votes	or	forming
cartels;	this	time	it's	some	Chinese	pools,	last	time	it	was	"members	located	in	the	USA,	Russia,
India,	Germany,	Canada,	Italy,	Portugal	and	many	other	countries	from	around	the	globe",	next	time
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it	could	be	totally	anonymous,	or	run	out	of	a	smartphone	snuck	into	Trendon	Shavers's	prison	cell.
What	matters	is	that	blockchains	and	cryptocurrency,	originally	founded	in	a	vision	of	using
technology	to	escape	from	the	failures	of	human	politics,	have	essentially	all	but	replicated	it.	Crypto
is	a	reflection	of	the	world	at	large.

The	EOS	New	York	community's	response	seems	to	be	that	they	have	issued	a	strongly	worded	letter
to	the	world	stating	that	buying	votes	will	be	against	the	constitution.	Hmm,	what	other	major
political	entity	has	made	accepting	bribes	a	violation	of	the	constitution?	And	how	has	that	been
going	for	them	lately?

The	second	part	of	this	article	will	involve	me,	an	armchair	economist,	hopefully	convincing	you,	the
reader,	that	yes,	bribery	is,	in	fact,	bad.	There	are	actually	people	who	dispute	this	claim;	the	usual
argument	has	something	to	do	with	market	efficiency,	as	in	"isn't	this	good,	because	it	means	that
the	nodes	that	win	will	be	the	nodes	that	can	be	the	cheapest,	taking	the	least	money	for	themselves
and	their	expenses	and	giving	the	rest	back	to	the	community?"	The	answer	is,	kinda	yes,	but	in	a
way	that's	centralizing	and	vulnerable	to	rent-seeking	cartels	and	explicitly	contradicts	many	of	the
explicit	promises	made	by	most	DPOS	proponents	along	the	way.

Let	us	create	a	toy	economic	model	as	follows.	There	are	a	number	of	people	all	of	which	are	running
to	be	delegates.	The	delegate	slot	gives	a	reward	of	$100	per	period,	and	candidates	promise	to
share	some	portion	of	that	as	a	bribe,	equally	split	among	all	of	their	voters.	The	actual	\(N\)
delegates	(eg.	\(N	=	35\))	in	any	period	are	the	\(N\)	delegates	that	received	the	most	votes;	that	is,
during	every	period	a	threshold	of	votes	emerges	where	if	you	get	more	votes	than	that	threshold	you
are	a	delegate,	if	you	get	less	you	are	not,	and	the	threshold	is	set	so	that	\(N\)	delegates	are	above
the	threshold.

We	expect	that	voters	vote	for	the	candidate	that	gives	them	the	highest	expected	bribe.	Suppose
that	all	candidates	start	off	by	sharing	1%;	that	is,	equally	splitting	$1	among	all	of	their	voters.
Then,	if	some	candidate	becomes	a	delegate	with	\(K\)	voters,	each	voter	gets	a	payment	of	\(\frac{1}
{K}\).	The	candidate	that	it's	most	profitable	to	vote	for	is	a	candidate	that's	expected	to	be	in	the
top	\(N\),	but	is	expected	to	earn	the	fewest	votes	within	that	set.	Thus,	we	expect	votes	to	be	fairly
evenly	split	among	35	delegates.

Now,	some	candidates	will	want	to	secure	their	position	by	sharing	more;	by	sharing	2%,	you	are
likely	to	get	twice	as	many	votes	as	those	that	share	1%,	as	that's	the	equilibrium	point	where	voting
for	you	has	the	same	payout	as	voting	for	anyone	else.	The	extra	guarantee	of	being	elected	that	this
gives	is	definitely	worth	losing	an	additional	1%	of	your	revenue	when	you	do	get	elected.	We	can
expect	delegates	to	bid	up	their	bribes	and	eventually	share	something	close	to	100%	of	their
revenue.	So	the	outcome	seems	to	be	that	the	delegate	payouts	are	largely	simply	returned	to	voters,
making	the	delegate	payout	mechanism	close	to	meaningless.

But	it	gets	worse.	At	this	point,	there's	an	incentive	for	delegates	to	form	alliances	(aka	political
parties,	aka	cartels)	to	coordinate	their	share	percentages;	this	reduces	losses	to	the	cartel	from
chaotic	competition	that	accidentally	leads	to	some	delegates	not	getting	enough	votes.	Once	a	cartel
is	in	place,	it	can	start	bringing	its	share	percentages	down,	as	dislodging	it	is	a	hard	coordination
problem:	if	a	cartel	offers	80%,	then	a	new	entrant	offers	90%,	then	to	a	voter,	seeking	a	share	of
that	extra	10%	is	not	worth	the	risk	of	either	(i)	voting	for	someone	who	gets	insufficient	votes	and
does	not	pay	rewards,	or	(ii)	voting	for	someone	who	gets	too	many	votes	and	so	pays	out	a	reward
that's	excessively	diluted.
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Sidenote:	Bitshares	DPOS	used	approval	voting,	where	you	can	vote	for	as	many	candidates	as	you	want;	it	should
be	pretty	obvious	that	with	even	slight	bribery,	the	equilibrium	there	is	that	everyone	just	votes	for	everyone.

Furthermore,	even	if	cartel	mechanics	don't	come	into	play,	there	is	a	further	issue.	This	equilibrium
of	coin	holders	voting	for	whoever	gives	them	the	most	bribes,	or	a	cartel	that	has	become	an
entrenched	rent	seeker,	contradicts	explicit	promises	made	by	DPOS	proponents.

Quoting	"Explain	Delegated	Proof	of	Stake	Like	I'm	5":

If	a	Witness	starts	acting	like	an	asshole,	or	stops	doing	a	quality	job	securing	the	network,
people	in	the	community	can	remove	their	votes,	essentially	firing	the	bad	actor.	Voting	is
always	ongoing.

From	"EOS:	An	Introduction":

By	custom,	we	suggest	that	the	bulk	of	the	value	be	returned	to	the	community	for	the
common	good	-	software	improvements,	dispute	resolution,	and	the	like	can	be	entertained.
In	the	spirit	of	"eating	our	own	dogfood,"	the	design	envisages	that	the	community	votes	on
a	set	of	open	entry	contracts	that	act	like	"foundations"	for	the	benefit	of	the	community.
Known	as	Community	Benefit	Contracts,	the	mechanism	highlights	the	importance	of	DPOS
as	enabling	direct	on-chain	governance	by	the	community	(below).

The	flaw	in	all	of	this,	of	course,	is	that	the	average	voter	has	only	a	very	small	chance	of	impacting
which	delegates	get	selected,	and	so	they	only	have	a	very	small	incentive	to	vote	based	on	any	of
these	high-minded	and	lofty	goals;	rather,	their	incentive	is	to	vote	for	whoever	offers	the	highest
and	most	reliable	bribe.	Attacking	is	easy.	If	a	cartel	equilibrium	does	not	form,	then	an	attacker	can
simply	offer	a	share	percentage	slightly	higher	than	100%	(perhaps	using	fee	sharing	or	some	kind	of
"starter	promotion"	as	justification),	capture	the	majority	of	delegate	positions,	and	then	start	an
attack.	If	they	get	removed	from	the	delegate	position	via	a	hard	fork,	they	can	simply	restart	the
attack	again	with	a	different	identity.

The	above	is	not	intended	purely	as	a	criticism	of	DPOS	consensus	or	its	use	in	any	specific
blockchain.	Rather,	the	critique	reaches	much	further.	There	has	been	a	large	number	of	projects
recently	that	extol	the	virtues	of	extensive	on-chain	governance,	where	on-chain	coin	holder	voting
can	be	used	not	just	to	vote	on	protocol	features,	but	also	to	control	a	bounty	fund.	Quoting	a	blog
post	from	last	year:

Anyone	can	submit	a	change	to	the	governance	structure	in	the	form	of	a	code	update.	An
on-chain	vote	occurs,	and	if	passed,	the	update	makes	its	way	on	to	a	test	network.	After	a
period	of	time	on	the	test	network,	a	confirmation	vote	occurs,	at	which	point	the	change
goes	live	on	the	main	network.	They	call	this	concept	a	"self-amending	ledger".	Such	a
system	is	interesting	because	it	shifts	power	towards	users	and	away	from	the	more
centralized	group	of	developers	and	miners.	On	the	developer	side,	anyone	can	submit	a
change,	and	most	importantly,	everyone	has	an	economic	incentive	to	do	it.	Contributions
are	rewarded	by	the	community	with	newly	minted	tokens	through	inflation	funding.	This
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shifts	from	the	current	Bitcoin	and	Ethereum	dynamics	where	a	new	developer	has	little
incentive	to	evolve	the	protocol,	thus	power	tends	to	concentrate	amongst	the	existing
developers,	to	one	where	everyone	has	equal	earning	power.

In	practice,	of	course,	what	this	can	easily	lead	to	is	funds	that	offer	kickbacks	to	users	who	vote	for
them,	leading	to	the	exact	scenario	that	we	saw	above	with	DPOS	delegates.	In	the	best	case,	the
funds	will	simply	be	returned	to	voters,	giving	coin	holders	an	interest	rate	that	cancels	out	the
inflation,	and	in	the	worst	case,	some	portion	of	the	inflation	will	get	captured	as	economic	rent	by	a
cartel.

Note	also	that	the	above	is	not	a	criticism	of	all	on-chain	voting;	it	does	not	rule	out	systems	like
futarchy.	However,	futarchy	is	untested,	but	coin	voting	is	tested,	and	so	far	it	seems	to	lead	to	a
high	risk	of	economic	or	political	failure	of	some	kind	-	far	too	high	a	risk	for	a	platform	that	seeks	to
be	an	economic	base	layer	for	development	of	decentralized	applications	and	institutions.

So	what's	the	alternative?	The	answer	is	what	we've	been	saying	all	along:	cryptoeconomics.
Cryptoeconomics	is	fundamentally	about	the	use	of	economic	incentives	together	with	cryptography
to	design	and	secure	different	kinds	of	systems	and	applications,	including	consensus	protocols.	The
goal	is	simple:	to	be	able	to	measure	the	security	of	a	system	(that	is,	the	cost	of	breaking	the	system
or	causing	it	to	violate	certain	guarantees)	in	dollars.	Traditionally,	the	security	of	systems	often
depends	on	social	trust	assumptions:	the	system	works	if	2	of	3	of	Alice,	Bob	and	Charlie	are	honest,
and	we	trust	Alice,	Bob	and	Charlie	to	be	honest	because	I	know	Alice	and	she's	a	nice	girl,	Bob
registered	with	FINCEN	and	has	a	money	transmitter	license,	and	Charlie	has	run	a	successful
business	for	three	years	and	wears	a	suit.

Social	trust	assumptions	can	work	well	in	many	contexts,	but	they	are	difficult	to	universalize;	what
is	trusted	in	one	country	or	one	company	or	one	political	tribe	may	not	be	trusted	in	others.	They	are
also	difficult	to	quantify;	how	much	money	does	it	take	to	manipulate	social	media	to	favor	some
particular	delegate	in	a	vote?	Social	trust	assumptions	seem	secure	and	controllable,	in	the	sense
that	"people"	are	in	charge,	but	in	reality	they	can	be	manipulated	by	economic	incentives	in	all	sorts
of	ways.

Cryptoeconomics	is	about	trying	to	reduce	social	trust	assumptions	by	creating	systems	where	we
introduce	explicit	economic	incentives	for	good	behavior	and	economic	penalties	for	bad	behavior,
and	making	mathematical	proofs	of	the	form	"in	order	for	guarantee	\(X\)	to	be	violated,	at	least
these	people	need	to	misbehave	in	this	way,	which	means	the	minimum	amount	of	penalties	or
foregone	revenue	that	the	participants	suffer	is	\(Y\)".	Casper	is	designed	to	accomplish	precisely	this
objective	in	the	context	of	proof	of	stake	consensus.	Yes,	this	does	mean	that	you	can't	create	a
"blockchain"	by	concentrating	the	consensus	validation	into	20	uber-powerful	"supernodes"	and	you
have	to	actually	think	to	make	a	design	that	intelligently	breaks	through	and	navigates	existing
tradeoffs	and	achieves	massive	scalability	in	a	still-decentralized	network.	But	the	reward	is	that	you
don't	get	a	network	that's	constantly	liable	to	breaking	in	half	or	becoming	economically	captured	by
unpredictable	political	forces.

1.	 It	has	been	brought	to	my	attention	that	EOS	may	be	reducing	its	delegate	rewards	from	5%	per	year	to	1%
per	year.	Needless	to	say,	this	doesn't	really	change	the	fundamental	validity	of	any	of	the	arguments;	the
only	result	of	this	would	be	5x	less	rent	extraction	potential	at	the	cost	of	a	5x	reduction	to	the	cost	of
attacking	the	system.

2.	 Some	have	asked:	but	how	can	it	be	wrong	for	DPOS	delegates	to	bribe	voters,	when	it	is	perfectly	legitimate
for	mining	and	stake	pools	to	give	99%	of	their	revenues	back	to	their	participants?	The	answer	should	be
clear:	in	PoW	and	PoS,	it's	the	protocol's	role	to	determine	the	rewards	that	miners	and	validators	get,	based
on	the	miners	and	validators'	observed	performance,	and	the	fact	that	miners	and	validators	that	are	pools
pass	along	the	rewards	(and	penalties!)	to	their	participants	gives	the	participants	an	incentive	to	participate
in	good	pools.	In	DPOS,	the	reward	is	constant,	and	it's	the	voters'	role	to	vote	for	pools	that	have	good
performance,	but	with	the	key	flaw	that	there	is	no	mechanism	to	actually	encourage	voters	to	vote	in	that
way	instead	of	just	voting	for	whoever	gives	them	the	most	money	without	taking	performance	into	account.
Penalties	in	DPOS	do	not	exist,	and	are	certainly	not	passed	on	to	voters,	so	voters	have	no	"skin	in	the	game"
(penalties	in	Casper	pools,	on	the	other	hand,	do	get	passed	on	to	participants).
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What	is	Proof	of	Stake

Proof	of	Stake	(PoS)	is	a	category	of	consensus	algorithms	for	public	blockchains	that	depend	on	a	validator's	economic	stake	in	the	network.	In
proof	of	work	(PoW)	based	public	blockchains	(e.g.	Bitcoin	and	the	current	implementation	of	Ethereum),	the	algorithm	rewards	participants	who	solve
cryptographic	puzzles	in	order	to	validate	transactions	and	create	new	blocks	(i.e.	mining).	In	PoS-based	public	blockchains	(e.g.	Ethereum's	upcoming	Casper
implementation),	a	set	of	validators	take	turns	proposing	and	voting	on	the	next	block,	and	the	weight	of	each	validator's	vote	depends	on	the	size	of	its	deposit
(i.e.	stake).	Significant	advantages	of	PoS	include	security,	reduced	risk	of	centralization,	and	energy	efficiency.

In	general,	a	proof	of	stake	algorithm	looks	as	follows.	The	blockchain	keeps	track	of	a	set	of	validators,	and	anyone	who	holds	the	blockchain's	base
cryptocurrency	(in	Ethereum's	case,	ether)	can	become	a	validator	by	sending	a	special	type	of	transaction	that	locks	up	their	ether	into	a	deposit.	The
process	of	creating	and	agreeing	to	new	blocks	is	then	done	through	a	consensus	algorithm	that	all	current	validators	can	participate	in.

There	are	many	kinds	of	consensus	algorithms,	and	many	ways	to	assign	rewards	to	validators	who	participate	in	the	consensus	algorithm,	so	there	are	many
"flavors"	of	proof	of	stake.	From	an	algorithmic	perspective,	there	are	two	major	types:	chain-based	proof	of	stake	and	BFT-style	proof	of	stake.

In	chain-based	proof	of	stake,	the	algorithm	pseudo-randomly	selects	a	validator	during	each	time	slot	(e.g.	every	period	of	10	seconds	might	be	a	time	slot),
and	assigns	that	validator	the	right	to	create	a	single	block,	and	this	block	must	point	to	some	previous	block	(normally	the	block	at	the	end	of	the	previously
longest	chain),	and	so	over	time	most	blocks	converge	into	a	single	constantly	growing	chain.

In	BFT-style	proof	of	stake,	validators	are	randomly	assigned	the	right	to	propose	blocks,	but	agreeing	on	which	block	is	canonical	is	done	through	a	multi-
round	process	where	every	validator	sends	a	"vote"	for	some	specific	block	during	each	round,	and	at	the	end	of	the	process	all	(honest	and	online)	validators
permanently	agree	on	whether	or	not	any	given	block	is	part	of	the	chain.	Note	that	blocks	may	still	be	chained	together;	the	key	difference	is	that	consensus	on
a	block	can	come	within	one	block,	and	does	not	depend	on	the	length	or	size	of	the	chain	after	it.

What	are	the	benefits	of	proof	of	stake	as	opposed	to	proof	of	work?

See	A	Proof	of	Stake	Design	Philosophy	for	a	more	long-form	argument.

In	short:

No	need	to	consume	large	quantities	of	electricity	in	order	to	secure	a	blockchain	(e.g.	it's	estimated	that	both	Bitcoin	and	Ethereum	burn	over	$1
million	worth	of	electricity	and	hardware	costs	per	day	as	part	of	their	consensus	mechanism).
Because	of	the	lack	of	high	electricity	consumption,	there	is	not	as	much	need	to	issue	as	many	new	coins	in	order	to	motivate	participants	to	keep
participating	in	the	network.	It	may	theoretically	even	be	possible	to	have	negative	net	issuance,	where	a	portion	of	transaction	fees	is	"burned"	and	so	the
supply	goes	down	over	time.
Proof	of	stake	opens	the	door	to	a	wider	array	of	techniques	that	use	game-theoretic	mechanism	design	in	order	to	better	discourage	centralized	cartels
from	forming	and,	if	they	do	form,	from	acting	in	ways	that	are	harmful	to	the	network	(e.g.	like	selfish	mining	in	proof	of	work).
Reduced	centralization	risks,	as	economies	of	scale	are	much	less	of	an	issue.	$10	million	of	coins	will	get	you	exactly	10	times	higher	returns	than	$1
million	of	coins,	without	any	additional	disproportionate	gains	because	at	the	higher	level	you	can	afford	better	mass-production	equipment,	which	is	an
advantage	for	Proof-of-Work.
Ability	to	use	economic	penalties	to	make	various	forms	of	51%	attacks	vastly	more	expensive	to	carry	out	than	proof	of	work	-	to	paraphrase	Vlad
Zamfir,	"it's	as	though	your	ASIC	farm	burned	down	if	you	participated	in	a	51%	attack".

How	does	proof	of	stake	fit	into	traditional	Byzantine	fault	tolerance	research?

There	are	several	fundamental	results	from	Byzantine	fault	tolerance	research	that	apply	to	all	consensus	algorithms,	including	traditional	consensus	algorithms
like	PBFT	but	also	any	proof	of	stake	algorithm	and,	with	the	appropriate	mathematical	modeling,	proof	of	work.

The	key	results	include:

CAP	theorem	-	"in	the	cases	that	a	network	partition	takes	place,	you	have	to	choose	either	consistency	or	availability,	you	cannot	have	both".	The	intuitive
argument	is	simple:	if	the	network	splits	in	half,	and	in	one	half	I	send	a	transaction	"send	my	10	coins	to	A"	and	in	the	other	I	send	a	transaction	"send	my
10	coins	to	B",	then	either	the	system	is	unavailable,	as	one	or	both	transactions	will	not	be	processed,	or	it	becomes	inconsistent,	as	one	half	of	the
network	will	see	the	first	transaction	completed	and	the	other	half	will	see	the	second	transaction	completed.	Note	that	the	CAP	theorem	has	nothing	to	do
with	scalability;	it	applies	to	sharded	and	non-sharded	systems	equally.	See	also	https://github.com/ethereum/wiki/wiki/Sharding-FAQs#but-doesnt-the-cap-
theorem-mean-that-fully-secure-distributed-systems-are-impossible-and-so-sharding-is-futile.
FLP	impossibility	-	in	an	asynchronous	setting	(i.e.	there	are	no	guaranteed	bounds	on	network	latency	even	between	correctly	functioning	nodes),	it	is
not	possible	to	create	an	algorithm	which	is	guaranteed	to	reach	consensus	in	any	specific	finite	amount	of	time	if	even	a	single	faulty/dishonest	node	is
present.	Note	that	this	does	NOT	rule	out	"Las	Vegas"	algorithms	that	have	some	probability	each	round	of	achieving	consensus	and	thus	will	achieve
consensus	within	T	seconds	with	probability	exponentially	approaching	1	as	T	grows;	this	is	in	fact	the	"escape	hatch"	that	many	successful	consensus
algorithms	use.
Bounds	on	fault	tolerance	-	from	the	DLS	paper	we	have:	(i)	protocols	running	in	a	partially	synchronous	network	model	(i.e.	there	is	a	bound	on	network
latency	but	we	do	not	know	ahead	of	time	what	it	is)	can	tolerate	up	to	1/3	arbitrary	(i.e.	"Byzantine")	faults,	(ii)	deterministic	protocols	in	an	asynchronous
model	(i.e.	no	bounds	on	network	latency)	cannot	tolerate	faults	(although	their	paper	fails	to	mention	that	randomized	algorithms	can	with	up	to	1/3	fault
tolerance),	(iii)	protocols	in	a	synchronous	model	(i.e.	network	latency	is	guaranteed	to	be	less	than	a	known	d)	can,	surprisingly,	tolerate	up	to	100%	fault
tolerance,	although	there	are	restrictions	on	what	can	happen	when	more	than	or	equal	to	1/2	of	nodes	are	faulty.	Note	that	the	"authenticated	Byzantine"
model	is	the	one	worth	considering,	not	the	"Byzantine"	one;	the	"authenticated"	part	essentially	means	that	we	can	use	public	key	cryptography	in	our
algorithms,	which	is	in	modern	times	very	well-researched	and	very	cheap.

Proof	of	work	has	been	rigorously	analyzed	by	Andrew	Miller	and	others	and	fits	into	the	picture	as	an	algorithm	reliant	on	a	synchronous	network	model.	We
can	model	the	network	as	being	made	up	of	a	near-infinite	number	of	nodes,	with	each	node	representing	a	very	small	unit	of	computing	power	and	having	a
very	small	probability	of	being	able	to	create	a	block	in	a	given	period.	In	this	model,	the	protocol	has	50%	fault	tolerance	assuming	zero	network	latency,	~46%
(Ethereum)	and	~49.5%	(Bitcoin)	fault	tolerance	under	actually	observed	conditions,	but	goes	down	to	33%	if	network	latency	is	equal	to	the	block	time,	and
reduces	to	zero	as	network	latency	approaches	infinity.
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Proof	of	stake	consensus	fits	more	directly	into	the	Byzantine	fault	tolerant	consensus	mould,	as	all	validators	have	known	identities	(stable	Ethereum	addresses)
and	the	network	keeps	track	of	the	total	size	of	the	validator	set.	There	are	two	general	lines	of	proof	of	stake	research,	one	looking	at	synchronous	network
models	and	one	looking	at	partially	asynchronous	network	models.	"Chain-based"	proof	of	stake	algorithms	almost	always	rely	on	synchronous	network	models,
and	their	security	can	be	formally	proven	within	these	models	similarly	to	how	security	of	proof	of	work	algorithms	can	be	proven.	A	line	of	research	connecting
traditional	Byzantine	fault	tolerant	consensus	in	partially	synchronous	networks	to	proof	of	stake	also	exists,	but	is	more	complex	to	explain;	it	will	be	covered	in
more	detail	in	later	sections.

Proof	of	work	algorithms	and	chain-based	proof	of	stake	algorithms	choose	availability	over	consistency,	but	BFT-style	consensus	algorithms	lean	more	toward
consistency;	Tendermint	chooses	consistency	explicitly,	and	Casper	uses	a	hybrid	model	that	prefers	availability	but	provides	as	much	consistency	as	possible
and	makes	both	on-chain	applications	and	clients	aware	of	how	strong	the	consistency	guarantee	is	at	any	given	time.

Note	that	Ittay	Eyal	and	Emin	Gun	Sirer's	selfish	mining	discovery,	which	places	25%	and	33%	bounds	on	the	incentive	compatibility	of	Bitcoin	mining
depending	on	the	network	model	(i.e.	mining	is	only	incentive	compatible	if	collusions	larger	than	25%	or	33%	are	impossible)	has	NOTHING	to	do	with	results
from	traditional	consensus	algorithm	research,	which	does	not	touch	incentive	compatibility.

What	is	the	"nothing	at	stake"	problem	and	how	can	it	be	fixed?

In	many	early	(all	chain-based)	proof	of	stake	algorithms,	including	Peercoin,	there	are	only	rewards	for	producing	blocks,	and	no	penalties.	This	has	the
unfortunate	consequence	that,	in	the	case	that	there	are	multiple	competing	chains,	it	is	in	a	validator's	incentive	to	try	to	make	blocks	on	top	of	every	chain	at
once,	just	to	be	sure:

In	proof	of	work,	doing	so	would	require	splitting	one's	computing	power	in	half,	and	so	would	not	be	lucrative:

The	result	is	that	if	all	actors	are	narrowly	economically	rational,	then	even	if	there	are	no	attackers,	a	blockchain	may	never	reach	consensus.	If	there	is	an
attacker,	then	the	attacker	need	only	overpower	altruistic	nodes	(who	would	exclusively	stake	on	the	original	chain),	and	not	rational	nodes	(who	would	stake	on
both	the	original	chain	and	the	attacker's	chain),	in	contrast	to	proof	of	work,	where	the	attacker	must	overpower	both	altruists	and	rational	nodes	(or	at	least
credibly	threaten	to:	see	P	+	epsilon	attacks).

Some	argue	that	stakeholders	have	an	incentive	to	act	correctly	and	only	stake	on	the	longest	chain	in	order	to	"preserve	the	value	of	their	investment",	however
this	ignores	that	this	incentive	suffers	from	tragedy	of	the	commons	problems:	each	individual	stakeholder	might	only	have	a	1%	chance	of	being	"pivotal"
(i.e.	being	in	a	situation	where	if	they	participate	in	an	attack	then	it	succeeds	and	if	they	do	not	participate	it	fails),	and	so	the	bribe	needed	to	convince	them
personally	to	join	an	attack	would	be	only	1%	of	the	size	of	their	deposit;	hence,	the	required	combined	bribe	would	be	only	0.5-1%	of	the	total	sum	of	all
deposits.	Additionally,	this	argument	implies	that	any	zero-chance-of-failure	situation	is	not	a	stable	equilibrium,	as	if	the	chance	of	failure	is	zero	then	everyone
has	a	0%	chance	of	being	pivotal.

This	can	be	solved	via	two	strategies.	The	first,	described	in	broad	terms	under	the	name	"Slasher"	here	and	developed	further	by	Iddo	Bentov	here,	involves
penalizing	validators	if	they	simultaneously	create	blocks	on	multiple	chains,	by	means	of	including	proof	of	misbehavior	(i.e.	two	conflicting	signed	block
headers)	into	the	blockchain	as	a	later	point	in	time	at	which	point	the	malfeasant	validator's	deposit	is	deducted	appropriately.	This	changes	the	incentive
structure	thus:
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Note	that	for	this	algorithm	to	work,	the	validator	set	needs	to	be	determined	well	ahead	of	time.	Otherwise,	if	a	validator	has	1%	of	the	stake,	then	if	there	are
two	branches	A	and	B	then	0.99%	of	the	time	the	validator	will	be	eligible	to	stake	only	on	A	and	not	on	B,	0.99%	of	the	time	the	validator	will	be	eligible	to	stake
on	B	and	not	on	A,	and	only	0.01%	of	the	time	will	the	validator	will	be	eligible	to	stake	on	both.	Hence,	the	validator	can	with	99%	efficiency	probabilistically
double-stake:	stake	on	A	if	possible,	stake	on	B	if	possible,	and	only	if	the	choice	between	both	is	open	stake	on	the	longer	chain.	This	can	only	be	avoided	if	the
validator	selection	is	the	same	for	every	block	on	both	branches,	which	requires	the	validators	to	be	selected	at	a	time	before	the	fork	takes	place.

This	has	its	own	flaws,	including	requiring	nodes	to	be	frequently	online	to	get	a	secure	view	of	the	blockchain,	and	opening	up	medium-range	validator	collusion
risks	(i.e.	situations	where,	for	example,	25	out	of	30	consecutive	validators	get	together	and	agree	ahead	of	time	to	implement	a	51%	attack	on	the	previous	19
blocks),	but	if	these	risks	are	deemed	acceptable	then	it	works	well.

The	second	strategy	is	to	simply	punish	validators	for	creating	blocks	on	the	wrong	chain.	That	is,	if	there	are	two	competing	chains,	A	and	B,	then	if	a	validator
creates	a	block	on	B,	they	get	a	reward	of	+R	on	B,	but	the	block	header	can	be	included	into	A	(in	Casper	this	is	called	a	"dunkle")	and	on	A	the	validator	suffers
a	penalty	of	-F	(possibly	F	=	R).	This	changes	the	economic	calculation	thus:

The	intuition	here	is	that	we	can	replicate	the	economics	of	proof	of	work	inside	of	proof	of	stake.	In	proof	of	work,	there	is	also	a	penalty	for	creating	a	block	on
the	wrong	chain,	but	this	penalty	is	implicit	in	the	external	environment:	miners	have	to	spend	extra	electricity	and	obtain	or	rent	extra	hardware.	Here,	we
simply	make	the	penalties	explicit.	This	mechanism	has	the	disadvantage	that	it	imposes	slightly	more	risk	on	validators	(although	the	effect	should	be	smoothed
out	over	time),	but	has	the	advantage	that	it	does	not	require	validators	to	be	known	ahead	of	time.

That	shows	how	chain-based	algorithms	solve	nothing-at-stake.	Now	how	do	BFT-style	proof	of	stake	algorithms	work?

BFT-style	(partially	synchronous)	proof	of	stake	algorithms	allow	validators	to	"vote"	on	blocks	by	sending	one	or	more	types	of	signed	messages,	and	specify	two
kinds	of	rules:

Finality	conditions	-	rules	that	determine	when	a	given	hash	can	be	considered	finalized.
Slashing	conditions	-	rules	that	determine	when	a	given	validator	can	be	deemed	beyond	reasonable	doubt	to	have	misbehaved	(e.g.	voting	for	multiple
conflicting	blocks	at	the	same	time).	If	a	validator	triggers	one	of	these	rules,	their	entire	deposit	gets	deleted.

To	illustrate	the	different	forms	that	slashing	conditions	can	take,	we	will	give	two	examples	of	slashing	conditions	(hereinafter,	"2/3	of	all	validators"	is
shorthand	for	"2/3	of	all	validators	weighted	by	deposited	coins",	and	likewise	for	other	fractions	and	percentages).	In	these	examples,	"PREPARE"	and
"COMMIT"	should	be	understood	as	simply	referring	to	two	types	of	messages	that	validators	can	send.

1.	 If	MESSAGES	contains	messages	of	the	form	["COMMIT",	HASH1,	view]	and	["COMMIT",	HASH2,	view]	for	the	same	view	but	differing	HASH1	and	HASH2	signed	by	the
same	validator,	then	that	validator	is	slashed.

2.	 If	MESSAGES	contains	a	message	of	the	form	["COMMIT",	HASH,	view1],	then	UNLESS	either	view1	=	-1	or	there	also	exist	messages	of	the	form	["PREPARE",
HASH,	view1,	view2]	for	some	specific	view2,	where	view2	<	view1,	signed	by	2/3	of	all	validators,	then	the	validator	that	made	the	COMMIT	is	slashed.

There	are	two	important	desiderata	for	a	suitable	set	of	slashing	conditions	to	have:

Accountable	safety	-	if	conflicting	HASH1	and	HASH2	(i.e.	HASH1	and	HASH2	are	different,	and	neither	is	a	descendant	of	the	other)	are	finalized,	then	at	least
1/3	of	all	validators	must	have	violated	some	slashing	condition.
Plausible	liveness	-	unless	at	least	1/3	of	all	validators	have	violated	some	slashing	condition,	there	exists	a	set	of	messages	that	2/3	of	validators	can
produce	that	finalize	some	value.

If	we	have	a	set	of	slashing	conditions	that	satisfies	both	properties,	then	we	can	incentivize	participants	to	send	messages,	and	start	benefiting	from	economic
finality.

What	is	"economic	finality"	in	general?

Economic	finality	is	the	idea	that	once	a	block	is	finalized,	or	more	generally	once	enough	messages	of	certain	types	have	been	signed,	then	the	only	way	that	at
any	point	in	the	future	the	canonical	history	will	contain	a	conflicting	block	is	if	a	large	number	of	people	are	willing	to	burn	very	large	amounts	of	money.	If	a



node	sees	that	this	condition	has	been	met	for	a	given	block,	then	they	have	a	very	economically	strong	assurance	that	that	block	will	always	be	part	of	the
canonical	history	that	everyone	agrees	on.

There	are	two	"flavors"	of	economic	finality:

1.	 A	block	can	be	economically	finalized	if	a	sufficient	number	of	validators	have	signed	cryptoeconomic	claims	of	the	form	"I	agree	to	lose	X	in	all	histories
where	block	B	is	not	included".	This	gives	clients	assurance	that	either	(i)	B	is	part	of	the	canonical	chain,	or	(ii)	validators	lost	a	large	amount	of	money	in
order	to	trick	them	into	thinking	that	this	is	the	case.

2.	 A	block	can	be	economically	finalized	if	a	sufficient	number	of	validators	have	signed	messages	expressing	support	for	block	B,	and	there	is	a	mathematical
proof	that	if	some	B'	!=	B	is	also	finalized	under	the	same	definition	then	validators	lose	a	large	amount	of	money.	If	clients	see	this,	and	also	validate	the
chain,	and	validity	plus	finality	is	a	sufficient	condition	for	precedence	in	the	canonical	fork	choice	rule,	then	they	get	an	assurance	that	either	(i)	B	is	part
of	the	canonical	chain,	or	(ii)	validators	lost	a	large	amount	of	money	in	making	a	conflicting	chain	that	was	also	finalized.

The	two	approaches	to	finality	inherit	from	the	two	solutions	to	the	nothing	at	stake	problem:	finality	by	penalizing	incorrectness,	and	finality	by	penalizing
equivocation.	The	main	benefit	of	the	first	approach	is	that	it	is	more	light-client	friendly	and	is	simpler	to	reason	about,	and	the	main	benefits	of	the	second
approach	are	that	(i)	it's	easier	to	see	that	honest	validators	will	not	be	punished,	and	(ii)	griefing	factors	are	more	favorable	to	honest	validators.

Casper	follows	the	second	flavor,	though	it	is	possible	that	an	on-chain	mechanism	will	be	added	where	validators	can	voluntarily	opt-in	to	signing	finality
messages	of	the	first	flavor,	thereby	enabling	much	more	efficient	light	clients.

So	how	does	this	relate	to	Byzantine	fault	tolerance	theory?

Traditional	byzantine	fault	tolerance	theory	posits	similar	safety	and	liveness	desiderata,	except	with	some	differences.	First	of	all,	traditional	byzantine	fault
tolerance	theory	simply	requires	that	safety	is	achieved	if	2/3	of	validators	are	honest.	This	is	a	strictly	easier	model	to	work	in;	traditional	fault	tolerance	tries	to
prove	"if	mechanism	M	has	a	safety	failure,	then	at	least	1/3	of	nodes	are	faulty",	whereas	our	model	tries	to	prove	"if	mechanism	M	has	a	safety	failure,	then	at
least	1/3	of	nodes	are	faulty,	and	you	know	which	ones,	even	if	you	were	offline	at	the	time	the	failure	took	place".	From	a	liveness	perspective,	our	model	is	the
easier	one,	as	we	do	not	demand	a	proof	that	the	network	will	come	to	consensus,	we	just	demand	a	proof	that	it	does	not	get	stuck.

Fortunately,	we	can	show	the	additional	accountability	requirement	is	not	a	particularly	difficult	one;	in	fact,	with	the	right	"protocol	armor",	we	can	convert	any
traditional	partially	synchronous	or	asynchronous	Byzantine	fault-tolerant	algorithm	into	an	accountable	algorithm.	The	proof	of	this	basically	boils	down	to	the
fact	that	faults	can	be	exhaustively	categorized	into	a	few	classes,	and	each	one	of	these	classes	is	either	accountable	(i.e.	if	you	commit	that	type	of	fault	you
can	get	caught,	so	we	can	make	a	slashing	condition	for	it)	or	indistinguishable	from	latency	(note	that	even	the	fault	of	sending	messages	too	early	is
indistinguishable	from	latency,	as	one	can	model	it	by	speeding	up	everyone's	clocks	and	assigning	the	messages	that	weren't	sent	too	early	a	higher	latency).

What	is	"weak	subjectivity"?

It	is	important	to	note	that	the	mechanism	of	using	deposits	to	ensure	there	is	"something	at	stake"	does	lead	to	one	change	in	the	security	model.	Suppose	that
deposits	are	locked	for	four	months,	and	can	later	be	withdrawn.	Suppose	that	an	attempted	51%	attack	happens	that	reverts	10	days	worth	of	transactions.	The
blocks	created	by	the	attackers	can	simply	be	imported	into	the	main	chain	as	proof-of-malfeasance	(or	"dunkles")	and	the	validators	can	be	punished.	However,
suppose	that	such	an	attack	happens	after	six	months.	Then,	even	though	the	blocks	can	certainly	be	re-imported,	by	that	time	the	malfeasant	validators	will	be
able	to	withdraw	their	deposits	on	the	main	chain,	and	so	they	cannot	be	punished.

To	solve	this	problem,	we	introduce	a	"revert	limit"	-	a	rule	that	nodes	must	simply	refuse	to	revert	further	back	in	time	than	the	deposit	length	(i.e.	in	our
example,	four	months),	and	we	additionally	require	nodes	to	log	on	at	least	once	every	deposit	length	to	have	a	secure	view	of	the	chain.	Note	that	this	rule	is
different	from	every	other	consensus	rule	in	the	protocol,	in	that	it	means	that	nodes	may	come	to	different	conclusions	depending	on	when	they	saw	certain
messages.	The	time	that	a	node	saw	a	given	message	may	be	different	between	different	nodes;	hence	we	consider	this	rule	"subjective"	(alternatively,	one	well-
versed	in	Byzantine	fault	tolerance	theory	may	view	it	as	a	kind	of	synchrony	assumption).

However,	the	"subjectivity"	here	is	very	weak:	in	order	for	a	node	to	get	on	the	"wrong"	chain,	they	must	receive	the	original	message	four	months	later	than
they	otherwise	would	have.	This	is	only	possible	in	two	cases:

1.	 When	a	node	connects	to	the	blockchain	for	the	first	time.
2.	 If	a	node	has	been	offline	for	more	than	four	months.

We	can	solve	(1)	by	making	it	the	user's	responsibility	to	authenticate	the	latest	state	out	of	band.	They	can	do	this	by	asking	their	friends,	block	explorers,
businesses	that	they	interact	with,	etc.	for	a	recent	block	hash	in	the	chain	that	they	see	as	the	canonical	one.	In	practice,	such	a	block	hash	may	well	simply
come	as	part	of	the	software	they	use	to	verify	the	blockchain;	an	attacker	that	can	corrupt	the	checkpoint	in	the	software	can	arguably	just	as	easily	corrupt	the
software	itself,	and	no	amount	of	pure	cryptoeconomic	verification	can	solve	that	problem.	(2)	does	genuinely	add	an	additional	security	requirement	for	nodes,
though	note	once	again	that	the	possibility	of	hard	forks	and	security	vulnerabilities,	and	the	requirement	to	stay	up	to	date	to	know	about	them	and	install	any
needed	software	updates,	exists	in	proof	of	work	too.

Note	that	all	of	this	is	a	problem	only	in	the	very	limited	case	where	a	majority	of	previous	stakeholders	from	some	point	in	time	collude	to	attack	the	network
and	create	an	alternate	chain;	most	of	the	time	we	expect	there	will	only	be	one	canonical	chain	to	choose	from.

Can	we	try	to	automate	the	social	authentication	to	reduce	the	load	on	users?

One	approach	is	to	bake	it	into	natural	user	workflow:	a	BIP	70-style	payment	request	could	include	a	recent	block	hash,	and	the	user's	client	software	would
make	sure	that	they	are	on	the	same	chain	as	the	vendor	before	approving	a	payment	(or	for	that	matter,	any	on-chain	interaction).	The	other	is	to	use	Jeff
Coleman's	universal	hash	time.	If	UHT	is	used,	then	a	successful	attack	chain	would	need	to	be	generated	secretly	at	the	same	time	as	the	legitimate	chain	was
being	built,	requiring	a	majority	of	validators	to	secretly	collude	for	that	long.

Can	one	economically	penalize	censorship	in	proof	of	stake?

Unlike	reverts,	censorship	is	much	more	difficult	to	prove.	The	blockchain	itself	cannot	directly	tell	the	difference	between	"user	A	tried	to	send	transaction	X
but	it	was	unfairly	censored",	"user	A	tried	to	send	transaction	X	but	it	never	got	in	because	the	transaction	fee	was	insufficient"	and	"user	A	never	tried	to	send
transaction	X	at	all".	See	also	a	note	on	data	availability	and	erasure	codes.	However,	there	are	a	number	of	techniques	that	can	be	used	to	mitigate	censorship
issues.

The	first	is	censorship	resistance	by	halting	problem.	In	the	weaker	version	of	this	scheme,	the	protocol	is	designed	to	be	Turing-complete	in	such	a	way	that	a
validator	cannot	even	tell	whether	or	not	a	given	transaction	will	lead	to	an	undesired	action	without	spending	a	large	amount	of	processing	power	executing	the
transaction,	and	thus	opening	itself	up	to	denial-of-service	attacks.	This	is	what	prevented	the	DAO	soft	fork.

In	the	stronger	version	of	the	scheme,	transactions	can	trigger	guaranteed	effects	at	some	point	in	the	near	to	mid-term	future.	Hence,	a	user	could	send
multiple	transactions	which	interact	with	each	other	and	with	predicted	third-party	information	to	lead	to	some	future	event,	but	the	validators	cannot	possibly
tell	that	this	is	going	to	happen	until	the	transactions	are	already	included	(and	economically	finalized)	and	it	is	far	too	late	to	stop	them;	even	if	all	future
transactions	are	excluded,	the	event	that	validators	wish	to	halt	would	still	take	place.	Note	that	in	this	scheme,	validators	could	still	try	to	prevent	all
transactions,	or	perhaps	all	transactions	that	do	not	come	packaged	with	some	formal	proof	that	they	do	not	lead	to	anything	undesired,	but	this	would	entail
forbidding	a	very	wide	class	of	transactions	to	the	point	of	essentially	breaking	the	entire	system,	which	would	cause	validators	to	lose	value	as	the	price	of	the
cryptocurrency	in	which	their	deposits	are	denominated	would	drop.

The	second,	described	by	Adam	Back	here,	is	to	require	transactions	to	be	timelock-encrypted.	Hence,	validators	will	include	the	transactions	without	knowing
the	contents,	and	only	later	could	the	contents	automatically	be	revealed,	by	which	point	once	again	it	would	be	far	too	late	to	un-include	the	transactions.	If
validators	were	sufficiently	malicious,	however,	they	could	simply	only	agree	to	include	transactions	that	come	with	a	cryptographic	proof	(e.g.	ZK-SNARK)	of
what	the	decrypted	version	is;	this	would	force	users	to	download	new	client	software,	but	an	adversary	could	conveniently	provide	such	client	software	for	easy
download,	and	in	a	game-theoretic	model	users	would	have	the	incentive	to	play	along.

Perhaps	the	best	that	can	be	said	in	a	proof-of-stake	context	is	that	users	could	also	install	a	software	update	that	includes	a	hard	fork	that	deletes	the	malicious
validators	and	this	is	not	that	much	harder	than	installing	a	software	update	to	make	their	transactions	"censorship-friendly".	Hence,	all	in	all	this	scheme	is	also
moderately	effective,	though	it	does	come	at	the	cost	of	slowing	interaction	with	the	blockchain	down	(note	that	the	scheme	must	be	mandatory	to	be	effective;
otherwise	malicious	validators	could	much	more	easily	simply	filter	encrypted	transactions	without	filtering	the	quicker	unencrypted	transactions).

A	third	alternative	is	to	include	censorship	detection	in	the	fork	choice	rule.	The	idea	is	simple.	Nodes	watch	the	network	for	transactions,	and	if	they	see	a
transaction	that	has	a	sufficiently	high	fee	for	a	sufficient	amount	of	time,	then	they	assign	a	lower	"score"	to	blockchains	that	do	not	include	this	transaction.	If
all	nodes	follow	this	strategy,	then	eventually	a	minority	chain	would	automatically	coalesce	that	includes	the	transactions,	and	all	honest	online	nodes	would
follow	it.	The	main	weakness	of	such	a	scheme	is	that	offline	nodes	would	still	follow	the	majority	branch,	and	if	the	censorship	is	temporary	and	they	log	back
on	after	the	censorship	ends	then	they	would	end	up	on	a	different	branch	from	online	nodes.	Hence,	this	scheme	should	be	viewed	more	as	a	tool	to	facilitate
automated	emergency	coordination	on	a	hard	fork	than	something	that	would	play	an	active	role	in	day-to-day	fork	choice.
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How	does	validator	selection	work,	and	what	is	stake	grinding?

In	any	chain-based	proof	of	stake	algorithm,	there	is	a	need	for	some	mechanism	which	randomly	selects	which	validator	out	of	the	currently	active	validator	set
can	make	the	next	block.	For	example,	if	the	currently	active	validator	set	consists	of	Alice	with	40	ether,	Bob	with	30	ether,	Charlie	with	20	ether	and	David
with	10	ether,	then	you	want	there	to	be	a	40%	chance	that	Alice	will	be	the	next	block	creator,	30%	chance	that	Bob	will	be,	etc	(in	practice,	you	want	to
randomly	select	not	just	one	validator,	but	rather	an	infinite	sequence	of	validators,	so	that	if	Alice	doesn't	show	up	there	is	someone	who	can	replace	her	after
some	time,	but	this	doesn't	change	the	fundamental	problem).	In	non-chain-based	algorithms	randomness	is	also	often	needed	for	different	reasons.

"Stake	grinding"	is	a	class	of	attack	where	a	validator	performs	some	computation	or	takes	some	other	step	to	try	to	bias	the	randomness	in	their	own	favor.	For
example:

1.	 In	Peercoin,	a	validator	could	"grind"	through	many	combinations	of	parameters	and	find	favorable	parameters	that	would	increase	the	probability	of	their
coins	generating	a	valid	block.

2.	 In	one	now-defunct	implementation,	the	randomness	for	block	N+1	was	dependent	on	the	signature	of	block	N.	This	allowed	a	validator	to	repeatedly
produce	new	signatures	until	they	found	one	that	allowed	them	to	get	the	next	block,	thereby	seizing	control	of	the	system	forever.

3.	 In	NXT,	the	randomness	for	block	N+1	is	dependent	on	the	validator	that	creates	block	N.	This	allows	a	validator	to	manipulate	the	randomness	by	simply
skipping	an	opportunity	to	create	a	block.	This	carries	an	opportunity	cost	equal	to	the	block	reward,	but	sometimes	the	new	random	seed	would	give	the
validator	an	above-average	number	of	blocks	over	the	next	few	dozen	blocks.	See	here	and	here	for	a	more	detailed	analysis.

1.	 and	(2)	are	easy	to	solve;	the	general	approach	is	to	require	validators	to	deposit	their	coins	well	in	advance,	and	not	to	use	information	that	can	be	easily
manipulated	as	source	data	for	the	randomness.	There	are	several	main	strategies	for	solving	problems	like	(3).	The	first	is	to	use	schemes	based	on	secret
sharing	or	deterministic	threshold	signatures	and	have	validators	collaboratively	generate	the	random	value.	These	schemes	are	robust	against	all
manipulation	unless	a	majority	of	validators	collude	(in	some	cases	though,	depending	on	the	implementation,	between	33-50%	of	validators	can	interfere	in
the	operation,	leading	to	the	protocol	having	a	67%	liveness	assumption).

The	second	is	to	use	cryptoeconomic	schemes	where	validators	commit	to	information	(i.e.	publish	sha3(x))	well	in	advance,	and	then	must	publish	x	in	the	block;
x	is	then	added	into	the	randomness	pool.	There	are	two	theoretical	attack	vectors	against	this:

1.	 Manipulate	x	at	commitment	time.	This	is	impractical	because	the	randomness	result	would	take	many	actors'	values	into	account,	and	if	even	one	of	them
is	honest	then	the	output	will	be	a	uniform	distribution.	A	uniform	distribution	XORed	together	with	arbitrarily	many	arbitrarily	biased	distributions	still
gives	a	uniform	distribution.

2.	 Selectively	avoid	publishing	blocks.	However,	this	attack	costs	one	block	reward	of	opportunity	cost,	and	because	the	scheme	prevents	anyone	from	seeing
any	future	validators	except	for	the	next,	it	almost	never	provides	more	than	one	block	reward	worth	of	revenue.	The	only	exception	is	the	case	where,	if	a
validator	skips,	the	next	validator	in	line	AND	the	first	child	of	that	validator	will	both	be	the	same	validator;	if	these	situations	are	a	grave	concern	then	we
can	punish	skipping	further	via	an	explicit	skipping	penalty.

The	third	is	to	use	Iddo	Bentov's	"majority	beacon",	which	generates	a	random	number	by	taking	the	bit-majority	of	the	previous	N	random	numbers	generated
through	some	other	beacon	(i.e.	the	first	bit	of	the	result	is	1	if	the	majority	of	the	first	bits	in	the	source	numbers	is	1	and	otherwise	it's	0,	the	second	bit	of	the
result	is	1	if	the	majority	of	the	second	bits	in	the	source	numbers	is	1	and	otherwise	it's	0,	etc).	This	gives	a	cost-of-exploitation	of	~C	*	sqrt(N)	where	C	is	the
cost	of	exploitation	of	the	underlying	beacons.	Hence,	all	in	all,	many	known	solutions	to	stake	grinding	exist;	the	problem	is	more	like	differential	cryptanalysis
than	the	halting	problem	-	an	annoyance	that	proof	of	stake	designers	eventually	understood	and	now	know	how	to	overcome,	not	a	fundamental	and	inescapable
flaw.

What	would	the	equivalent	of	a	51%	attack	against	Casper	look	like?

There	are	four	basic	types	of	51%	attack:

Finality	reversion:	validators	that	already	finalized	block	A	then	finalize	some	competing	block	A',	thereby	breaking	the	blockchain's	finality	guarantee.
Invalid	chain	finalization:	validators	finalize	an	invalid	(or	unavailable)	block.
Liveness	denial:	validators	stop	finalizing	blocks.
Censorship:	validators	block	some	or	all	transactions	or	blocks	from	entering	the	chain.

In	the	first	case,	users	can	socially	coordinate	out-of-band	to	agree	which	finalized	block	came	first,	and	favor	that	block.	The	second	case	can	be	solved	with
fraud	proofs	and	data	availability	proofs.	The	third	case	can	be	solved	by	a	modification	to	proof	of	stake	algorithms	that	gradually	reduces	("leaks")	non-
participating	nodes'	weights	in	the	validator	set	if	they	do	not	participate	in	consensus;	the	Casper	FFG	paper	includes	a	description	of	this.

The	fourth	is	most	difficult.	The	fourth	can	be	recovered	from	via	a	"minority	soft	fork",	where	a	minority	of	honest	validators	agree	the	majority	is	censoring
them,	and	stop	building	on	their	chain.	Instead,	they	continue	their	own	chain,	and	eventually	the	"leak"	mechanism	described	above	ensures	that	this	honest
minority	becomes	a	2/3	supermajority	on	the	new	chain.	At	that	point,	the	market	is	expected	to	favor	the	chain	controlled	by	honest	nodes	over	the	chain
controlled	by	dishonest	nodes.

That	sounds	like	a	lot	of	reliance	on	out-of-band	social	coordination;	is	that	not	dangerous?

Attacks	against	Casper	are	extremely	expensive;	as	we	will	see	below,	attacks	against	Casper	cost	as	much,	if	not	more,	than	the	cost	of	buying	enough	mining
power	in	a	proof	of	work	chain	to	permanently	51%	attack	it	over	and	over	again	to	the	point	of	uselessness.	Hence,	the	recovery	techniques	described	above
will	only	be	used	in	very	extreme	circumstances;	in	fact,	advocates	of	proof	of	work	also	generally	express	willingness	to	use	social	coordination	in	similar
circumstances	by,	for	example,	changing	the	proof	of	work	algorithm.	Hence,	it	is	not	even	clear	that	the	need	for	social	coordination	in	proof	of	stake	is	larger
than	it	is	in	proof	of	work.

In	reality,	we	expect	the	amount	of	social	coordination	required	to	be	near-zero,	as	attackers	will	realize	that	it	is	not	in	their	benefit	to	burn	such	large	amounts
of	money	to	simply	take	a	blockchain	offline	for	one	or	two	days.

Doesn't	MC	<=	MR	mean	that	all	consensus	algorithms	with	a	given	security	level	are	equally	efficient	(or	in	other	words,
equally	wasteful)?

This	is	an	argument	that	many	have	raised,	perhaps	best	explained	by	Paul	Sztorc	in	this	article.	Essentially,	if	you	create	a	way	for	people	to	earn	$100,	then
people	will	be	willing	to	spend	anywhere	up	to	$99.9	(including	the	cost	of	their	own	labor)	in	order	to	get	it;	marginal	cost	approaches	marginal	revenue.
Hence,	the	theory	goes,	any	algorithm	with	a	given	block	reward	will	be	equally	"wasteful"	in	terms	of	the	quantity	of	socially	unproductive	activity	that	is
carried	out	in	order	to	try	to	get	the	reward.

There	are	three	flaws	with	this:

1.	 It's	not	enough	to	simply	say	that	marginal	cost	approaches	marginal	revenue;	one	must	also	posit	a	plausible	mechanism	by	which	someone	can	actually
expend	that	cost.	For	example,	if	tomorrow	I	announce	that	every	day	from	then	on	I	will	give	$100	to	a	randomly	selected	one	of	a	given	list	of	ten	people
(using	my	laptop's	/dev/urandom	as	randomness),	then	there	is	simply	no	way	for	anyone	to	send	$99	to	try	to	get	at	that	randomness.	Either	they	are	not	in
the	list	of	ten,	in	which	case	they	have	no	chance	no	matter	what	they	do,	or	they	are	in	the	list	of	ten,	in	which	case	they	don't	have	any	reasonable	way	to
manipulate	my	randomness	so	they're	stuck	with	getting	the	expected-value	$10	per	day.

2.	 MC	<=	MR	does	NOT	imply	total	cost	approaches	total	revenue.	For	example,	suppose	that	there	is	an	algorithm	which	pseudorandomly	selects	1000
validators	out	of	some	very	large	set	(each	validator	getting	a	reward	of	$1),	you	have	10%	of	the	stake	so	on	average	you	get	100,	and	at	a	cost	of	$1	you
can	force	the	randomness	to	reset	(and	you	can	repeat	this	an	unlimited	number	of	times).	Due	to	the	central	limit	theorem,	the	standard	deviation	of	your
reward	is	$10,	and	based	on	other	known	results	in	math	the	expected	maximum	of	N	random	samples	is	slightly	under	M	+	S	*	sqrt(2	*	log(N))	where	M	is
the	mean	and	S	is	the	standard	deviation.	Hence	the	reward	for	making	additional	trials	(i.e.	increasing	N)	drops	off	sharply,	e.g.	with	0	re-trials	your
expected	reward	is	$100,	with	one	re-trial	it's	$105.5,	with	two	it's	$108.5,	with	three	it's	$110.3,	with	four	it's	$111.6,	with	five	it's	$112.6	and	with	six	it's
$113.5.	Hence,	after	five	retrials	it	stops	being	worth	it.	As	a	result,	an	economically	motivated	attacker	with	ten	percent	of	stake	will	inefficiently	spend	$5
to	get	an	additional	revenue	of	$13,	though	the	total	revenue	is	$113.	If	the	exploitable	mechanisms	only	expose	small	opportunities,	the	economic	loss	will
be	small;	it	is	decidedly	NOT	the	case	that	a	single	drop	of	exploitability	brings	the	entire	flood	of	PoW-level	economic	waste	rushing	back	in.	This	point	will
also	be	very	relevant	in	our	below	discussion	on	capital	lockup	costs.

3.	 Proof	of	stake	can	be	secured	with	much	lower	total	rewards	than	proof	of	work.

What	about	capital	lockup	costs?

Locking	up	X	ether	in	a	deposit	is	not	free;	it	entails	a	sacrifice	of	optionality	for	the	ether	holder.	Right	now,	if	I	have	1000	ether,	I	can	do	whatever	I	want	with
it;	if	I	lock	it	up	in	a	deposit,	then	it's	stuck	there	for	months,	and	I	do	not	have,	for	example,	the	insurance	utility	of	the	money	being	there	to	pay	for	sudden
unexpected	expenses.	I	also	lose	some	freedom	to	change	my	token	allocations	away	from	ether	within	that	timeframe;	I	could	simulate	selling	ether	by	shorting
an	amount	equivalent	to	the	deposit	on	an	exchange,	but	this	itself	carries	costs	including	exchange	fees	and	paying	interest.	Some	might	argue:	isn't	this	capital
lockup	inefficiency	really	just	a	highly	indirect	way	of	achieving	the	exact	same	level	of	economic	inefficiency	as	exists	in	proof	of	work?	The	answer	is	no,	for
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both	reasons	(2)	and	(3)	above.

Let	us	start	with	(3)	first.	Consider	a	model	where	proof	of	stake	deposits	are	infinite-term,	ASICs	last	forever,	ASIC	technology	is	fixed	(i.e.	no	Moore's	law)	and
electricity	costs	are	zero.	Let's	say	the	equilibrium	interest	rate	is	5%	per	annum.	In	a	proof	of	work	blockchain,	I	can	take	$1000,	convert	it	into	a	miner,	and
the	miner	will	pay	me	$50	in	rewards	per	year	forever.	In	a	proof	of	stake	blockchain,	I	would	buy	$1000	of	coins,	deposit	them	(i.e.	losing	them	forever),	and	get
$50	in	rewards	per	year	forever.	So	far,	the	situation	looks	completely	symmetrical	(technically,	even	here,	in	the	proof	of	stake	case	my	destruction	of	coins
isn't	fully	socially	destructive	as	it	makes	others'	coins	worth	more,	but	we	can	leave	that	aside	for	the	moment).	The	cost	of	a	"Maginot-line"	51%	attack
(i.e.	buying	up	more	hardware	than	the	rest	of	the	network)	increases	by	$1000	in	both	cases.

Now,	let's	perform	the	following	changes	to	our	model	in	turn:

1.	 Moore's	law	exists,	ASICs	depreciate	by	50%	every	2.772	years	(that's	a	continuously-compounded	25%	annual	depreciation;	picked	to	make	the	numbers
simpler).	If	I	want	to	retain	the	same	"pay	once,	get	money	forever"	behavior,	I	can	do	so:	I	would	put	$1000	into	a	fund,	where	$167	would	go	into	an	ASIC
and	the	remaining	$833	would	go	into	investments	at	5%	interest;	the	$41.67	dividends	per	year	would	be	just	enough	to	keep	renewing	the	ASIC	hardware
(assuming	technological	development	is	fully	continuous,	once	again	to	make	the	math	simpler).	Rewards	would	go	down	to	$8.33	per	year;	hence,	83.3%	of
miners	will	drop	out	until	the	system	comes	back	into	equilibrium	with	me	earning	$50	per	year,	and	so	the	Maginot-line	cost	of	an	attack	on	PoW	given	the
same	rewards	drops	by	a	factor	of	6.

2.	 Electricity	plus	maintenance	makes	up	1/3	of	mining	costs.	We	estimate	the	1/3	from	recent	mining	statistics:	one	of	Bitfury's	new	data	centers	consumes
0.06	joules	per	gigahash,	or	60	J/TH	or	0.000017	kWh/TH,	and	if	we	assume	the	entire	Bitcoin	network	has	similar	efficiencies	we	get	27.9	kWh	per	second
given	1.67	million	TH/s	total	Bitcoin	hashpower.	Electricity	in	China	costs	$0.11	per	kWh,	so	that's	about	$3	per	second,	or	$260,000	per	day.	Bitcoin	block
rewards	plus	fees	are	$600	per	BTC	*	13	BTC	per	block	*	144	blocks	per	day	=	$1.12m	per	day.	Thus	electricity	itself	would	make	up	23%	of	costs,	and	we
can	back-of-the-envelope	estimate	maintenance	at	10%	to	give	a	clean	1/3	ongoing	costs,	2/3	fixed	costs	split.	This	means	that	out	of	your	$1000	fund,	only
$111	would	go	into	the	ASIC,	$56	would	go	into	paying	ongoing	costs,	and	$833	would	go	into	investments;	hence	the	Maginot-line	cost	of	attack	is	9x
lower	than	in	our	original	setting.

3.	 Deposits	are	temporary,	not	permanent.	Sure,	if	I	voluntarily	keep	staking	forever,	then	this	changes	nothing.	However,	I	regain	some	of	the	optionality	that
I	had	before;	I	could	quit	within	a	medium	timeframe	(say,	4	months)	at	any	time.	This	means	that	I	would	be	willing	to	put	more	than	$1000	of	ether	in	for
the	$50	per	year	gain;	perhaps	in	equilibrium	it	would	be	something	like	$3000.	Hence,	the	cost	of	the	Maginot	line	attack	on	PoS	increases	by	a	factor	of
three,	and	so	on	net	PoS	gives	27x	more	security	than	PoW	for	the	same	cost.

The	above	included	a	large	amount	of	simplified	modeling,	however	it	serves	to	show	how	multiple	factors	stack	up	heavily	in	favor	of	PoS	in	such	a	way	that	PoS
gets	more	bang	for	its	buck	in	terms	of	security.	The	meta-argument	for	why	this	perhaps	suspiciously	multifactorial	argument	leans	so	heavily	in	favor	of	PoS	is
simple:	in	PoW,	we	are	working	directly	with	the	laws	of	physics.	In	PoS,	we	are	able	to	design	the	protocol	in	such	a	way	that	it	has	the	precise	properties	that
we	want	-	in	short,	we	can	optimize	the	laws	of	physics	in	our	favor.	The	"hidden	trapdoor"	that	gives	us	(3)	is	the	change	in	the	security	model,	specifically	the
introduction	of	weak	subjectivity.

Now,	we	can	talk	about	the	marginal/total	distinction.	In	the	case	of	capital	lockup	costs,	this	is	very	important.	For	example,	consider	a	case	where	you	have
$100,000	of	ether.	You	probably	intend	to	hold	a	large	portion	of	it	for	a	long	time;	hence,	locking	up	even	$50,000	of	the	ether	should	be	nearly	free.	Locking	up
$80,000	would	be	slightly	more	inconvenient,	but	$20,000	of	breathing	room	still	gives	you	a	large	space	to	maneuver.	Locking	up	$90,000	is	more	problematic,
$99,000	is	very	problematic,	and	locking	up	all	$100,000	is	absurd,	as	it	means	you	would	not	even	have	a	single	bit	of	ether	left	to	pay	basic	transaction	fees.
Hence,	your	marginal	costs	increase	quickly.	We	can	show	the	difference	between	this	state	of	affairs	and	the	state	of	affairs	in	proof	of	work	as	follows:

Hence,	the	total	cost	of	proof	of	stake	is	potentially	much	lower	than	the	marginal	cost	of	depositing	1	more	ETH	into	the	system	multiplied	by	the	amount	of
ether	currently	deposited.

Note	that	this	component	of	the	argument	unfortunately	does	not	fully	translate	into	reduction	of	the	"safe	level	of	issuance".	It	does	help	us	because	it	shows
that	we	can	get	substantial	proof	of	stake	participation	even	if	we	keep	issuance	very	low;	however,	it	also	means	that	a	large	portion	of	the	gains	will	simply	be
borne	by	validators	as	economic	surplus.

Will	exchanges	in	proof	of	stake	pose	a	similar	centralization	risk	to	pools	in	proof	of	work?

From	a	centralization	perspective,	in	both	Bitcoin	and	Ethereum	it's	the	case	that	roughly	three	pools	are	needed	to	coordinate	on	a	51%	attack	(4	in	Bitcoin,	3
in	Ethereum	at	the	time	of	this	writing).	In	PoS,	if	we	assume	30%	participation	including	all	exchanges,	then	three	exchanges	would	be	enough	to	make	a	51%
attack;	if	participation	goes	up	to	40%	then	the	required	number	goes	up	to	eight.	However,	exchanges	will	not	be	able	to	participate	with	all	of	their	ether;	the
reason	is	that	they	need	to	accomodate	withdrawals.

Additionally,	pooling	in	PoS	is	discouraged	because	it	has	a	much	higher	trust	requirement	-	a	proof	of	stake	pool	can	pretend	to	be	hacked,	destroy	its
participants'	deposits	and	claim	a	reward	for	it.	On	the	other	hand,	the	ability	to	earn	interest	on	one's	coins	without	oneself	running	a	node,	even	if	trust	is
required,	is	something	that	many	may	find	attractive;	all	in	all,	the	centralization	balance	is	an	empirical	question	for	which	the	answer	is	unclear	until	the
system	is	actually	running	for	a	substantial	period	of	time.	With	sharding,	we	expect	pooling	incentives	to	reduce	further,	as	(i)	there	is	even	less	concern	about
variance,	and	(ii)	in	a	sharded	model,	transaction	verification	load	is	proportional	to	the	amount	of	capital	that	one	puts	in,	and	so	there	are	no	direct
infrastructure	savings	from	pooling.

A	final	point	is	that	centralization	is	less	harmful	in	proof	of	stake	than	in	proof	of	work,	as	there	are	much	cheaper	ways	to	recover	from	successful	51%	attacks;
one	does	not	need	to	switch	to	a	new	mining	algorithm.

Are	there	economic	ways	to	discourage	centralization?

One	strategy	suggested	by	Vlad	Zamfir	is	to	only	partially	destroy	deposits	of	validators	that	get	slashed,	setting	the	percentage	destroyed	to	be	proportional	to
the	percentage	of	other	validators	that	have	been	slashed	recently.	This	ensures	that	validators	lose	all	of	their	deposits	in	the	event	of	an	actual	attack,	but	only
a	small	part	of	their	deposits	in	the	event	of	a	one-off	mistake.	This	makes	lower-security	staking	strategies	possible,	and	also	specifically	incentivizes	validators
to	have	their	errors	be	as	uncorrelated	(or	ideally,	anti-correlated)	with	other	validators	as	possible;	this	involves	not	being	in	the	largest	pool,	putting	one's
node	on	the	largest	virtual	private	server	provider	and	even	using	secondary	software	implementations,	all	of	which	increase	decentralization.

Can	proof	of	stake	be	used	in	private/consortium	chains?

Generally,	yes;	any	proof	of	stake	algorithm	can	be	used	as	a	consensus	algorithm	in	private/consortium	chain	settings.	The	only	change	is	that	the	way	the
validator	set	is	selected	would	be	different:	it	would	start	off	as	a	set	of	trusted	users	that	everyone	agrees	on,	and	then	it	would	be	up	to	the	validator	set	to
vote	on	adding	in	new	validators.

Can	multi-currency	proof	of	stake	work?

There	has	been	a	lot	of	interest	in	proof	of	stake	protocols	where	users	can	stake	any	currency,	or	one	of	multiple	currencies.	However,	these	designs
unfortunately	introduce	economic	challenges	that	likely	make	them	much	more	trouble	than	any	benefit	that	could	be	received	from	them.	The	key	problems
include:

Price	oracle	dependence:	if	people	are	staking	in	multiple	cryptocurrencies,	there	needs	to	be	a	way	to	compare	deposits	in	one	versus	the	other,	so	as	to
fairly	allocate	proposal	rights,	determine	whether	or	not	a	2/3	threshold	was	passed,	etc.	This	requires	some	form	of	price	oracle.	This	can	be	done	in	a
decentralized	way	(eg.	see	Uniswap),	but	it	introduces	another	component	that	could	be	manipulated	and	attacked	by	validators.
Pathological	cryptocurrencies:	one	can	always	create	a	cryptocurrency	that	is	pathologically	constructed	to	nullify	the	impact	of	penalties.	For	example,
one	can	imagine	a	fiat-backed	token	where	coins	that	are	seized	by	the	protocol	as	penalties	are	tracked	and	not	honored	by	the	issuer,	and	the	penalized
actor's	original	balance	is	honored	instead.	This	logic	could	even	be	implemented	in	a	smart	contract,	and	it's	impossible	to	determine	with	certainty
whether	or	not	a	given	currency	has	such	a	mechanism	built-in.
Reduced	incentive	alignment:	if	currencies	other	than	the	protocol's	base	token	can	be	used	to	stake,	this	reduces	the	stakers'	interest	in	seeing	the
protocol	continue	to	operate	and	succeed.
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Sharding	FAQ

Currently,	in	all	blockchain	protocols	each	node	stores	the	entire	state	(account	balances,	contract
code	and	storage,	etc.)	and	processes	all	transactions.	This	provides	a	large	amount	of	security,	but
greatly	limits	scalability:	a	blockchain	cannot	process	more	transactions	than	a	single	node	can.	In
large	part	because	of	this,	Bitcoin	is	limited	to	~3–7	transactions	per	second,	Ethereum	to	7–15,	etc.

However,	this	poses	a	question:	are	there	ways	to	create	a	new	mechanism,	where	only	a	small
subset	of	nodes	verifies	each	transaction?	As	long	as	there	are	sufficiently	many	nodes	verifying	each
transaction	that	the	system	is	still	highly	secure,	but	a	sufficiently	small	percentage	of	the	total
validator	set	so	that	the	system	can	process	many	transactions	in	parallel,	could	we	not	split	up
transaction	processing	between	smaller	groups	of	nodes	to	greatly	increase	a	blockchain's	total
throughput?
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Can	we	force	more	of	the	state	to	be	held	user-side	so	that	transactions	can	be	validated	without
requiring	validators	to	hold	all	state	data?
Can	we	split	data	and	execution	so	that	we	get	the	security	from	rapid	shuffling	data	validation
without	the	overhead	of	shuffling	the	nodes	that	perform	state	execution?
Can	SNARKs	and	STARKs	help?
How	can	we	facilitate	cross-shard	communication?
What	is	the	train-and-hotel	problem?
What	are	the	concerns	about	sharding	through	random	sampling	in	a	bribing	attacker	or
coordinated	choice	model?
How	can	we	improve	on	this?
What	is	the	data	availability	problem,	and	how	can	we	use	erasure	codes	to	solve	it?
Can	we	remove	the	need	to	solve	data	availability	with	some	kind	of	fancy	cryptographic
accumulator	scheme?
So	this	means	that	we	can	actually	create	scalable	sharded	blockchains	where	the	cost	of
making	anything	bad	happen	is	proportional	to	the	size	of	the	entire	validator	set?
Let's	walk	back	a	bit.	Do	we	actually	need	any	of	this	complexity	if	we	have	instant	shuffling?
Doesn't	instant	shuffling	basically	mean	that	each	shard	directly	pulls	validators	from	the	global
validator	pool	so	it	operates	just	like	a	blockchain,	and	so	sharding	doesn't	actually	introduce
any	new	complexities?
You	mentioned	transparent	sharding.	I'm	12	years	old	and	what	is	this?
What	are	some	advantages	and	disadvantages	of	this?
How	would	synchronous	cross-shard	messages	work?
What	about	semi-asynchronous	messages?
What	are	guaranteed	cross-shard	calls?
Wait,	but	what	if	an	attacker	sends	a	cross-shard	call	from	every	shard	into	shard	X	at	the	same
time?	Wouldn't	it	be	mathematically	impossible	to	include	all	of	these	calls	in	time?
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Congealed	gas?	This	sounds	interesting	for	not	just	cross-shard	operations,	but	also	reliable
intra-shard	scheduling
Does	guaranteed	scheduling,	both	intra-shard	and	cross-shard,	help	against	majority	collusions
trying	to	censor	transactions?
Could	sharded	blockchains	do	a	better	job	of	dealing	with	network	partitions?
What	are	the	unique	challenges	of	pushing	scaling	past	n	=	O(c^2)?
What	about	heterogeneous	sharding?
Footnotes

What	are	some	trivial	but	flawed	ways	of
solving	the	problem?
There	are	three	main	categories	of	"easy	solutions".	The	first	is	to	give	up	on	scaling	individual
blockchains,	and	instead	assume	that	applications	will	be	split	among	many	different	chains.	This
greatly	increases	throughput,	but	at	a	cost	of	security:	an	N-factor	increase	in	throughput	using	this
method	necessarily	comes	with	an	N-factor	decrease	in	security,	as	a	level	of	resources	1/N	the	size
of	the	whole	ecosystem	will	be	sufficient	to	attack	any	individual	chain.	Hence,	it	is	arguably	non-
viable	for	more	than	small	values	of	N.

The	second	is	to	simply	increase	the	block	size	limit.	This	can	work	and	in	some	situations	may	well
be	the	correct	prescription,	as	block	sizes	may	well	be	constrained	more	by	politics	than	by	realistic
technical	considerations.	But	regardless	of	one's	beliefs	about	any	individual	case	such	an	approach
inevitably	has	its	limits:	if	one	goes	too	far,	then	nodes	running	on	consumer	hardware	will	drop	out,
the	network	will	start	to	rely	exclusively	on	a	very	small	number	of	supercomputers	running	the
blockchain,	which	can	lead	to	great	centralization	risk.

The	third	is	"merge	mining",	a	technique	where	there	are	many	chains,	but	all	chains	share	the	same
mining	power	(or,	in	proof	of	stake	systems,	stake).	Currently,	Namecoin	gets	a	large	portion	of	its
security	from	the	Bitcoin	blockchain	by	doing	this.	If	all	miners	participate,	this	theoretically	can
increase	throughput	by	a	factor	of	N	without	compromising	security.	However,	this	also	has	the
problem	that	it	increases	the	computational	and	storage	load	on	each	miner	by	a	factor	of	N,	and	so
in	fact	this	solution	is	simply	a	stealthy	form	of	block	size	increase.

This	sounds	like	there's	some	kind	of
scalability	trilemma	at	play.	What	is	this
trilemma	and	can	we	break	through	it?
The	trilemma	claims	that	blockchain	systems	can	only	at	most	have	two	of	the	following	three
properties:

Decentralization	(defined	as	the	system	being	able	to	run	in	a	scenario	where	each	participant
only	has	access	to	O(c)	resources,	i.e.	a	regular	laptop	or	small	VPS)
Scalability	(defined	as	being	able	to	process	O(n)	>	O(c)	transactions)
Security	(defined	as	being	secure	against	attackers	with	up	to	O(n)	resources)

In	the	rest	of	this	document,	we'll	continue	using	c	to	refer	to	the	size	of	computational	resources
(including	computation,	bandwidth	and	storage)	available	to	each	node,	and	n	to	refer	to	the	size	of
the	ecosystem	in	some	abstract	sense;	we	assume	that	transaction	load,	state	size,	and	the	market
cap	of	a	cryptocurrency	are	all	proportional	to	n.	The	key	challenge	of	scalability	is	finding	a	way	to
achieve	all	three	at	the	base	layer.

What	are	some	moderately	simple	but	only
partial	ways	of	solving	the	scalability
problem?
Many	sharding	proposals	(e.g.	this	early	BFT	sharding	proposal	from	Loi	Luu	et	al	at	NUS,	more
recent	application	of	similar	ideas	in	Zilliqa,	as	well	as	this	Merklix	tree1	approach	that	has	been
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suggested	for	Bitcoin)	attempt	to	either	only	shard	transaction	processing	or	only	shard	state,
without	touching	the	other2.	These	efforts	can	lead	to	some	gains	in	efficiency,	but	they	run	into	the
fundamental	problem	that	they	only	solve	one	of	the	two	bottlenecks.	We	want	to	be	able	to	process
10,000+	transactions	per	second	without	either	forcing	every	node	to	be	a	supercomputer	or	forcing
every	node	to	store	a	terabyte	of	state	data,	and	this	requires	a	comprehensive	solution	where	the
workloads	of	state	storage,	transaction	processing	and	even	transaction	downloading	and	re-
broadcasting	at	are	all	spread	out	across	nodes.	Particularly,	the	P2P	network	needs	to	also	be
modified	to	ensure	that	not	every	node	receives	all	information	from	every	other	node.

What	about	approaches	that	do	not	try	to
"shard"	anything?
Bitcoin-NG	can	increase	scalability	somewhat	by	means	of	an	alternative	blockchain	design	that
makes	it	much	safer	for	the	network	if	nodes	are	spending	large	portions	of	their	CPU	time	verifying
blocks.	In	simple	PoW	blockchains,	there	are	high	centralization	risks	and	the	safety	of	consensus	is
weakened	if	capacity	is	increased	to	the	point	where	more	than	about	5%	of	nodes'	CPU	time	is	spent
verifying	blocks;	Bitcoin-NG's	design	alleviates	this	problem.	However,	this	can	only	increase	the
scalability	of	transaction	capacity	by	a	constant	factor	of	perhaps	5-50x3,4,	and	does	not	increase	the
scalability	of	state.	That	said,	Bitcoin-NG-style	approaches	are	not	mutually	exclusive	with	sharding,
and	the	two	can	certainly	be	implemented	at	the	same	time.

Channel-based	strategies	(lightning	network,	Raiden,	etc)	can	scale	transaction	capacity	by	a
constant	factor	but	cannot	scale	state	storage,	and	also	come	with	their	own	unique	sets	of	tradeoffs
and	limitations	particularly	involving	denial-of-service	attacks.	On-chain	scaling	via	sharding	(plus
other	techniques)	and	off-chain	scaling	via	channels	are	arguably	both	necessary	and
complementary.

There	exist	approaches	that	use	advanced	cryptography,	such	as	Mimblewimble	and	strategies	based
on	ZK-SNARKs	(eg.	Coda),	to	solve	one	specific	part	of	the	scaling	problem:	initial	full	node
synchronization.	Instead	of	verifying	the	entire	history	from	genesis,	nodes	could	verify	a
cryptographic	proof	that	the	current	state	legitimately	follows	from	the	history.	These	approaches	do
solve	a	legitimate	problem,	but	they	are	not	a	substitute	for	sharding,	as	they	do	not	remove	the	need
for	nodes	to	download	and	verify	very	large	amounts	of	data	to	stay	on	the	chain	in	real	time.

How	does	Plasma,	state	channels	and	other
layer	2	technologies	fit	into	the	trilemma?
In	the	event	of	a	large	attack	on	Plasma	subchains,	all	users	of	the	Plasma	subchains	would	need	to
withdraw	back	to	the	root	chain.	If	Plasma	has	O(N)	users,	then	this	will	require	O(N)	transactions,
and	so	O(N	/	C)	time	to	process	all	of	the	withdrawals.	If	withdrawal	delays	are	fixed	to	some	D
(i.e.	the	naive	implementation),	then	as	soon	as	N	>	C	*	D,	there	will	not	be	enough	space	in	the
blockchain	to	process	all	withdrawals	in	time,	and	so	the	system	will	be	insecure;	in	this	mode,
Plasma	should	be	viewed	as	increasing	scalability	only	by	a	(possibly	large)	constant	factor.	If
withdrawal	delays	are	flexible,	so	they	automatically	extend	if	there	are	many	withdrawals	being
made,	then	this	means	that	as	N	increases	further	and	further,	the	amount	of	time	that	an	attacker
can	force	everyone's	funds	to	get	locked	up	increases,	and	so	the	level	of	"security"	of	the	system
decreases	further	and	further	in	a	certain	sense,	as	extended	denial	of	access	can	be	viewed	as	a
security	failure,	albeit	one	milder	than	total	loss	of	access.	However,	this	is	a	different	direction	of
tradeoff	from	other	solutions,	and	arguably	a	much	milder	tradeoff,	hence	why	Plasma	subchains	are
nevertheless	a	large	improvement	on	the	status	quo.

Note	that	there	is	one	design	that	states	that:	"Given	a	malicious	operator	(the	worst	case),	the
system	degrades	to	an	on-chain	token.	A	malicious	operator	cannot	steal	funds	and	cannot	deprive
people	of	their	funds	for	any	meaningful	amount	of	time."—https://ethresear.ch/t/roll-up-roll-back-
snark-side-chain-17000-tps/3675.	See	also	here	for	related	information.

State	channels	have	similar	properties,	though	with	different	tradeoffs	between	versatility	and	speed
of	finality.	Other	layer	2	technologies	include	TrueBit	off-chain	interactive	verification	of	execution
and	Raiden,	which	is	another	organisation	working	on	state	channels.	Proof	of	stake	with	Casper
(which	is	layer	1)	would	also	improve	scaling—it	is	more	decentralizable,	not	requiring	a	computer
that	is	able	to	mine,	which	tends	towards	centralized	mining	farms	and	institutionalized	mining	pools
as	difficulty	increases	and	the	size	of	the	state	of	the	blockchain	increases.
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Sharding	is	different	to	state	channels	and	Plasma	in	that	periodically	notaries	are	pseudo-randomly
assigned	to	vote	on	the	validity	of	collations	(analogous	to	blocks,	but	without	an	EVM	state
transition	function	in	phase	1),	then	these	collations	are	accepted	into	the	main	chain	after	the	votes
are	verified	by	a	committee	on	the	main	chain,	via	a	sharding	manager	contract	on	the	main	chain.	In
phase	5	(see	the	roadmap	for	details),	shards	are	tightly	coupled	to	the	main	chain,	so	that	if	any
shard	or	the	main	chain	is	invalid,	the	whole	network	is	invalid.	There	are	other	differences	between
each	mechanism,	but	at	a	high	level,	Plasma,	state	channels	and	Truebit	are	off-chain	for	an
indefinite	interval,	connect	to	the	main	chain	at	the	smart	contract,	layer	2	level,	while	they	can	draw
back	into	and	open	up	from	the	main	chain,	whereas	shards	are	regularly	linked	to	the	main	chain	via
consensus	in-protocol.

See	also	these	tweets	from	Vlad.

State	size,	history,	cryptoeconomics,	oh	my!
Define	some	of	these	terms	before	we	move
further!

State:	a	set	of	information	that	represents	the	"current	state"	of	a	system;	determining	whether
or	not	a	transaction	is	valid,	as	well	as	the	effect	of	a	transaction,	should	in	the	simplest	model
depend	only	on	state.	Examples	of	state	data	include	the	UTXO	set	in	bitcoin,	balances	+	nonces
+	code	+	storage	in	ethereum,	and	domain	name	registry	entries	in	Namecoin.
History:	an	ordered	list	of	all	transactions	that	have	taken	place	since	genesis.	In	a	simple
model,	the	present	state	should	be	a	deterministic	function	of	the	genesis	state	and	the	history.
Transaction:	an	object	that	goes	into	the	history.	In	practice,	a	transaction	represents	an
operation	that	some	user	wants	to	make,	and	is	cryptographically	signed.	In	some	systems
transactions	are	called	blobs,	to	emphasize	the	fact	that	in	these	systems	these	objects	may
contain	arbitrary	data	and	may	not	in	all	cases	represent	an	attempt	to	perform	some	operation
in	the	protocol.
State	transition	function:	a	function	that	takes	a	state,	applies	a	transaction	and	outputs	a
new	state.	The	computation	involved	may	involve	adding	and	subtracting	balances	from
accounts	specified	by	the	transaction,	verifying	digital	signatures	and	running	contract	code.
Merkle	tree:	a	cryptographic	hash	tree	structure	that	can	store	a	very	large	amount	of	data,
where	authenticating	each	individual	piece	of	data	only	takes	O(log(n))	space	and	time.	See	here
for	details.	In	Ethereum,	the	transaction	set	of	each	block,	as	well	as	the	state,	is	kept	in	a
Merkle	tree,	where	the	roots	of	the	trees	are	committed	to	in	a	block.
Receipt:	an	object	that	represents	an	effect	of	a	transaction	that	is	not	directly	stored	in	the
state,	but	which	is	still	stored	in	a	Merkle	tree	and	committed	to	in	a	block	header	or	in	a
special	location	in	the	state	so	that	its	existence	can	later	be	efficiently	proven	even	to	a	node
that	does	not	have	all	of	the	data.	Logs	in	Ethereum	are	receipts;	in	sharded	models,	receipts
are	used	to	facilitate	asynchronous	cross-shard	communication.
Light	client:	a	way	of	interacting	with	a	blockchain	that	only	requires	a	very	small	amount
(we'll	say	O(1),	though	O(log(c))	may	also	be	accurate	in	some	cases)	of	computational
resources,	keeping	track	of	only	the	block	headers	of	the	chain	by	default	and	acquiring	any
needed	information	about	transactions,	state	or	receipts	by	asking	for	and	verifying	Merkle
proofs	of	the	relevant	data	on	an	as-needed	basis.
State	root:	the	root	hash	of	the	Merkle	tree	representing	the	state5
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The	Ethereum	1.0	state	tree,	and	how	the	state	root	fits	into	the	block	structure

What	is	the	basic	idea	behind	sharding?
We	split	the	state	and	history	up	into	K	=	O(n	/	c)	partitions	that	we	call	"shards".	For	example,	a
sharding	scheme	on	Ethereum	might	put	all	addresses	starting	with	0x00	into	one	shard,	all
addresses	starting	with	0x01	into	another	shard,	etc.	In	the	simplest	form	of	sharding,	each	shard
also	has	its	own	transaction	history,	and	the	effect	of	transactions	in	some	shard	k	are	limited	to	the
state	of	shard	k.	One	simple	example	would	be	a	multi-asset	blockchain,	where	there	are	K	shards
and	each	shard	stores	the	balances	and	processes	the	transactions	associated	with	one	particular
asset.	In	more	advanced	forms	of	sharding,	some	form	of	cross-shard	communication	capability,
where	transactions	on	one	shard	can	trigger	events	on	other	shards,	is	also	included.

What	might	a	basic	design	of	a	sharded
blockchain	look	like?
A	simple	approach	is	as	follows.	For	simplicity,	this	design	keeps	track	of	data	blobs	only;	it	does	not
attempt	to	process	a	state	transition	function.

There	exists	a	set	of	validators	(ie.	proof	of	stake	nodes),	who	randomly	get	assigned	the	right	to
create	shard	blocks.	During	each	slot	(eg.	an	8-second	period	of	time),	for	each	k	in	[0...999]	a
random	validator	gets	selected,	and	given	the	right	to	create	a	block	on	"shard	k",	which	might
contain	up	to,	say,	32	kb	of	data.	Also,	for	each	k,	a	set	of	100	validators	get	selected	as	attesters.
The	header	of	a	block	together	with	at	least	67	of	the	attesting	signatures	can	be	published	as	an
object	that	gets	included	in	the	"main	chain"	(also	called	a	beacon	chain).

Note	that	there	are	now	several	"levels"	of	nodes	that	can	exist	in	such	a	system:

Super-full	node	-	downloads	the	full	data	of	the	beacon	chain	and	every	shard	block	referenced
in	the	beacon	chain.
Top-level	node	-	processes	the	beacon	chain	blocks	only,	including	the	headers	and	signatures
of	the	shard	blocks,	but	does	not	download	all	the	data	of	the	shard	blocks.
Single-shard	node	-	acts	as	a	top-level	node,	but	also	fully	downloads	and	verifies	every
collation	on	some	specific	shard	that	it	cares	more	about.
Light	node	-	downloads	and	verifies	the	block	headers	of	main	chain	blocks	only;	does	not
process	any	collation	headers	or	transactions	unless	it	needs	to	read	some	specific	entry	in	the
state	of	some	specific	shard,	in	which	case	it	downloads	the	Merkle	branch	to	the	most	recent
collation	header	for	that	shard	and	from	there	downloads	the	Merkle	proof	of	the	desired	value
in	the	state.

What	are	the	challenges	here?



Single-shard	takeover	attacks	-	what	if	an	attacker	takes	over	the	majority	of	the	validators
responsible	for	attesting	to	one	particular	block,	either	to	(respectively)	prevent	any	collations
from	getting	enough	signatures	or,	worse,	to	submit	collations	that	are	invalid?
State	transition	execution	-	single-shard	takeover	attacks	are	typically	prevented	with
random	sampling	schemes,	but	such	schemes	also	make	it	more	difficult	for	validators	to
compute	state	roots,	as	they	cannot	have	up-to-date	state	information	for	every	shard	that	they
could	be	assigned	to.	How	do	we	ensure	that	light	clients	can	still	get	accurate	information
about	the	state?
Fraud	detection	-	if	an	invalid	collation	or	state	claim	does	get	made,	how	can	nodes	(including
light	nodes)	be	reliably	informed	of	this	so	that	they	can	detect	the	fraud	and	reject	the	collation
if	it	is	truly	fraudulent?
Cross	shard	communication	-	the	above	design	supports	no	cross-shard	communication.	How
do	we	add	cross-shard	communication	safely?
The	data	availability	problem	-	as	a	subset	of	fraud	detection,	what	about	the	specific	case
where	data	is	missing	from	a	collation?
Superquadratic	sharding	-	in	the	special	case	where	n	>	c^2,	in	the	simple	design	given
above	there	would	be	more	than	O(c)	collation	headers,	and	so	an	ordinary	node	would	not	be
able	to	process	even	just	the	top-level	blocks.	Hence,	more	than	two	levels	of	indirection
between	transactions	and	top-level	block	headers	are	required	(i.e.	we	need	"shards	of	shards").
What	is	the	simplest	and	best	way	to	do	this?

However,	the	effect	of	a	transaction	may	depend	on	events	that	earlier	took	place	in	other	shards;	a
canonical	example	is	transfer	of	money,	where	money	can	be	moved	from	shard	i	to	shard	j	by	first
creating	a	"debit"	transaction	that	destroys	coins	in	shard	i,	and	then	creating	a	"credit"	transaction
that	creates	coins	in	shard	j,	pointing	to	a	receipt	created	by	the	debit	transaction	as	proof	that	the
credit	is	legitimate.

But	doesn't	the	CAP	theorem	mean	that	fully
secure	distributed	systems	are	impossible,
and	so	sharding	is	futile?
The	CAP	theorem	is	a	result	that	has	to	do	with	distributed	consensus;	a	simple	statement	is:	"in	the
cases	that	a	network	partition	takes	place,	you	have	to	choose	either	consistency	or	availability,	you
cannot	have	both".	The	intuitive	argument	is	simple:	if	the	network	splits	in	half,	and	in	one	half	I
send	a	transaction	"send	my	10	coins	to	A"	and	in	the	other	I	send	a	transaction	"send	my	10	coins	to
B",	then	either	the	system	is	unavailable,	as	one	or	both	transactions	will	not	be	processed,	or	it
becomes	inconsistent,	as	one	half	of	the	network	will	see	the	first	transaction	completed	and	the
other	half	will	see	the	second	transaction	completed.	Note	that	the	CAP	theorem	has	nothing	to	do
with	scalability;	it	applies	to	any	situation	where	multiple	nodes	need	to	agree	on	a	value,	regardless
of	the	amount	of	data	that	they	are	agreeing	on.	All	existing	decentralized	systems	have	found	some
compromise	between	availability	and	consistency;	sharding	does	not	make	anything	fundamentally
harder	in	this	respect.

What	are	the	security	models	that	we	are
operating	under?
There	are	several	competing	models	under	which	the	safety	of	blockchain	designs	is	evaluated:

Honest	majority	(or	honest	supermajority):	we	assume	that	there	is	some	set	of	validators	and
up	to	50%	(or	33%	or	25%)	of	those	validators	are	controlled	by	an	attacker,	and	the	remaining
validators	honestly	follow	the	protocol.	Honest	majority	models	can	have	non-adaptive	or
adaptive	adversaries;	an	adversary	is	adaptive	if	they	can	quickly	choose	which	portion	of	the
validator	set	to	"corrupt",	and	non-adaptive	if	they	can	only	make	that	choice	far	ahead	of	time.
Note	that	the	honest	majority	assumption	may	be	higher	for	notary	committees	with	a	61%
honesty	assumption.
Uncoordinated	majority:	we	assume	that	all	validators	are	rational	in	a	game-theoretic	sense
(except	the	attacker,	who	is	motivated	to	make	the	network	fail	in	some	way),	but	no	more	than
some	fraction	(often	between	25%	and	50%)	are	capable	of	coordinating	their	actions.
Coordinated	choice:	we	assume	that	most	or	all	validators	are	controlled	by	the	same	actor,	or
are	fully	capable	of	coordinating	on	the	economically	optimal	choice	between	themselves.	We
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can	talk	about	the	cost	to	the	coalition	(or	profit	to	the	coalition)	of	achieving	some
undesirable	outcome.
Bribing	attacker	model:	we	take	the	uncoordinated	majority	model,	but	instead	of	making	the
attacker	be	one	of	the	participants,	the	attacker	sits	outside	the	protocol,	and	has	the	ability	to
bribe	any	participants	to	change	their	behavior.	Attackers	are	modeled	as	having	a	budget,
which	is	the	maximum	that	they	are	willing	to	pay,	and	we	can	talk	about	their	cost,	the	amount
that	they	end	up	paying	to	disrupt	the	protocol	equilibrium.

Bitcoin	proof	of	work	with	Eyal	and	Sirer's	selfish	mining	fix	is	robust	up	to	50%	under	the	honest
majority	assumption,	and	up	to	~23.21%	under	the	uncoordinated	majority	assumption.
Schellingcoin	is	robust	up	to	50%	under	the	honest	majority	and	uncoordinated	majority
assumptions,	has	ε	(i.e.	slightly	more	than	zero)	cost	of	attack	in	a	coordinated	choice	model,	and	has
a	P	+	ε	budget	requirement	and	ε	cost	in	a	bribing	attacker	model	due	to	P	+	epsilon	attacks.

Hybrid	models	also	exist;	for	example,	even	in	the	coordinated	choice	and	bribing	attacker	models,	it
is	common	to	make	an	honest	minority	assumption	that	some	portion	(perhaps	1-15%)	of
validators	will	act	altruistically	regardless	of	incentives.	We	can	also	talk	about	coalitions	consisting
of	between	50-99%	of	validators	either	trying	to	disrupt	the	protocol	or	harm	other	validators;	for
example,	in	proof	of	work,	a	51%-sized	coalition	can	double	its	revenue	by	refusing	to	include	blocks
from	all	other	miners.

The	honest	majority	model	is	arguably	highly	unrealistic	and	has	already	been	empirically	disproven	-
see	Bitcoin's	SPV	mining	fork	for	a	practical	example.	It	proves	too	much:	for	example,	an	honest
majority	model	would	imply	that	honest	miners	are	willing	to	voluntarily	burn	their	own	money	if
doing	so	punishes	attackers	in	some	way.	The	uncoordinated	majority	assumption	may	be	realistic;
there	is	also	an	intermediate	model	where	the	majority	of	nodes	is	honest	but	has	a	budget,	so	they
shut	down	if	they	start	to	lose	too	much	money.

The	bribing	attacker	model	has	in	some	cases	been	criticized	as	being	unrealistically	adversarial,
although	its	proponents	argue	that	if	a	protocol	is	designed	with	the	bribing	attacker	model	in	mind
then	it	should	be	able	to	massively	reduce	the	cost	of	consensus,	as	51%	attacks	become	an	event
that	could	be	recovered	from.	We	will	evaluate	sharding	in	the	context	of	both	uncoordinated
majority	and	bribing	attacker	models.	Bribing	attacker	models	are	similar	to	maximally-adaptive
adversary	models,	except	that	the	adversary	has	the	additional	power	that	it	can	solicit	private
information	from	all	nodes;	this	distinction	can	be	crucial,	for	example	Algorand	is	secure	under
adaptive	adversary	models	but	not	bribing	attacker	models	because	of	how	it	relies	on	private
information	for	random	selection.

How	can	we	solve	the	single-shard	takeover
attack	in	an	uncoordinated	majority	model?
In	short,	random	sampling.	Each	shard	is	assigned	a	certain	number	of	notaries	(e.g.	150),	and	the
notaries	that	approve	collations	on	each	shard	are	taken	from	the	sample	for	that	shard.	Samples	can
be	reshuffled	either	semi-frequently	(e.g.	once	every	12	hours)	or	maximally	frequently	(i.e.	there	is
no	real	independent	sampling	process,	notaries	are	randomly	selected	for	each	shard	from	a	global
pool	every	block).

Sampling	can	be	explicit,	as	in	protocols	that	choose	specifically	sized	"committees"	and	ask	them	to
vote	on	the	validity	and	availability	of	specific	collations,	or	it	can	be	implicit,	as	in	the	case	of
"longest	chain"	protocols	where	nodes	pseudorandomly	assigned	to	build	on	specific	collations	and
are	expected	to	"windback	verify"	at	least	N	ancestors	of	the	collation	they	are	building	on.

The	result	is	that	even	though	only	a	few	nodes	are	verifying	and	creating	blocks	on	each	shard	at
any	given	time,	the	level	of	security	is	in	fact	not	much	lower,	in	an	honest	or	uncoordinated	majority
model,	than	what	it	would	be	if	every	single	node	was	verifying	and	creating	blocks.	The	reason	is
simple	statistics:	if	you	assume	a	~67%	honest	supermajority	on	the	global	set,	and	if	the	size	of	the
sample	is	150,	then	with	99.999%	probability	the	honest	majority	condition	will	be	satisfied	on	the
sample.	If	you	assume	a	75%	honest	supermajority	on	the	global	set,	then	that	probability	increases
to	99.999999998%	(see	here	for	calculation	details).

Hence,	at	least	in	the	honest	/	uncoordinated	majority	setting,	we	have:

Decentralization	(each	node	stores	only	O(c)	data,	as	it's	a	light	client	in	O(c)	shards	and	so
stores	O(1)	*	O(c)	=	O(c)	data	worth	of	block	headers,	as	well	as	O(c)	data	corresponding	to	the
recent	history	of	one	or	several	shards	that	it	is	assigned	to	at	the	present	time)
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Scalability	(with	O(c)	shards,	each	shard	having	O(c)	capacity,	the	maximum	capacity	is	n	=
O(c^2))
Security	(attackers	need	to	control	at	least	~33%	of	the	entire	O(n)-sized	validator	pool	in
order	to	stand	a	chance	of	taking	over	the	network).

In	the	bribing	attacker	model	(or	in	the	"very	very	adaptive	adversary"	model),	things	are	not	so	easy,
but	we	will	get	to	this	later.	Note	that	because	of	the	imperfections	of	sampling,	the	security
threshold	does	decrease	from	50%	to	~30-40%,	but	this	is	still	a	surprisingly	low	loss	of	security	for
what	may	be	a	100-1000x	gain	in	scalability	with	no	loss	of	decentralization.

How	do	you	actually	do	this	sampling	in	proof
of	work,	and	in	proof	of	stake?
In	proof	of	stake,	it	is	easy.	There	already	is	an	"active	validator	set"	that	is	kept	track	of	in	the	state,
and	one	can	simply	sample	from	this	set	directly.	Either	an	in-protocol	algorithm	runs	and	chooses
150	validators	for	each	shard,	or	each	validator	independently	runs	an	algorithm	that	uses	a	common
source	of	randomness	to	(provably)	determine	which	shard	they	are	at	any	given	time.	Note	that	it	is
very	important	that	the	sampling	assignment	is	"compulsory";	validators	do	not	have	a	choice	of	what
shard	they	go	into.	If	validators	could	choose,	then	attackers	with	small	total	stake	could	concentrate
their	stake	onto	one	shard	and	attack	it,	thereby	eliminating	the	system's	security.

In	proof	of	work,	it	is	more	difficult,	as	with	"direct"	proof	of	work	schemes	one	cannot	prevent
miners	from	applying	their	work	to	a	given	shard.	It	may	be	possible	to	use	proof-of-file-access	forms
of	proof	of	work	to	lock	individual	miners	to	individual	shards,	but	it	is	hard	to	ensure	that	miners
cannot	quickly	download	or	generate	data	that	can	be	used	for	other	shards	and	thus	circumvent
such	a	mechanism.	The	best	known	approach	is	through	a	technique	invented	by	Dominic	Williams
called	"puzzle	towers",	where	miners	first	perform	proof	of	work	on	a	common	chain,	which	then
inducts	them	into	a	proof	of	stake-style	validator	pool,	and	the	validator	pool	is	then	sampled	just	as
in	the	proof-of-stake	case.

One	possible	intermediate	route	might	look	as	follows.	Miners	can	spend	a	large	(O(c)-sized)	amount
of	work	to	create	a	new	"cryptographic	identity".	The	precise	value	of	the	proof	of	work	solution	then
chooses	which	shard	they	have	to	make	their	next	block	on.	They	can	then	spend	an	O(1)-sized
amount	of	work	to	create	a	block	on	that	shard,	and	the	value	of	that	proof	of	work	solution
determines	which	shard	they	can	work	on	next,	and	so	on8.	Note	that	all	of	these	approaches	make
proof	of	work	"stateful"	in	some	way;	the	necessity	of	this	is	fundamental.

How	is	the	randomness	for	random	sampling
generated?
First	of	all,	it	is	important	to	note	that	even	if	random	number	generation	is	heavily	exploitable,	this
is	not	a	fatal	flaw	for	the	protocol;	rather,	it	simply	means	that	there	is	a	medium	to	high
centralization	incentive.	The	reason	is	that	because	the	randomness	is	picking	fairly	large	samples,	it
is	difficult	to	bias	the	randomness	by	more	than	a	certain	amount.

The	simplest	way	to	show	this	is	through	the	binomial	distribution,	as	described	above;	if	one	wishes
to	avoid	a	sample	of	size	N	being	more	than	50%	corrupted	by	an	attacker,	and	an	attacker	has	p%	of
the	global	stake	pool,	the	chance	of	the	attacker	being	able	to	get	such	a	majority	during	one	round
is:

Here's	a	table	for	what	this	probability	would	look	like	in	practice	for	various	values	of	N	and	p:

<
N	=	50 N	=	100 N	=	150 N	=	250

p	=	0.4 0.0978 0.0271 0.0082 0.0009

p	=	0.33 0.0108 0.0004 1.83	*	10-5 3.98	*	10-8

p	=	0.25 0.0001 6.63	*	10-8 4.11	*	10-11 1.81	*	10-17
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p	=	0.2 2.09	*	10-6 2.14	*	10-11 2.50	*	10-16 3.96	*	10-26

Hence,	for	N	>=	150,	the	chance	that	any	given	random	seed	will	lead	to	a	sample	favoring	the
attacker	is	very	small	indeed11,12.	What	this	means	from	the	perspective	of	security	of	randomness	is
that	the	attacker	needs	to	have	a	very	large	amount	of	freedom	in	choosing	the	random	values	order
to	break	the	sampling	process	outright.	Most	vulnerabilities	in	proof-of-stake	randomness	do	not
allow	the	attacker	to	simply	choose	a	seed;	at	worst,	they	give	the	attacker	many	chances	to	select
the	most	favorable	seed	out	of	many	pseudorandomly	generated	options.	If	one	is	very	worried	about
this,	one	can	simply	set	N	to	a	greater	value,	and	add	a	moderately	hard	key-derivation	function	to
the	process	of	computing	the	randomness,	so	that	it	takes	more	than	2100	computational	steps	to	find
a	way	to	bias	the	randomness	sufficiently.

Now,	let's	look	at	the	risk	of	attacks	being	made	that	try	to	influence	the	randomness	more
marginally,	for	purposes	of	profit	rather	than	outright	takeover.	For	example,	suppose	that	there	is
an	algorithm	which	pseudorandomly	selects	1000	validators	out	of	some	very	large	set	(each
validator	getting	a	reward	of	$1),	an	attacker	has	10%	of	the	stake	so	the	attacker's	average	"honest"
revenue	100,	and	at	a	cost	of	$1	the	attacker	can	manipulate	the	randomness	to	"re-roll	the	dice"
(and	the	attacker	can	do	this	an	unlimited	number	of	times).

Due	to	the	central	limit	theorem,	the	standard	deviation	of	the	number	of	samples,	and	based	on
other	known	results	in	math	the	expected	maximum	of	N	random	samples	is	slightly	under	M	+	S	*
sqrt(2	*	log(N))	where	M	is	the	mean	and	S	is	the	standard	deviation.	Hence	the	reward	for
manipulating	the	randomness	and	effectively	re-rolling	the	dice	(i.e.	increasing	N)	drops	off	sharply,
e.g.	with	0	re-trials	your	expected	reward	is	$100,	with	one	re-trial	it's	$105.5,	with	two	it's	$108.5,
with	three	it's	$110.3,	with	four	it's	$111.6,	with	five	it's	$112.6	and	with	six	it's	$113.5.	Hence,	after
five	retrials	it	stops	being	worth	it.	As	a	result,	an	economically	motivated	attacker	with	ten	percent
of	stake	will	(socially	wastefully)	spend	$5	to	get	an	additional	revenue	of	$13,	for	a	net	surplus	of	$8.

However,	this	kind	of	logic	assumes	that	one	single	round	of	re-rolling	the	dice	is	expensive.	Many
older	proof	of	stake	algorithms	have	a	"stake	grinding"	vulnerability	where	re-rolling	the	dice	simply
means	making	a	computation	locally	on	one's	computer;	algorithms	with	this	vulnerability	are
certainly	unacceptable	in	a	sharding	context.	Newer	algorithms	(see	the	"validator	selection"	section
in	the	proof	of	stake	FAQ)	have	the	property	that	re-rolling	the	dice	can	only	be	done	by	voluntarily
giving	up	one's	spot	in	the	block	creation	process,	which	entails	giving	up	rewards	and	fees.	The	best
way	to	mitigate	the	impact	of	marginal	economically	motivated	attacks	on	sample	selection	is	to	find
ways	to	increase	this	cost.	One	method	to	increase	the	cost	by	a	factor	of	sqrt(N)	from	N	rounds	of
voting	is	the	majority-bit	method	devised	by	Iddo	Bentov.

Another	form	of	random	number	generation	that	is	not	exploitable	by	minority	coalitions	is	the
deterministic	threshold	signature	approach	most	researched	and	advocated	by	Dominic	Williams.
The	strategy	here	is	to	use	a	deterministic	threshold	signature	to	generate	the	random	seed	from
which	samples	are	selected.	Deterministic	threshold	signatures	have	the	property	that	the	value	is
guaranteed	to	be	the	same	regardless	of	which	of	a	given	set	of	participants	provides	their	data	to
the	algorithm,	provided	that	at	least	⅔	of	participants	do	participate	honestly.	This	approach	is	more
obviously	not	economically	exploitable	and	fully	resistant	to	all	forms	of	stake-grinding,	but	it	has
several	weaknesses:

It	relies	on	more	complex	cryptography	(specifically,	elliptic	curves	and	pairings).	Other
approaches	rely	on	nothing	but	the	random-oracle	assumption	for	common	hash	algorithms.
It	fails	when	many	validators	are	offline.	A	desired	goal	for	public	blockchains	is	to	be	able
to	survive	very	large	portions	of	the	network	simultaneously	disappearing,	as	long	as	a	majority
of	the	remaining	nodes	is	honest;	deterministic	threshold	signature	schemes	at	this	point	cannot
provide	this	property.
It's	not	secure	in	a	bribing	attacker	or	coordinated	majority	model	where	more	than	67%
of	validators	are	colluding.	The	other	approaches	described	in	the	proof	of	stake	FAQ	above	still
make	it	expensive	to	manipulate	the	randomness,	as	data	from	all	validators	is	mixed	into	the
seed	and	making	any	manipulation	requires	either	universal	collusion	or	excluding	other
validators	outright.

One	might	argue	that	the	deterministic	threshold	signature	approach	works	better	in	consistency-
favoring	contexts	and	other	approaches	work	better	in	availability-favoring	contexts.

What	are	the	tradeoffs	in	making	sampling
more	or	less	frequent?
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Selection	frequency	affects	just	how	adaptive	adversaries	can	be	for	the	protocol	to	still	be	secure
against	them;	for	example,	if	you	believe	that	an	adaptive	attack	(e.g.	dishonest	validators	who
discover	that	they	are	part	of	the	same	sample	banding	together	and	colluding)	can	happen	in	6
hours	but	not	less,	then	you	would	be	okay	with	a	sampling	time	of	4	hours	but	not	12	hours.	This	is
an	argument	in	favor	of	making	sampling	happen	as	quickly	as	possible.

The	main	challenge	with	sampling	taking	place	every	block	is	that	reshuffling	carries	a	very	high
amount	of	overhead.	Specifically,	verifying	a	block	on	a	shard	requires	knowing	the	state	of	that
shard,	and	so	every	time	validators	are	reshuffled,	validators	need	to	download	the	entire	state	for
the	new	shard(s)	that	they	are	in.	This	requires	both	a	strong	state	size	control	policy
(i.e.	economically	ensuring	that	the	size	of	the	state	does	not	grow	too	large,	whether	by	deleting	old
accounts,	restricting	the	rate	of	creating	new	accounts	or	a	combination	of	the	two)	and	a	fairly	long
reshuffling	time	to	work	well.

Currently,	the	Parity	client	can	download	and	verify	a	full	Ethereum	state	snapshot	via	"warp-sync"	in
~2-8	hours,	suggesting	that	reshuffling	periods	of	a	few	days	but	not	less	are	safe;	perhaps	this	could
be	reduced	somewhat	by	shrinking	the	state	size	via	storage	rent	but	even	still	reshuffling	periods
would	need	to	be	long,	potentially	making	the	system	vulnerable	to	adaptive	adversaries.

However,	there	are	ways	of	completely	avoiding	the	tradeoff,	choosing	the	creator	of	the	next
collation	in	each	shard	with	only	a	few	minutes	of	warning	but	without	adding	impossibly	high	state
downloading	overhead.	This	is	done	by	shifting	responsibility	for	state	storage,	and	possibly	even
state	execution,	away	from	collators	entirely,	and	instead	assigning	the	role	to	either	users	or	an
interactive	verification	protocol.

Can	we	force	more	of	the	state	to	be	held
user-side	so	that	transactions	can	be
validated	without	requiring	validators	to	hold
all	state	data?
See	also:	https://ethresear.ch/t/the-stateless-client-concept/172

The	techniques	here	tend	to	involve	requiring	users	to	store	state	data	and	provide	Merkle	proofs
along	with	every	transaction	that	they	send.	A	transaction	would	be	sent	along	with	a	Merkle	proof-
of-correct-execution	(or	"witness"),	and	this	proof	would	allow	a	node	that	only	has	the	state	root	to
calculate	the	new	state	root.	This	proof-of-correct-execution	would	consist	of	the	subset	of	objects	in
the	trie	that	would	need	to	be	traversed	to	access	and	verify	the	state	information	that	the
transaction	must	verify;	because	Merkle	proofs	are	O(log(n))	sized,	the	proof	for	a	transaction	that
accesses	a	constant	number	of	objects	would	also	be	O(log(n))	sized.

The	subset	of	objects	in	a	Merkle	tree	that	would	need	to	be	provided	in	a	Merkle	proof	of	a	transaction	that
accesses	several	state	objects

Implementing	this	scheme	in	its	pure	form	has	two	flaws.	First,	it	introduces	O(log(n))	overhead
(~10-30x	in	practice),	although	one	could	argue	that	this	O(log(n))	overhead	is	not	as	bad	as	it	seems
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because	it	ensures	that	the	validator	can	always	simply	keep	state	data	in	memory	and	thus	it	never
needs	to	deal	with	the	overhead	of	accessing	the	hard	drive9.	Second,	it	can	easily	be	applied	if	the
addresses	that	are	accessed	by	a	transaction	are	static,	but	is	more	difficult	to	apply	if	the	addresses
in	question	are	dynamic	-	that	is,	if	the	transaction	execution	has	code	of	the	form	read(f(read(x)))
where	the	address	of	some	state	read	depends	on	the	execution	result	of	some	other	state	read.	In
this	case,	the	address	that	the	transaction	sender	thinks	the	transaction	will	be	reading	at	the	time
that	they	send	the	transaction	may	well	differ	from	the	address	that	is	actually	read	when	the
transaction	is	included	in	a	block,	and	so	the	Merkle	proof	may	be	insufficient10.

This	can	be	solved	with	access	lists	(think:	a	list	of	accounts	and	subsets	of	storage	tries),	which
specify	statically	what	data	transactions	can	access,	so	when	a	miner	receives	a	transaction	with	a
witness	they	can	determine	that	the	witness	contains	all	of	the	data	the	transaction	could	possibly
access	or	modify.	However,	this	harms	censorship	resistance,	making	attacks	similar	in	form	to	the
attempted	DAO	soft	fork	possible.

Can	we	split	data	and	execution	so	that	we
get	the	security	from	rapid	shuffling	data
validation	without	the	overhead	of	shuffling
the	nodes	that	perform	state	execution?
Yes.	We	can	create	a	protocol	where	we	split	up	validators	into	three	roles	with	different	incentives
(so	that	the	incentives	do	not	overlap):	proposers	or	collators,	a.k.a.	prolators,	notaries	and
executors.	Prollators	are	responsible	for	simply	building	a	chain	of	collations;	while	notaries	verify
that	the	data	in	the	collations	is	available.	Prolators	do	not	need	to	verify	anything	state-dependent
(e.g.	whether	or	not	someone	trying	to	send	ETH	has	enough	money).	Executors	take	the	chain	of
collations	agreed	to	by	the	prolators	as	given,	and	then	execute	the	transactions	in	the	collations
sequentially	and	compute	the	state.	If	any	transaction	included	in	a	collation	is	invalid,	executors
simply	skip	over	it.	This	way,	validators	that	verify	availability	could	be	reshuffled	instantly,	and
executors	could	stay	on	one	shard.

There	would	be	a	light	client	protocol	that	allows	light	clients	to	determine	what	the	state	is	based	on
claims	signed	by	executors,	but	this	protocol	is	NOT	a	simple	majority-voting	consensus.	Rather,	the
protocol	is	an	interactive	game	with	some	similarities	to	Truebit,	where	if	there	is	great
disagreement	then	light	client	simply	execute	specific	collations	or	portions	of	collations	themselves.
Hence,	light	clients	can	get	a	correct	view	of	the	state	even	if	90%	of	the	executors	in	the	shard	are
corrupted,	making	it	much	safer	to	allow	executors	to	be	very	infrequently	reshuffled	or	even
permanently	shard-specific.

Choosing	what	goes	in	to	a	collation	does	require	knowing	the	state	of	that	collation,	as	that	is	the
most	practical	way	to	know	what	will	actually	pay	transaction	fees,	but	this	can	be	solved	by	further
separating	the	role	of	collators	(who	agree	on	the	history)	and	proposers	(who	propose	individual
collations)	and	creating	a	market	between	the	two	classes	of	actors;	see	here	for	more	discussion	on
this.	However,	this	approach	has	since	been	found	to	be	flawed	as	per	this	analysis.

Can	SNARKs	and	STARKs	help?
Yes!	One	can	create	a	second-level	protocol	where	a	SNARK,	STARK	or	similar	succinct	zero
knowledge	proof	scheme	is	used	to	prove	the	state	root	of	a	shard	chain,	and	proof	creators	can	be
rewarded	for	this.	That	said,	shard	chains	to	actually	agree	on	what	data	gets	included	into	the	shard
chains	in	the	first	place	is	still	required.

How	can	we	facilitate	cross-shard
communication?
The	easiest	scenario	to	satisfy	is	one	where	there	are	very	many	applications	that	individually	do	not
have	too	many	users,	and	which	only	very	occasionally	and	loosely	interact	with	each	other;	in	this
case,	applications	can	live	on	separate	shards	and	use	cross-shard	communication	via	receipts	to	talk
to	each	other.
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This	typically	involves	breaking	up	each	transaction	into	a	"debit"	and	a	"credit".	For	example,
suppose	that	we	have	a	transaction	where	account	A	on	shard	M	wishes	to	send	100	coins	to	account
B	on	shard	N.	The	steps	would	looks	as	follows:

1.	 Send	a	transaction	on	shard	M	which	(i)	deducts	the	balance	of	A	by	100	coins,	and	(ii)	creates	a
receipt.	A	receipt	is	an	object	which	is	not	saved	in	the	state	directly,	but	where	the	fact	that	the
receipt	was	generated	can	be	verified	via	a	Merkle	proof.

2.	 Wait	for	the	first	transaction	to	be	included	(sometimes	waiting	for	finalization	is	required;	this
depends	on	the	system).

3.	 Send	a	transaction	on	shard	N	which	includes	the	Merkle	proof	of	the	receipt	from	(1).	This
transaction	also	checks	in	the	state	of	shard	N	to	make	sure	that	this	receipt	is	"unspent";	if	it	is,
then	it	increases	the	balance	of	B	by	100	coins,	and	saves	in	the	state	that	the	receipt	is	spent.

4.	 Optionally,	the	transaction	in	(3)	also	saves	a	receipt,	which	can	then	be	used	to	perform	further
actions	on	shard	M	that	are	contingent	on	the	original	operation	succeeding.

In	more	complex	forms	of	sharding,	transactions	may	in	some	cases	have	effects	that	spread	out
across	several	shards	and	may	also	synchronously	ask	for	data	from	the	state	of	multiple	shards.

What	is	the	train-and-hotel	problem?
The	following	example	is	courtesy	of	Andrew	Miller.	Suppose	that	a	user	wants	to	purchase	a	train
ticket	and	reserve	a	hotel,	and	wants	to	make	sure	that	the	operation	is	atomic	-	either	both
reservations	succeed	or	neither	do.	If	the	train	ticket	and	hotel	booking	applications	are	on	the	same
shard,	this	is	easy:	create	a	transaction	that	attempts	to	make	both	reservations,	and	throws	an
exception	and	reverts	everything	unless	both	reservations	succeed.	If	the	two	are	on	different	shards,
however,	this	is	not	so	easy;	even	without	cryptoeconomic	/	decentralization	concerns,	this	is
essentially	the	problem	of	atomic	database	transactions.

With	asynchronous	messages	only,	the	simplest	solution	is	to	first	reserve	the	train,	then	reserve	the
hotel,	then	once	both	reservations	succeed	confirm	both;	the	reservation	mechanism	would	prevent
anyone	else	from	reserving	(or	at	least	would	ensure	that	enough	spots	are	open	to	allow	all
reservations	to	be	confirmed)	for	some	period	of	time.	However,	this	means	that	the	mechanism
relies	on	an	extra	security	assumptions:	that	cross-shard	messages	from	one	shard	can	get	included
in	another	shard	within	some	fixed	period	of	time.

With	cross-shard	synchronous	transactions,	the	problem	is	easier,	but	the	challenge	of	creating	a
sharding	solution	capable	of	making	cross-shard	atomic	synchronous	transactions	is	itself	decidedly
nontrivial;	see	Vlad	Zamfir's	presentation	which	talks	about	merge	blocks.
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Another	solution	involves	making	contracts	themselves	movable	across	shards;	see	the	proposed
cross-shard	locking	scheme	as	well	as	this	proposal	where	contracts	can	be	"yanked"	from	one	shard
to	another,	allowing	two	contracts	that	normally	reside	on	different	shards	to	be	temporarily	moved
to	the	same	shard	at	which	point	a	synchronous	operation	between	them	can	happen.

What	are	the	concerns	about	sharding
through	random	sampling	in	a	bribing
attacker	or	coordinated	choice	model?
In	a	bribing	attacker	or	coordinated	choice	model,	the	fact	that	validators	are	randomly	sampled
doesn't	matter:	whatever	the	sample	is,	either	the	attacker	can	bribe	the	great	majority	of	the	sample
to	do	as	the	attacker	pleases,	or	the	attacker	controls	a	majority	of	the	sample	directly	and	can	direct
the	sample	to	perform	arbitrary	actions	at	low	cost	(O(c)	cost,	to	be	precise).

At	that	point,	the	attacker	has	the	ability	to	conduct	51%	attacks	against	that	sample.	The	threat	is
further	magnified	because	there	is	a	risk	of	cross-shard	contagion:	if	the	attacker	corrupts	the	state
of	a	shard,	the	attacker	can	then	start	to	send	unlimited	quantities	of	funds	out	to	other	shards	and
perform	other	cross-shard	mischief.	All	in	all,	security	in	the	bribing	attacker	or	coordinated	choice
model	is	not	much	better	than	that	of	simply	creating	O(c)	altcoins.

How	can	we	improve	on	this?
In	the	context	of	state	execution,	we	can	use	interactive	verification	protocols	that	are	not	randomly
sampled	majority	votes,	and	that	can	give	correct	answers	even	if	90%	of	the	participants	are	faulty;
see	Truebit	for	an	example	of	how	this	can	be	done.	For	data	availability,	the	problem	is	harder,
though	there	are	several	strategies	that	can	be	used	alongside	majority	votes	to	solve	it.

What	is	the	data	availability	problem,	and
how	can	we	use	erasure	codes	to	solve	it?
See	https://github.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-coding

Can	we	remove	the	need	to	solve	data
availability	with	some	kind	of	fancy
cryptographic	accumulator	scheme?
No.	Suppose	there	is	a	scheme	where	there	exists	an	object	S	representing	the	state	(S	could
possibly	be	a	hash)	possibly	as	well	as	auxiliary	information	("witnesses")	held	by	individual	users
that	can	prove	the	presence	of	existing	state	objects	(e.g.	S	is	a	Merkle	root,	the	witnesses	are	the
branches,	though	other	constructions	like	RSA	accumulators	do	exist).	There	exists	an	updating
protocol	where	some	data	is	broadcasted,	and	this	data	changes	S	to	change	the	contents	of	the
state,	and	also	possibly	changes	witnesses.

Suppose	some	user	has	the	witnesses	for	a	set	of	N	objects	in	the	state,	and	M	of	the	objects	are
updated.	After	receiving	the	update	information,	the	user	can	check	the	new	status	of	all	N	objects,
and	thereby	see	which	M	were	updated.	Hence,	the	update	information	itself	encoded	at	least	~M	*
log(N)	bits	of	information.	Hence,	the	update	information	that	everyone	needs	for	receive	to
implement	the	effect	of	M	transactions	must	necessarily	be	of	size	O(M).	14

So	this	means	that	we	can	actually	create
scalable	sharded	blockchains	where	the	cost
of	making	anything	bad	happen	is
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proportional	to	the	size	of	the	entire	validator
set?
There	is	one	trivial	attack	by	which	an	attacker	can	always	burn	O(c)	capital	to	temporarily	reduce
the	quality	of	a	shard:	spam	it	by	sending	transactions	with	high	transaction	fees,	forcing	legitimate
users	to	outbid	you	to	get	in.	This	attack	is	unavoidable;	you	could	compensate	with	flexible	gas
limits,	and	you	could	even	try	"transparent	sharding"	schemes	that	try	to	automatically	re-allocate
nodes	to	shards	based	on	usage,	but	if	some	particular	application	is	non-parallelizable,	Amdahl's	law
guarantees	that	there	is	nothing	you	can	do.	The	attack	that	is	opened	up	here	(reminder:	it	only
works	in	the	Zamfir	model,	not	honest/uncoordinated	majority)	is	arguably	not	substantially	worse
than	the	transaction	spam	attack.	Hence,	we've	reached	the	known	limit	for	the	security	of	a	single
shard,	and	there	is	no	value	in	trying	to	go	further.

Let's	walk	back	a	bit.	Do	we	actually	need	any
of	this	complexity	if	we	have	instant
shuffling?	Doesn't	instant	shuffling	basically
mean	that	each	shard	directly	pulls	validators
from	the	global	validator	pool	so	it	operates
just	like	a	blockchain,	and	so	sharding
doesn't	actually	introduce	any	new
complexities?
Kind	of.	First	of	all,	it's	worth	noting	that	proof	of	work	and	simple	proof	of	stake,	even	without
sharding,	both	have	very	low	security	in	a	bribing	attacker	model;	a	block	is	only	truly	"finalized"	in
the	economic	sense	after	O(n)	time	(as	if	only	a	few	blocks	have	passed,	then	the	economic	cost	of
replacing	the	chain	is	simply	the	cost	of	starting	a	double-spend	from	before	the	block	in	question).
Casper	solves	this	problem	by	adding	its	finality	mechanism,	so	that	the	economic	security	margin
immediately	increases	to	the	maximum.	In	a	sharded	chain,	if	we	want	economic	finality	then	we
need	to	come	up	with	a	chain	of	reasoning	for	why	a	validator	would	be	willing	to	make	a	very	strong
claim	on	a	chain	based	solely	on	a	random	sample,	when	the	validator	itself	is	convinced	that	the
bribing	attacker	and	coordinated	choice	models	may	be	true	and	so	the	random	sample	could
potentially	be	corrupted.

You	mentioned	transparent	sharding.	I'm	12
years	old	and	what	is	this?
Basically,	we	do	not	expose	the	concept	of	"shards"	directly	to	developers,	and	do	not	permanently
assign	state	objects	to	specific	shards.	Instead,	the	protocol	has	an	ongoing	built-in	load-balancing
process	that	shifts	objects	around	between	shards.	If	a	shard	gets	too	big	or	consumes	too	much	gas
it	can	be	split	in	half;	if	two	shards	get	too	small	and	talk	to	each	other	very	often	they	can	be
combined	together;	if	all	shards	get	too	small	one	shard	can	be	deleted	and	its	contents	moved	to
various	other	shards,	etc.

Imagine	if	Donald	Trump	realized	that	people	travel	between	New	York	and	London	a	lot,	but	there's
an	ocean	in	the	way,	so	he	could	just	take	out	his	scissors,	cut	out	the	ocean,	glue	the	US	east	coast
and	Western	Europe	together	and	put	the	Atlantic	beside	the	South	Pole	-	it's	kind	of	like	that.

What	are	some	advantages	and	disadvantages
of	this?

Developers	no	longer	need	to	think	about	shards



There's	the	possibility	for	shards	to	adjust	manually	to	changes	in	gas	prices,	rather	than	relying
on	market	mechanics	to	increase	gas	prices	in	some	shards	more	than	others
There	is	no	longer	a	notion	of	reliable	co-placement:	if	two	contracts	are	put	into	the	same	shard
so	that	they	can	interact	with	each	other,	shard	changes	may	well	end	up	separating	them
More	protocol	complexity

The	co-placement	problem	can	be	mitigated	by	introducing	a	notion	of	"sequential	domains",	where
contracts	may	specify	that	they	exist	in	the	same	sequential	domain,	in	which	case	synchronous
communication	between	them	will	always	be	possible.	In	this	model	a	shard	can	be	viewed	as	a	set	of
sequential	domains	that	are	validated	together,	and	where	sequential	domains	can	be	rebalanced
between	shards	if	the	protocol	determines	that	it	is	efficient	to	do	so.

How	would	synchronous	cross-shard
messages	work?
The	process	becomes	much	easier	if	you	view	the	transaction	history	as	being	already	settled,	and
are	simply	trying	to	calculate	the	state	transition	function.	There	are	several	approaches;	one	fairly
simple	approach	can	be	described	as	follows:

A	transaction	may	specify	a	set	of	shards	that	it	can	operate	in
In	order	for	the	transaction	to	be	effective,	it	must	be	included	at	the	same	block	height	in	all	of
these	shards.
Transactions	within	a	block	must	be	put	in	order	of	their	hash	(this	ensures	a	canonical	order	of
execution)

A	client	on	shard	X,	if	it	sees	a	transaction	with	shards	(X,	Y),	requests	a	Merkle	proof	from	shard	Y
verifying	(i)	the	presence	of	that	transaction	on	shard	Y,	and	(ii)	what	the	pre-state	on	shard	Y	is	for
those	bits	of	data	that	the	transaction	will	need	to	access.	It	then	executes	the	transaction	and
commits	to	the	execution	result.	Note	that	this	process	may	be	highly	inefficient	if	there	are	many
transactions	with	many	different	"block	pairings"	in	each	block;	for	this	reason,	it	may	be	optimal	to
simply	require	blocks	to	specify	sister	shards,	and	then	calculation	can	be	done	more	efficiently	at	a
per-block	level.	This	is	the	basis	for	how	such	a	scheme	could	work;	one	could	imagine	more	complex
designs.	However,	when	making	a	new	design,	it's	always	important	to	make	sure	that	low-cost
denial	of	service	attacks	cannot	arbitrarily	slow	state	calculation	down.

What	about	semi-asynchronous	messages?
Vlad	Zamfir	created	a	scheme	by	which	asynchronous	messages	could	still	solve	the	"book	a	train
and	hotel"	problem.	This	works	as	follows.	The	state	keeps	track	of	all	operations	that	have	been
recently	made,	as	well	as	the	graph	of	which	operations	were	triggered	by	any	given	operation
(including	cross-shard	operations).	If	an	operation	is	reverted,	then	a	receipt	is	created	which	can
then	be	used	to	revert	any	effect	of	that	operation	on	other	shards;	those	reverts	may	then	trigger
their	own	reverts	and	so	forth.	The	argument	is	that	if	one	biases	the	system	so	that	revert	messages
can	propagate	twice	as	fast	as	other	kinds	of	messages,	then	a	complex	cross-shard	transaction	that
finishes	executing	in	K	rounds	can	be	fully	reverted	in	another	K	rounds.

The	overhead	that	this	scheme	would	introduce	has	arguably	not	been	sufficiently	studied;	there	may
be	worst-case	scenarios	that	trigger	quadratic	execution	vulnerabilities.	It	is	clear	that	if	transactions
have	effects	that	are	more	isolated	from	each	other,	the	overhead	of	this	mechanism	is	lower;
perhaps	isolated	executions	can	be	incentivized	via	favorable	gas	cost	rules.	All	in	all,	this	is	one	of
the	more	promising	research	directions	for	advanced	sharding.

What	are	guaranteed	cross-shard	calls?
One	of	the	challenges	in	sharding	is	that	when	a	call	is	made,	there	is	by	default	no	hard	protocol-
provided	guarantee	that	any	asynchronous	operations	created	by	that	call	will	be	made	within	any
particular	timeframe,	or	even	made	at	all;	rather,	it	is	up	to	some	party	to	send	a	transaction	in	the
destination	shard	triggering	the	receipt.	This	is	okay	for	many	applications,	but	in	some	cases	it	may
be	problematic	for	several	reasons:

There	may	be	no	single	party	that	is	clearly	incentivized	to	trigger	a	given	receipt.	If	the	sending
of	a	transaction	benefits	many	parties,	then	there	could	be	tragedy-of-the-commons	effects



where	the	parties	try	to	wait	longer	until	someone	else	sends	the	transaction	(i.e.	play
"chicken"),	or	simply	decide	that	sending	the	transaction	is	not	worth	the	transaction	fees	for
them	individually.
Gas	prices	across	shards	may	be	volatile,	and	in	some	cases	performing	the	first	half	of	an
operation	compels	the	user	to	"follow	through"	on	it,	but	the	user	may	have	to	end	up	following
through	at	a	much	higher	gas	price.	This	may	be	exacerbated	by	DoS	attacks	and	related	forms
of	griefing.
Some	applications	rely	on	there	being	an	upper	bound	on	the	"latency"	of	cross-shard	messages
(e.g.	the	train-and-hotel	example).	Lacking	hard	guarantees,	such	applications	would	have	to
have	inefficiently	large	safety	margins.

One	could	try	to	come	up	with	a	system	where	asynchronous	messages	made	in	some	shard
automatically	trigger	effects	in	their	destination	shard	after	some	number	of	blocks.	However,	this
requires	every	client	on	each	shard	to	actively	inspect	all	other	shards	in	the	process	of	calculating
the	state	transition	function,	which	is	arguably	a	source	of	inefficiency.	The	best	known	compromise
approach	is	this:	when	a	receipt	from	shard	A	at	height	height_a	is	included	in	shard	B	at	height
height_b,	if	the	difference	in	block	heights	exceeds	MAX_HEIGHT,	then	all	validators	in	shard	B	that
created	blocks	from	height_a	+	MAX_HEIGHT	+	1	to	height_b	-	1	are	penalized,	and	this	penalty
increases	exponentially.	A	portion	of	these	penalties	is	given	to	the	validator	that	finally	includes	the
block	as	a	reward.	This	keeps	the	state	transition	function	simple,	while	still	strongly	incentivizing
the	correct	behavior.

Wait,	but	what	if	an	attacker	sends	a	cross-
shard	call	from	every	shard	into	shard	X	at
the	same	time?	Wouldn't	it	be	mathematically
impossible	to	include	all	of	these	calls	in
time?
Correct;	this	is	a	problem.	Here	is	a	proposed	solution.	In	order	to	make	a	cross-shard	call	from
shard	A	to	shard	B,	the	caller	must	pre-purchase	"congealed	shard	B	gas"	(this	is	done	via	a
transaction	in	shard	B,	and	recorded	in	shard	B).	Congealed	shard	B	gas	has	a	fast	demurrage	rate:
once	ordered,	it	loses	1/k	of	its	remaining	potency	every	block.	A	transaction	on	shard	A	can	then
send	the	congealed	shard	B	gas	along	with	the	receipt	that	it	creates,	and	it	can	be	used	on	shard	B
for	free.	Shard	B	blocks	allocate	extra	gas	space	specifically	for	these	kinds	of	transactions.	Note	that
because	of	the	demurrage	rules,	there	can	be	at	most	GAS_LIMIT	*	k	worth	of	congealed	gas	for	a
given	shard	available	at	any	time,	which	can	certainly	be	filled	within	k	blocks	(in	fact,	even	faster
due	to	demurrage,	but	we	may	need	this	slack	space	due	to	malicious	validators).	In	case	too	many
validators	maliciously	fail	to	include	receipts,	we	can	make	the	penalties	fairer	by	exempting
validators	who	fill	up	the	"receipt	space"	of	their	blocks	with	as	many	receipts	as	possible,	starting
with	the	oldest	ones.

Under	this	pre-purchase	mechanism,	a	user	that	wants	to	perform	a	cross-shard	operation	would	first
pre-purchase	gas	for	all	shards	that	the	operation	would	go	into,	over-purchasing	to	take	into
account	the	demurrage.	If	the	operation	would	create	a	receipt	that	triggers	an	operation	that
consumes	100000	gas	in	shard	B,	the	user	would	pre-buy	100000	*	e	(i.e.	271818)	shard-B	congealed
gas.	If	that	operation	would	in	turn	spend	100000	gas	in	shard	C	(i.e.	two	levels	of	indirection),	the
user	would	need	to	pre-buy	100000	*	e^2	(i.e.	738906)	shard-C	congealed	gas.	Notice	how	once	the
purchases	are	confirmed,	and	the	user	starts	the	main	operation,	the	user	can	be	confident	that	they
will	be	insulated	from	changes	in	the	gas	price	market,	unless	validators	voluntarily	lose	large
quantities	of	money	from	receipt	non-inclusion	penalties.

Congealed	gas?	This	sounds	interesting	for
not	just	cross-shard	operations,	but	also
reliable	intra-shard	scheduling
Indeed;	you	could	buy	congealed	shard	A	gas	inside	of	shard	A,	and	send	a	guaranteed	cross-shard
call	from	shard	A	to	itself.	Though	note	that	this	scheme	would	only	support	scheduling	at	very	short
time	intervals,	and	the	scheduling	would	not	be	exact	to	the	block;	it	would	only	be	guaranteed	to



happen	within	some	period	of	time.

Does	guaranteed	scheduling,	both	intra-
shard	and	cross-shard,	help	against	majority
collusions	trying	to	censor	transactions?
Yes.	If	a	user	fails	to	get	a	transaction	in	because	colluding	validators	are	filtering	the	transaction
and	not	accepting	any	blocks	that	include	it,	then	the	user	could	send	a	series	of	messages	which
trigger	a	chain	of	guaranteed	scheduled	messages,	the	last	of	which	reconstructs	the	transaction
inside	of	the	EVM	and	executes	it.	Preventing	such	circumvention	techniques	is	practically
impossible	without	shutting	down	the	guaranteed	scheduling	feature	outright	and	greatly	restricting
the	entire	protocol,	and	so	malicious	validators	would	not	be	able	to	do	it	easily.

Could	sharded	blockchains	do	a	better	job	of
dealing	with	network	partitions?
The	schemes	described	in	this	document	would	offer	no	improvement	over	non-sharded	blockchains;
realistically,	every	shard	would	end	up	with	some	nodes	on	both	sides	of	the	partition.	There	have
been	calls	(e.g.	from	IPFS's	Juan	Benet)	for	building	scalable	networks	with	the	specific	goal	that
networks	can	split	up	into	shards	as	needed	and	thus	continue	operating	as	much	as	possible	under
network	partition	conditions,	but	there	are	nontrivial	cryptoeconomic	challenges	in	making	this	work
well.

One	major	challenge	is	that	if	we	want	to	have	location-based	sharding	so	that	geographic	network
partitions	minimally	hinder	intra-shard	cohesion	(with	the	side	effect	of	having	very	low	intra-shard
latencies	and	hence	very	fast	intra-shard	block	times),	then	we	need	to	have	a	way	for	validators	to
choose	which	shards	they	are	participating	in.	This	is	dangerous,	because	it	allows	for	much	larger
classes	of	attacks	in	the	honest/uncoordinated	majority	model,	and	hence	cheaper	attacks	with
higher	griefing	factors	in	the	Zamfir	model.	Sharding	for	geographic	partition	safety	and	sharding	via
random	sampling	for	efficiency	are	two	fundamentally	different	things.

Second,	more	thinking	would	need	to	go	into	how	applications	are	organized.	A	likely	model	in	a
sharded	blockchain	as	described	above	is	for	each	"app"	to	be	on	some	shard	(at	least	for	small-scale
apps);	however,	if	we	want	the	apps	themselves	to	be	partition-resistant,	then	it	means	that	all	apps
would	need	to	be	cross-shard	to	some	extent.

One	possible	route	to	solving	this	is	to	create	a	platform	that	offers	both	kinds	of	shards	-	some
shards	would	be	higher-security	"global"	shards	that	are	randomly	sampled,	and	other	shards	would
be	lower-security	"local"	shards	that	could	have	properties	such	as	ultra-fast	block	times	and	cheaper
transaction	fees.	Very	low-security	shards	could	even	be	used	for	data-publishing	and	messaging.

What	are	the	unique	challenges	of	pushing
scaling	past	n	=	O(c^2)?
There	are	several	considerations.	First,	the	algorithm	would	need	to	be	converted	from	a	two-layer
algorithm	to	a	stackable	n-layer	algorithm;	this	is	possible,	but	is	complex.	Second,	n	/	c	(i.e.	the	ratio
between	the	total	computation	load	of	the	network	and	the	capacity	of	one	node)	is	a	value	that
happens	to	be	close	to	two	constants:	first,	if	measured	in	blocks,	a	timespan	of	several	hours,	which
is	an	acceptable	"maximum	security	confirmation	time",	and	second,	the	ratio	between	rewards	and
deposits	(an	early	computation	suggests	a	32	ETH	deposit	size	and	a	0.05	ETH	block	reward	for
Casper).	The	latter	has	the	consequence	that	if	rewards	and	penalties	on	a	shard	are	escalated	to	be
on	the	scale	of	validator	deposits,	the	cost	of	continuing	an	attack	on	a	shard	will	be	O(n)	in	size.

Going	above	c^2	would	likely	entail	further	weakening	the	kinds	of	security	guarantees	that	a	system
can	provide,	and	allowing	attackers	to	attack	individual	shards	in	certain	ways	for	extended	periods
of	time	at	medium	cost,	although	it	should	still	be	possible	to	prevent	invalid	state	from	being
finalized	and	to	prevent	finalized	state	from	being	reverted	unless	attackers	are	willing	to	pay	an
O(n)	cost.	However,	the	rewards	are	large	-	a	super-quadratically	sharded	blockchain	could	be	used
as	a	general-purpose	tool	for	nearly	all	decentralized	applications,	and	could	sustain	transaction	fees

https://www.youtube.com/watch?v=cU-n_m-snxQ


that	makes	its	use	virtually	free.

What	about	heterogeneous	sharding?
Abstracting	the	execution	engine	or	allowing	multiple	execution	engines	to	exist	results	in	being	able
to	have	a	different	execution	engine	for	each	shard.	Due	to	Casper	CBC	being	able	to	explore	the	full
tradeoff	triangle,	it	is	possible	to	alter	the	parameters	of	the	consensus	engine	for	each	shard	to	be
at	any	point	of	the	triangle.	However,	CBC	Casper	has	not	been	implemented	yet,	and	heterogeneous
sharding	is	nothing	more	than	an	idea	at	this	stage;	the	specifics	of	how	it	would	work	has	not	been
designed	nor	implemented.	Some	shards	could	be	optimized	to	have	fast	finality	and	high
throughput,	which	is	important	for	applications	such	as	EFTPOS	transactions,	while	maybe	most
could	have	a	moderate	or	reasonable	amount	each	of	finality,	throughput	and	decentralization
(number	of	validating	nodes),	and	applications	that	are	prone	to	a	high	fault	rate	and	thus	require
high	security,	such	as	torrent	networks,	privacy	focused	email	like	Proton	mail,	etc.,	could	optimize
for	a	high	decentralization,	low	finality	and	high	throughput,	etc.	See	also
https://twitter.com/VladZamfir/status/932320997021171712	and
https://ethresear.ch/t/heterogeneous-sharding/1979/2.

Footnotes
1.	 	Merklix	tree	==	Merkle	Patricia	tree

2.	 	Later	proposals	from	the	NUS	group	do	manage	to	shard	state;	they	do	this	via	the	receipt	and
state-compacting	techniques	that	I	describe	in	later	sections	in	this	document.	(This	is	Vitalik
Buterin	writing	as	the	creator	of	this	Wiki.)

3.	 	There	are	reasons	to	be	conservative	here.	Particularly,	note	that	if	an	attacker	comes	up	with
worst-case	transactions	whose	ratio	between	processing	time	and	block	space	expenditure
(bytes,	gas,	etc)	is	much	higher	than	usual,	then	the	system	will	experience	very	low
performance,	and	so	a	safety	factor	is	necessary	to	account	for	this	possibility.	In	traditional
blockchains,	the	fact	that	block	processing	only	takes	~1-5%	of	block	time	has	the	primary	role
of	protecting	against	centralization	risk	but	serves	double	duty	of	protecting	against	denial	of
service	risk.	In	the	specific	case	of	Bitcoin,	its	current	worst-case	known	quadratic	execution
vulnerability	arguably	limits	any	scaling	at	present	to	~5-10x,	and	in	the	case	of	Ethereum,
while	all	known	vulnerabilities	are	being	or	have	been	removed	after	the	denial-of-service
attacks,	there	is	still	a	risk	of	further	discrepancies	particularly	on	a	smaller	scale.	In	Bitcoin
NG,	the	need	for	the	former	is	removed,	but	the	need	for	the	latter	is	still	there.

4.	 	A	further	reason	to	be	cautious	is	that	increased	state	size	corresponds	to	reduced	throughput,
as	nodes	will	find	it	harder	and	harder	to	keep	state	data	in	RAM	and	so	need	more	and	more
disk	accesses,	and	databases,	which	often	have	an	O(log(n))	access	time,	will	take	longer	and
longer	to	access.	This	was	an	important	lesson	from	the	last	Ethereum	denial-of-service	attack,
which	bloated	the	state	by	~10	GB	by	creating	empty	accounts	and	thereby	indirectly	slowed
processing	down	by	forcing	further	state	accesses	to	hit	disk	instead	of	RAM.

5.	 	In	sharded	blockchains,	there	may	not	necessarily	be	in-lockstep	consensus	on	a	single	global
state,	and	so	the	protocol	never	asks	nodes	to	try	to	compute	a	global	state	root;	in	fact,	in	the
protocols	presented	in	later	sections,	each	shard	has	its	own	state,	and	for	each	shard	there	is	a
mechanism	for	committing	to	the	state	root	for	that	shard,	which	represents	that	shard's	state

6.	 	#MEGA

7.	 	If	a	non-scalable	blockchain	upgrades	into	a	scalable	blockchain,	the	author's	recommended
path	is	that	the	old	chain's	state	should	simply	become	a	single	shard	in	the	new	chain.

8.	 	For	this	to	be	secure,	some	further	conditions	must	be	satisfied;	particularly,	the	proof	of	work
must	be	non-outsourceable	in	order	to	prevent	the	attacker	from	determining	which	other
miners'	identities	are	available	for	some	given	shard	and	mining	on	top	of	those.

9.	 	Recent	Ethereum	denial-of-service	attacks	have	proven	that	hard	drive	access	is	a	primary
bottleneck	to	blockchain	scalability.

10.	 	You	could	ask:	well	why	don't	validators	fetch	Merkle	proofs	just-in-time?	Answer:	because
doing	so	is	a	~100-1000ms	roundtrip,	and	executing	an	entire	complex	transaction	within	that
time	could	be	prohibitive.

https://github.com/ethereum/cbc-casper/wiki/FAQ#what-is-the-tradeoff-triangle
https://bitcoin.org/en/bitcoin-core/capacity-increases-faq#size-bump


11.	 	One	hybrid	solution	that	combines	the	normal-case	efficiency	of	small	samples	with	the	greater
robustness	of	larger	samples	is	a	multi-layered	sampling	scheme:	have	a	consensus	between	50
nodes	that	requires	80%	agreement	to	move	forward,	and	then	only	if	that	consensus	fails	to	be
reached	then	fall	back	to	a	250-node	sample.	N	=	50	with	an	80%	threshold	has	only	a	8.92	*	10-
9	failure	rate	even	against	attackers	with	p	=	0.4,	so	this	does	not	harm	security	at	all	under	an
honest	or	uncoordinated	majority	model.

12.	 	The	probabilities	given	are	for	one	single	shard;	however,	the	random	seed	affects	O(c)	shards
and	the	attacker	could	potentially	take	over	any	one	of	them.	If	we	want	to	look	at	O(c)	shards
simultaneously,	then	there	are	two	cases.	First,	if	the	grinding	process	is	computationally
bounded,	then	this	fact	does	not	change	the	calculus	at	all,	as	even	though	there	are	now	O(c)
chances	of	success	per	round,	checking	success	takes	O(c)	times	as	much	work.	Second,	if	the
grinding	process	is	economically	bounded,	then	this	indeed	calls	for	somewhat	higher	safety
factors	(increasing	N	by	10-20	should	be	sufficient)	although	it's	important	to	note	that	the	goal
of	an	attacker	in	a	profit-motivated	manipulation	attack	is	to	increase	their	participation	across
all	shards	in	any	case,	and	so	that	is	the	case	that	we	are	already	investigating.

13.	 	See	Parity's	Polkadotpaper	for	further	description	of	how	their	"fishermen"	concept	works.	For
up-to-date	info	and	code	for	Polkadot,	see	here.

14.	 	Thanks	to	Justin	Drake	for	pointing	me	to	cryptographic	accumulators,	as	well	as	this	paper
that	gives	the	argument	for	the	impossibility	of	sublinear	batching.	See	also	this	thread:
https://ethresear.ch/t/accumulators-scalability-of-utxo-blockchains-and-data-availability/176

Further	reading	related	to	sharding,	and	more	generally	scalability	and	research,	is	available	here
and	here.

https://github.com/polkadot-io/polkadotpaper/raw/master/PolkaDotPaper.pdf
https://github.com/paritytech/polkadot
https://eprint.iacr.org/2009/612.pdf
https://github.com/ethereum/wiki/wiki/Sharding-introduction-R&D-compendium
https://github.com/ethereum/wiki/wiki/R&D
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Notes	on	Blockchain	Governance

In	which	I	argue	that	"tightly	coupled"	on-chain	voting	is	overrated,	the	status	quo	of	"informal	governance"	as
practiced	by	Bitcoin,	Bitcoin	Cash,	Ethereum,	Zcash	and	similar	systems	is	much	less	bad	than	commonly	thought,
that	people	who	think	that	the	purpose	of	blockchains	is	to	completely	expunge	soft	mushy	human	intuitions	and
feelings	in	favor	of	completely	algorithmic	governance	(emphasis	on	"completely")	are	absolutely	crazy,	and	loosely
coupled	voting	as	done	by	Carbonvotes	and	similar	systems	is	underrated,	as	well	as	describe	what	framework
should	be	used	when	thinking	about	blockchain	governance	in	the	first	place.

See	also:	https://medium.com/@Vlad_Zamfir/against-on-chain-governance-a4ceacd040ca

One	of	the	more	interesting	recent	trends	in	blockchain	governance	is	the	resurgence	of	on-chain
coin-holder	voting	as	a	multi-purpose	decision	mechanism.	Votes	by	coin	holders	are	sometimes	used
in	order	to	decide	who	operates	the	super-nodes	that	run	a	network	(eg.	DPOS	in	EOS,	NEO,	Lisk
and	other	systems),	sometimes	to	vote	on	protocol	parameters	(eg.	the	Ethereum	gas	limit)	and
sometimes	to	vote	on	and	directly	implement	protocol	upgrades	wholesale	(eg.	Tezos).	In	all	of	these
cases,	the	votes	are	automatic	-	the	protocol	itself	contains	all	of	the	logic	needed	to	change	the
validator	set	or	to	update	its	own	rules,	and	does	this	automatically	in	response	to	the	result	of	votes.

Explicit	on-chain	governance	is	typically	touted	as	having	several	major	advantages.	First,	unlike	the
highly	conservative	philosophy	espoused	by	Bitcoin,	it	can	evolve	rapidly	and	accept	needed
technical	improvements.	Second,	by	creating	an	explicit	decentralized	framework,	it	avoids	the
perceived	pitfalls	of	informal	governance,	which	is	viewed	to	either	be	too	unstable	and	prone	to
chain	splits,	or	prone	to	becoming	too	de-facto	centralized	-	the	latter	being	the	same	argument	made
in	the	famous	1972	essay	"Tyranny	of	Structurelessness".

Quoting	Tezos	documentation:

While	all	blockchains	offer	financial	incentives	for	maintaining	consensus	on	their	ledgers,
no	blockchain	has	a	robust	on-chain	mechanism	that	seamlessly	amends	the	rules
governing	its	protocol	and	rewards	protocol	development.	As	a	result,	first-generation
blockchains	empower	de	facto,	centralized	core	development	teams	or	miners	to	formulate
design	choices.

And:

Yes,	but	why	would	you	want	to	make	[a	minority	chain	split]	easier?	Splits	destroy	network
effects.

On-chain	governance	used	to	select	validators	also	has	the	benefit	that	it	allows	for	networks	that
impose	high	computational	performance	requirements	on	validators	without	introducing	economic
centralization	risks	and	other	traps	of	the	kind	that	appear	in	public	blockchains	(eg.	the	validator's
dilemma).

So	far,	all	in	all,	on-chain	governance	seems	like	a	very	good	bargain....	so	what's	wrong	with	it?

What	is	Blockchain	Governance?

To	start	off,	we	need	to	describe	more	clearly	what	the	process	of	"blockchain	governance"	is.
Generally	speaking,	there	are	two	informal	models	of	governance,	that	I	will	call	the	"decision
function"	view	of	governance	and	the	"coordination"	view	of	governance.	The	decision	function	view
treats	governance	as	a	function	\(f(x_1,	x_2	...	x_n)	\rightarrow	y\),	where	the	inputs	are	the	wishes	of
various	legitimate	stakeholders	(senators,	the	president,	property	owners,	shareholders,	voters,	etc)
and	the	output	is	the	decision.

file:///home/runner/index.html
https://medium.com/@Vlad_Zamfir/against-on-chain-governance-a4ceacd040ca
http://tezos.com/
http://www.jofreeman.com/joreen/tyranny.htm
https://www.tezos.com/governance
https://twitter.com/tez0s/status/884528964194238464
https://eprint.iacr.org/2015/702.pdf


The	decision	function	view	is	often	useful	as	an	approximation,	but	it	clearly	frays	very	easily	around
the	edges:	people	often	can	and	do	break	the	law	and	get	away	with	it,	sometimes	rules	are
ambiguous,	and	sometimes	revolutions	happen	-	and	all	three	of	these	possibilities	are,	at	least
sometimes,	a	good	thing.	And	often	even	behavior	inside	the	system	is	shaped	by	incentives	created
by	the	possibility	of	acting	outside	the	system,	and	this	once	again	is	at	least	sometimes	a	good	thing.

The	coordination	model	of	governance,	in	contrast,	sees	governance	as	something	that	exists	in
layers.	The	bottom	layer	is,	in	the	real	world,	the	laws	of	physics	themselves	(as	a	geopolitical	realist
would	say,	guns	and	bombs),	and	in	the	blockchain	space	we	can	abstract	a	bit	further	and	say	that	it
is	each	individual's	ability	to	run	whatever	software	they	want	in	their	capacity	as	a	user,	miner,
stakeholder,	validator	or	whatever	other	kind	of	agent	a	blockchain	protocol	allows	them	to	be.	The
bottom	layer	is	always	the	ultimate	deciding	layer;	if,	for	example,	all	Bitcoin	users	wake	up	one	day
and	decides	to	edit	their	clients'	source	code	and	replace	the	entire	code	with	an	Ethereum	client
that	listens	to	balances	of	a	particular	ERC20	token	contract,	then	that	means	that	that	ERC20	token
is	bitcoin.	The	bottom	layer's	ultimate	governing	power	cannot	be	stopped,	but	the	actions	that
people	take	on	this	layer	can	be	influenced	by	the	layers	above	it.

The	second	(and	crucially	important)	layer	is	coordination	institutions.	The	purpose	of	a	coordination
institution	is	to	create	focal	points	around	how	and	when	individuals	should	act	in	order	to	better
coordinate	behavior.	There	are	many	situations,	both	in	blockchain	governance	and	in	real	life,
where	if	you	act	in	a	certain	way	alone,	you	are	likely	to	get	nowhere	(or	worse),	but	if	everyone	acts
together	a	desired	result	can	be	achieved.

An	abstract	coordination	game.	You	benefit	heavily	from	making	the	same	move	as	everyone	else.

In	these	cases,	it's	in	your	interest	to	go	if	everyone	else	is	going,	and	stop	if	everyone	else	is
stopping.	You	can	think	of	coordination	institutions	as	putting	up	green	or	red	flags	in	the	air	saying
"go"	or	"stop",	with	an	established	culture	that	everyone	watches	these	flags	and	(usually)	does	what
they	say.	Why	do	people	have	the	incentive	to	follow	these	flags?	Because	everyone	else	is	already
following	these	flags,	and	you	have	the	incentive	to	do	the	same	thing	as	what	everyone	else	is	doing.



A	Byzantine	general	rallying	his	troops	forward.	The	purpose	of	this	isn't	just	to	make	the	soldiers	feel	brave	and
excited,	but	also	to	reassure	them	that	everyone	else	feels	brave	and	excited	and	will	charge	forward	as	well,	so	an

individual	soldier	is	not	just	committing	suicide	by	charging	forward	alone.

Strong	claim:	this	concept	of	coordination	flags	encompasses	all	that	we	mean	by
"governance";	in	scenarios	where	coordination	games	(or	more	generally,	multi-equilibrium
games)	do	not	exist,	the	concept	of	governance	is	meaningless.

In	the	real	world,	military	orders	from	a	general	function	as	a	flag,	and	in	the	blockchain	world,	the
simplest	example	of	such	a	flag	is	the	mechanism	that	tells	people	whether	or	not	a	hard	fork	"is
happening".	Coordination	institutions	can	be	very	formal,	or	they	can	be	informal,	and	often	give
suggestions	that	are	ambiguous.	Flags	would	ideally	always	be	either	red	or	green,	but	sometimes	a
flag	might	be	yellow,	or	even	holographic,	appearing	green	to	some	participants	and	yellow	or	red	to
others.	Sometimes	that	are	also	multiple	flags	that	conflict	with	each	other.

The	key	questions	of	governance	thus	become:

What	should	layer	1	be?	That	is,	what	features	should	be	set	up	in	the	initial	protocol	itself,	and
how	does	this	influence	the	ability	to	make	formulaic	(ie.	decision-function-like)	protocol
changes,	as	well	as	the	level	of	power	of	different	kinds	of	agents	to	act	in	different	ways?
What	should	layer	2	be?	That	is,	what	coordination	institutions	should	people	be	encouraged	to
care	about?

The	Role	of	Coin	Voting

Ethereum	also	has	a	history	with	coin	voting,	including:

DAO	proposal	votes:	https://daostats.github.io/proposals.html
The	DAO	Carbonvote:	http://v1.carbonvote.com/
The	EIP	186/649/669	Carbonvote:	http://carbonvote.com/

https://daostats.github.io/proposals.html
http://v1.carbonvote.com/
http://carbonvote.com/


These	three	are	all	examples	of	loosely	coupled	coin	voting,	or	coin	voting	as	a	layer	2	coordination
institution.	Ethereum	does	not	have	any	examples	of	tightly	coupled	coin	voting	(or,	coin	voting	as	a
layer	1	in-protocol	feature),	though	it	does	have	an	example	of	tightly	coupled	miner	voting:	miners'
right	to	vote	on	the	gas	limit.	Clearly,	tightly	coupled	voting	and	loosely	coupled	voting	are
competitors	in	the	governance	mechanism	space,	so	it's	worth	dissecting:	what	are	the	advantages
and	disadvantages	of	each	one?

Assuming	zero	transaction	costs,	and	if	used	as	a	sole	governance	mechanism,	the	two	are	clearly
equivalent.	If	a	loosely	coupled	vote	says	that	change	X	should	be	implemented,	then	that	will	serve
as	a	"green	flag"	encouraging	everyone	to	download	the	update;	if	a	minority	wants	to	rebel,	they	will
simply	not	download	the	update.	If	a	tightly	coupled	vote	implements	change	X,	then	the	change
happens	automatically,	and	if	a	minority	wants	to	rebel	they	can	install	a	hard	fork	update	that
cancels	the	change.	However,	there	clearly	are	nonzero	transaction	costs	associated	with	making	a
hard	fork,	and	this	leads	to	some	very	important	differences.

One	very	simple,	and	important,	difference	is	that	tightly	coupled	voting	creates	a	default	in	favor	of
the	blockchain	adopting	what	the	majority	wants,	requiring	minorities	to	exert	great	effort	to
coordinate	a	hard	fork	to	preserve	a	blockchain's	existing	properties,	whereas	loosely	coupled	voting
is	only	a	coordination	tool,	and	still	requires	users	to	actually	download	and	run	the	software	that
implements	any	given	fork.	But	there	are	also	many	other	differences.	Now,	let	us	go	through	some
arguments	against	voting,	and	dissect	how	each	argument	applies	to	voting	as	layer	1	and	voting	as
layer	2.

Low	Voter	Participation

One	of	the	main	criticisms	of	coin	voting	mechanisms	so	far	is	that,	no	matter	where	they	are	tried,
they	tend	to	have	very	low	voter	participation.	The	DAO	Carbonvote	only	had	a	voter	participation
rate	of	4.5%:



Additionally,	wealth	distribution	is	very	unequal,	and	the	results	of	these	two	factors	together	are
best	described	by	this	image	created	by	a	critic	of	the	DAO	fork:

The	EIP	186	Carbonvote	had	~2.7	million	ETH	voting.	The	DAO	proposal	votes	did	not	fare	better,
with	participation	never	reaching	10%.	And	outside	of	Ethereum	things	are	not	sunny	either;	even	in
Bitshares,	a	system	where	the	core	social	contract	is	designed	around	voting,	the	top	delegate	in	an
approval	vote	only	got	17%	of	the	vote,	and	in	Lisk	it	got	up	to	30%,	though	as	we	will	discuss	later
these	systems	have	other	problems	of	their	own.

Low	voter	participation	means	two	things.	First,	the	vote	has	a	harder	time	achieving	a	perception	of
legitimacy,	because	it	only	reflects	the	views	of	a	small	percentage	of	people.	Second,	an	attacker
with	only	a	small	percentage	of	all	coins	can	sway	the	vote.	These	problems	exist	regardless	of
whether	the	vote	is	tightly	coupled	or	loosely	coupled.

Game-Theoretic	Attacks

Aside	from	"the	big	hack"	that	received	the	bulk	of	the	media	attention,	the	DAO	also	had	a	number
of	much	smaller	game-theoretic	vulnerabilities;	this	article	from	HackingDistributed	does	a	good	job
of	summarizing	them.	But	this	is	only	the	tip	of	the	iceberg.	Even	if	all	of	the	finer	details	of	a	voting
mechanism	are	implemented	correctly,	voting	mechanisms	in	general	have	a	large	flaw:	in	any	vote,
the	probability	that	any	given	voter	will	have	an	impact	on	the	result	is	tiny,	and	so	the	personal
incentive	that	each	voter	has	to	vote	correctly	is	almost	insignificant.	And	if	each	person's	size	of	the
stake	is	small,	their	incentive	to	vote	correctly	is	insignificant	squared.	Hence,	a	relatively	small
bribe	spread	out	across	the	participants	may	suffice	to	sway	their	decision,	possibly	in	a	way	that
they	collectively	might	quite	disapprove	of.

Now	you	might	say,	people	are	not	evil	selfish	profit-maximizers	that	will	accept	a	$0.5	bribe	to	vote
to	give	twenty	million	dollars	to	Josh	arza	just	because	the	above	calculation	says	their	individual
chance	of	affecting	anything	is	tiny;	rather,	they	would	altruistically	refuse	to	do	something	that	evil.
There	are	two	responses	to	this	criticism.

First,	there	are	ways	to	make	a	"bribe"	that	are	quite	plausible;	for	example,	an	exchange	can	offer

http://themerkle.com/the-dao-undergoes-low-voting-turnout/
https://bitcointalk.org/index.php?topic=916696.330;imode
https://explorer.lisk.io/delegateMonitor
http://hackingdistributed.com/2016/05/27/dao-call-for-moratorium/


interest	rates	for	deposits	(or,	even	more	ambiguously,	use	the	exchange's	own	money	to	build	a
great	interface	and	features),	with	the	exchange	operator	using	the	large	quantity	of	deposits	to	vote
as	they	wish.	Exchanges	profit	from	chaos,	so	their	incentives	are	clearly	quite	misaligned	with	users
and	coin	holders.

Second,	and	more	damningly,	in	practice	it	seems	like	people,	at	least	in	their	capacity	as	crypto
token	holders,	are	profit	maximizers,	and	seem	to	see	nothing	evil	or	selfish	about	taking	a	bribe	or
two.	As	"Exhibit	A",	we	can	look	at	the	situation	with	Lisk,	where	the	delegate	pool	seems	to	have
been	successfully	captured	by	two	major	"political	parties"	that	explicitly	bribe	coin	holders	to	vote
for	them,	and	also	require	each	member	in	the	pool	to	vote	for	all	the	others.

Here's	LiskElite,	with	55	members	(out	of	a	total	101):

Here's	LiskGDT,	with	33	members:

And	as	"Exhibit	B"	some	voter	bribes	being	paid	out	in	Ark:

https://bitcointalk.org/index.php?topic=1835497.new


Here,	note	that	there	is	a	key	difference	between	tightly	coupled	and	loosely	coupled	votes.	In	a
loosely	coupled	vote,	direct	or	indirect	vote	bribing	is	also	possible,	but	if	the	community	agrees	that
some	given	proposal	or	set	of	votes	constitutes	a	game-theoretic	attack,	they	can	simply	socially
agree	to	ignore	it.	And	in	fact	this	has	kind	of	already	happened	-	the	Carbonvote	contains	a	blacklist
of	addresses	corresponding	to	known	exchange	addresses,	and	votes	from	these	addresses	are	not
counted.	In	a	tightly	coupled	vote,	there	is	no	way	to	create	such	a	blacklist	at	protocol	level,	because
agreeing	who	is	part	of	the	blacklist	is	itself	a	blockchain	governance	decision.	But	since	the	blacklist
is	part	of	a	community-created	voting	tool	that	only	indirectly	influences	protocol	changes,	voting
tools	that	contain	bad	blacklists	can	simply	be	rejected	by	the	community.

It's	worth	noting	that	this	section	is	not	a	prediction	that	all	tightly	coupled	voting	systems	will
quickly	succumb	to	bribe	attacks.	It's	entirely	possible	that	many	will	survive	for	one	simple	reason:
all	of	these	projects	have	founders	or	foundations	with	large	premines,	and	these	act	as	large
centralized	actors	that	are	interested	in	their	platforms'	success	that	are	not	vulnerable	to	bribes,
and	hold	enough	coins	to	outweigh	most	bribe	attacks.	However,	this	kind	of	centralized	trust	model,
while	arguably	useful	in	some	contexts	in	a	project's	early	stages,	is	clearly	one	that	is	not
sustainable	in	the	long	term.

Non-Representativeness

Another	important	objection	to	voting	is	that	coin	holders	are	only	one	class	of	user,	and	may	have
interests	that	collide	with	those	of	other	users.	In	the	case	of	pure	cryptocurrencies	like	Bitcoin,
store-of-value	use	("hodling")	and	medium-of-exchange	use	("buying	coffees")	are	naturally	in
conflict,	as	the	store-of-value	prizes	security	much	more	than	the	medium-of-exchange	use	case,
which	more	strongly	values	usability.	With	Ethereum,	the	conflict	is	worse,	as	there	are	many	people
who	use	Ethereum	for	reasons	that	have	nothing	to	do	with	ether	(see:	cryptokitties),	or	even	value-
bearing	digital	assets	in	general	(see:	ENS).

Additionally,	even	if	coin	holders	are	the	only	relevant	class	of	user	(one	might	imagine	this	to	be	the
case	in	a	cryptocurrency	where	there	is	an	established	social	contract	that	its	purpose	is	to	be	the
next	digital	gold,	and	nothing	else),	there	is	still	the	challenge	that	a	coin	holder	vote	gives	a	much
greater	voice	to	wealthy	coin	holders	than	to	everyone	else,	opening	the	door	for	centralization	of
holdings	to	lead	to	unencumbered	centralization	of	decision	making.	Or,	in	other	words...

https://bitcointalk.org/index.php?topic=375643.0


And	if	you	want	to	see	a	review	of	a	project	that	seems	to	combine	all	of	these	disadvantages	at	the
same	time,	see	this:	https://btcgeek.com/bitshares-trying-memorycoin-year-ago-disastrous-ends/.

This	criticism	applies	to	both	tightly	coupled	and	loosely	coupled	voting	equally;	however,	loosely
coupled	voting	is	more	amenable	to	compromises	that	mitigate	its	unrepresentativeness,	and	we	will
discuss	this	more	later.

Centralization

Let's	look	at	the	existing	live	experiment	that	we	have	in	tightly	coupled	voting	on	Ethereum,	the	gas
limit.	Here's	the	gas	limit	evolution	over	the	past	two	years:

You	might	notice	that	the	general	feel	of	the	curve	is	a	bit	like	another	chart	that	may	be	quite
familiar	to	you:

Basically,	they	both	look	like	magic	numbers	that	are	created	and	repeatedly	renegotiated	by	a	fairly
centralized	group	of	guys	sitting	together	in	a	room.	What's	happening	in	the	first	case?	Miners	are
generally	following	the	direction	favored	by	the	community,	which	is	itself	gauged	via	social
consensus	aids	similar	to	those	that	drive	hard	forks	(core	developer	support,	Reddit	upvotes,	etc;	in
Ethereum,	the	gas	limit	has	never	gotten	controversial	enough	to	require	anything	as	serious	as	a
coin	vote).

Hence,	it	is	not	at	all	clear	that	voting	will	be	able	to	deliver	results	that	are	actually	decentralized,	if
voters	are	not	technically	knowledgeable	and	simply	defer	to	a	single	dominant	tribe	of	experts.	This
criticism	once	again	applies	to	tightly	coupled	and	loosely	coupled	voting	equally.

Update:	since	writing	this,	it	seems	like	Ethereum	miners	managed	to	up	the	gas	limit	from	6.7	million	to	8	million
all	without	even	discussing	it	with	the	core	developers	or	the	Ethereum	Foundation.	So	there	is	hope;	but	it	takes	a
lot	of	hard	community	building	and	other	grueling	non-technical	work	to	get	to	that	point.

Digital	Constitutions

One	approach	that	has	been	suggested	to	mitigate	the	risk	of	runaway	bad	governance	algorithms	is
"digital	constitutions"	that	mathematically	specify	desired	properties	that	the	protocol	should	have,

https://btcgeek.com/bitshares-trying-memorycoin-year-ago-disastrous-ends/


and	require	any	new	code	changes	to	come	with	a	computer-verifiable	proof	that	they	satisfy	these
properties.	This	seems	like	a	good	idea	at	first,	but	this	too	should,	in	my	opinion,	be	viewed
skeptically.

In	general,	the	idea	of	having	norms	about	protocol	properties,	and	having	these	norms	serve	the
function	of	one	of	the	coordination	flags,	is	a	very	good	one.	This	allows	us	to	enshrine	core
properties	of	a	protocol	that	we	consider	to	be	very	important	and	valuable,	and	make	them	more
difficult	to	change.	However,	this	is	exactly	the	sort	of	thing	that	should	be	enforced	in	loosely
coupled	(ie.	layer	two),	rather	than	tightly	coupled	(layer	one)	form.

Basically	any	meaningful	norm	is	actually	quite	hard	to	express	in	its	entirety;	this	is	part	of	the
complexity	of	value	problem.	This	is	true	even	for	something	as	seemingly	unambiguous	as	the	21
million	coin	limit.	Sure,	one	can	add	a	line	of	code	saying	assert	total_supply	<=	21000000,	and	put	a
comment	around	it	saying	"do	not	remove	at	all	costs",	but	there	are	plenty	of	roundabout	ways	of
doing	the	same	thing.	For	example,	one	could	imagine	a	soft	fork	that	adds	a	mandatory	transaction
fee	this	is	proportional	to	coin	value	*	time	since	the	coins	were	last	sent,	and	this	is	equivalent	to
demurrage,	which	is	equivalent	to	deflation.	One	could	also	implement	another	currency,	called
Bjtcoin,	with	21	million	new	units,	and	add	a	feature	where	if	a	bitcoin	transaction	is	sent	the	miner
can	intercept	it	and	claim	the	bitcoin,	instead	giving	the	recipient	bjtcoin;	this	would	rapidly	force
bitcoins	and	bjtcoins	to	be	fungible	with	each	other,	increasing	the	"total	supply"	to	42	million
without	ever	tripping	up	that	line	of	code.	"Softer"	norms	like	not	interfering	with	application	state
are	even	harder	to	enforce.

We	want	to	be	able	to	say	that	a	protocol	change	that	violates	any	of	these	guarantees	should	be
viewed	as	illegitimate	-	there	should	be	a	coordination	institution	that	waves	a	red	flag	-	even	if	they
get	approved	by	a	vote.	We	also	want	to	be	able	to	say	that	a	protocol	change	that	follows	the	letter
of	a	norm,	but	blatantly	violates	its	spirit,	the	protocol	change	should	still	be	viewed	as	illegitimate.
And	having	norms	exist	on	layer	2	-	in	the	minds	of	humans	in	the	community,	rather	than	in	the	code
of	the	protocol	-	best	achieves	that	goal.

Toward	A	Balance

However,	I	am	also	not	willing	to	go	the	other	way	and	say	that	coin	voting,	or	other	explicit	on-chain
voting-like	schemes,	have	no	place	in	governance	whatsoever.	The	leading	alternative	seems	to	be
core	developer	consensus,	however	the	failure	mode	of	a	system	being	controlled	by	"ivory	tower
intellectuals"	who	care	more	about	abstract	philosophies	and	solutions	that	sound	technically
impressive	over	and	above	real	day-to-day	concerns	like	user	experience	and	transaction	fees	is,	in
my	view,	also	a	real	threat	to	be	taken	seriously.

So	how	do	we	solve	this	conundrum?	Well,	first,	we	can	heed	the	words	of	slatestarcodex	in	the
context	of	traditional	politics:

The	rookie	mistake	is:	you	see	that	some	system	is	partly	Moloch	[ie.	captured	by
misaligned	special	interests],	so	you	say	"Okay,	we'll	fix	that	by	putting	it	under	the	control
of	this	other	system.	And	we'll	control	this	other	system	by	writing	‘DO	NOT	BECOME
MOLOCH'	on	it	in	bright	red	marker."	("I	see	capitalism	sometimes	gets	misaligned.	Let's
fix	it	by	putting	it	under	control	of	the	government.	We'll	control	the	government	by	having
only	virtuous	people	in	high	offices.")	I'm	not	going	to	claim	there's	a	great	alternative,	but
the	occasionally-adequate	alternative	is	the	neoliberal	one	–	find	a	couple	of	elegant
systems	that	all	optimize	along	different	criteria	approximately	aligned	with	human
happiness,	pit	them	off	against	each	other	in	a	structure	of	checks	and	balances,	hope	they
screw	up	in	different	places	like	in	that	swiss	cheese	model,	keep	enough	individual	free
choice	around	that	people	can	exit	any	system	that	gets	too	terrible,	and	let	cultural
evolution	do	the	rest.

In	blockchain	governance,	it	seems	like	this	is	the	only	way	forward	as	well.	The	approach	for
blockchain	governance	that	I	advocate	is	"multifactorial	consensus",	where	different	coordination
flags	and	different	mechanisms	and	groups	are	polled,	and	the	ultimate	decision	depends	on	the
collective	result	of	all	of	these	mechanisms	together.	These	coordination	flags	may	include:

The	roadmap	(ie.	the	set	of	ideas	broadcasted	earlier	on	in	the	project's	history	about	the
direction	the	project	would	be	going)
Consensus	among	the	dominant	core	development	teams
Coin	holder	votes
User	votes,	through	some	kind	of	sybil-resistant	polling	system
Established	norms	(eg.	non-interference	with	applications,	the	21	million	coin	limit)

I	would	argue	that	it	is	very	useful	for	coin	voting	to	be	one	of	several	coordination	institutions

https://wiki.lesswrong.com/wiki/Complexity_of_value
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deciding	whether	or	not	a	given	change	gets	implemented.	It	is	an	imperfect	and	unrepresentative
signal,	but	it	is	a	Sybil-resistant	one	-	if	you	see	10	million	ETH	voting	for	a	given	proposal,	you
cannot	dismiss	that	by	simply	saying	"oh,	that's	just	hired	Russian	trolls	with	fake	social	media
accounts".	It	is	also	a	signal	that	is	sufficiently	disjoint	from	the	core	development	team	that	if
needed	it	can	serve	as	a	check	on	it.	However,	as	described	above,	there	are	very	good	reasons	why
it	should	not	be	the	only	coordination	institution.

And	underpinnning	it	all	is	the	key	difference	from	traditional	systems	that	makes	blockchains
interesting:	the	"layer	1"	that	underpins	the	whole	system	is	the	requirement	for	individual	users	to
assent	to	any	protocol	changes,	and	their	freedom,	and	credible	threat,	to	"fork	off"	if	someone
attempts	to	force	changes	on	them	that	they	consider	hostile	(see	also:
http://vitalik.ca/general/2017/05/08/coordination_problems.html).

Tightly	coupled	voting	is	also	okay	to	have	in	some	limited	contexts	-	for	example,	despite	its	flaws,
miners'	ability	to	vote	on	the	gas	limit	is	a	feature	that	has	proven	very	beneficial	on	multiple
occasions.	The	risk	that	miners	will	try	to	abuse	their	power	may	well	be	lower	than	the	risk	that	any
specific	gas	limit	or	block	size	limit	hard-coded	by	the	protocol	on	day	1	will	end	up	leading	to
serious	problems,	and	in	that	case	letting	miners	vote	on	the	gas	limit	is	a	good	thing.	However,
"allowing	miners	or	validators	to	vote	on	a	few	specific	parameters	that	need	to	be	rapidly	changed
from	time	to	time"	is	a	very	far	cry	from	giving	them	arbitrary	control	over	protocol	rules,	or	letting
voting	control	validation,	and	these	more	expansive	visions	of	on-chain	governance	have	a	much
murkier	potential,	both	in	theory	and	in	practice.

http://vitalik.ca/general/2017/05/08/coordination_problems.html
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A	Quick	Gasprice	Market	Analysis

Here	is	a	file	that	contains	data,	extracted	from	geth,	about	transaction	fees	in	every	block	between	4710000	and	4730000.	For	each	block,	it	contains	an	object
of	the	form:

{
				"block":4710000,
				"coinbase":"0x829bd824b016326a401d083b33d092293333a830",
				"deciles":[40,40.1,44.100030001,44.100030001,44.100030001,44.100030001,44.100030001,44.100030001,50,66.150044,100]
				,"free":10248,
				"timedelta":8
}

The	"deciles"	variable	contains	11	values,	where	the	lowest	is	the	lowest	gasprice	in	each	block,	the	next	is	the	gasprice	that	only	10%	of	other	transaction
gasprices	are	lower	than,	and	so	forth;	the	last	is	the	highest	gasprice	in	each	block.	This	gives	us	a	convenient	summary	of	the	distribution	of	transaction	fees
that	each	block	contains.	We	can	use	this	data	to	perform	some	interesting	analyses.

First,	a	chart	of	the	deciles,	taking	50-block	moving	averages	to	smooth	it	out:

What	we	see	is	a	gasprice	market	that	seems	to	actually	stay	reasonably	stable	over	the	course	of	more	than	three	days.	There	are	a	few	occasional	spikes,	most
notably	the	one	around	block	4720000,	but	otherwise	the	deciles	all	stay	within	the	same	band	all	the	way	through.	The	only	exception	is	the	highest	gasprice
transaction	(that	red	squiggle	at	the	top	left),	which	fluctuates	wildly	because	it	can	be	pushed	upward	by	a	single	very-high-gasprice	transaction.

We	can	try	to	interpret	the	data	in	another	way:	by	calculating,	for	each	gasprice	level,	the	average	number	of	blocks	that	you	need	to	wait	until	you	see	a	block
where	the	lowest	gasprice	included	is	lower	than	that	gasprice.	Assuming	that	miners	are	rational	and	all	have	the	same	view	(implying	that	if	the	lowest	gasprice
in	a	block	is	X,	then	that	means	there	are	no	more	transactions	with	gasprices	above	X	waiting	to	be	included),	this	might	be	a	good	proxy	for	the	average	amount
of	time	that	a	transaction	sender	needs	to	wait	to	get	included	if	they	use	that	gasprice.	The	stats	are:

There	is	clear	clustering	going	on	at	the	4,	10	and	20	levels;	it	seems	to	be	an	underexploited	strategy	to	send	transactions	with	fees	slightly	above	these	levels,
getting	in	before	the	crowd	of	transactions	right	at	the	level	but	only	paying	a	little	more.

However,	there	is	quite	a	bit	of	evidence	that	miners	do	not	have	the	same	view;	that	is,	some	miners	see	a	very	different	set	of	transactions	from	other	miners.
First	of	all,	we	can	filter	blocks	by	miner	address,	and	check	what	the	deciles	of	each	miner	are.	Here	is	the	output	of	this	data,	splitting	by	2000-block	ranges	so
we	can	spot	behavior	that	is	consistent	across	the	entire	period,	and	filtering	out	miners	that	mine	less	than	10	blocks	in	any	period,	as	well	as	filtering	out	blocks
with	more	21000	free	gas	(high	levels	of	free	gas	may	signify	an	abnormally	high	minimum	gas	price	policy,	like	for	example
0x6a7a43be33ba930fe58f34e07d0ad6ba7adb9b1f	at	~40	gwei	and	0xb75d1e62b10e4ba91315c4aa3facc536f8a922f5	at	~10	gwei).	We	get:

0x829bd824b016326a401d083b33d092293333a830	[30,	28,	27,	21,	28,	34,	23,	24,	32,	32]
0xea674fdde714fd979de3edf0f56aa9716b898ec8	[17,	11,	10,	15,	17,	23,	17,	13,	16,	17]
0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c	[31,	17,	20,	18,	16,	27,	21,	15,	21,	21]
0x52bc44d5378309ee2abf1539bf71de1b7d7be3b5	[20,	16,	19,	14,	17,	18,	17,	14,	15,	15]
0xb2930b35844a230f00e51431acae96fe543a0347	[21,	17,	19,	17,	17,	25,	17,	16,	19,	19]
0x180ba8f73897c0cb26d76265fc7868cfd936e617	[13,	13,	15,	18,	12,	26,	16,	13,	20,	20]
0xf3b9d2c81f2b24b0fa0acaaa865b7d9ced5fc2fb	[26,	25,	23,	21,	22,	28,	25,	24,	26,	25]
0x4bb96091ee9d802ed039c4d1a5f6216f90f81b01	[17,	21,	17,	14,	21,	32,	14,	14,	19,	23]
0x2a65aca4d5fc5b5c859090a6c34d164135398226	[26,	24,	20,	16,	22,	33,	20,	18,	24,	24]

The	first	miner	is	consistently	higher	than	the	others;	the	last	is	also	higher	than	average,	and	the	second	is	consistently	among	the	lowest.

Another	thing	we	can	look	at	is	timestamp	differences	-	the	difference	between	a	block's	timestamp	and	its	parent.	There	is	a	clear	correlation	between
timestamp	difference	and	lowest	gasprice:

This	makes	a	lot	of	sense,	as	a	block	that	comes	right	after	another	block	should	be	cleaning	up	only	the	transactions	that	are	too	low	in	gasprice	for	the	parent
block	to	have	included,	and	a	block	that	comes	a	long	time	after	its	predecessor	would	have	many	more	not-yet-included	transactions	to	choose	from.	The
differences	are	large,	suggesting	that	a	single	block	is	enough	to	bite	off	a	very	substantial	chunk	of	the	unconfirmed	transaction	pool,	adding	to	the	evidence
that	most	transactions	are	included	quite	quickly.

However,	if	we	look	at	the	data	in	more	detail,	we	see	very	many	instances	of	blocks	with	low	timestamp	differences	that	contain	many	transactions	with	higher
gasprices	than	their	parents.	Sometimes	we	do	see	blocks	that	actually	look	like	they	clean	up	what	their	parents	could	not,	like	this:

{"block":4710093,"coinbase":"0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c","deciles":[25,40,40,40,40,40,40,43,50,64.100030001,120],"free":6030,"timedelta":8},
{"block":4710094,"coinbase":"0xea674fdde714fd979de3edf0f56aa9716b898ec8","deciles":[4,16,20,20,21,21,22,29,30,40,59],"free":963366,"timedelta":2},

But	sometimes	we	see	this:
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{"block":4710372,"coinbase":"0x52bc44d5378309ee2abf1539bf71de1b7d7be3b5","deciles":[1,30,35,40,40,40,40,40,40,55,100],"free":13320,"timedelta":7},
{"block":4710373,"coinbase":"0x52bc44d5378309ee2abf1539bf71de1b7d7be3b5","deciles":[1,32,32,40,40,56,56,56,56,70,80],"free":1672720,"timedelta":2}

And	sometimes	we	see	miners	suddenly	including	many	1-gwei	transactions:

{"block":4710379,"coinbase":"0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c","deciles":[21,25,31,40,40,40,40,40,40,50,80],"free":4979,"timedelta":13},
{"block":4710380,"coinbase":"0x52bc44d5378309ee2abf1539bf71de1b7d7be3b5","deciles":[1,1,1,1,1,1,40,45,55,61.10006,2067.909560115],"free":16730,"timedelta":35}

This	strongly	suggests	that	a	miner	including	transactions	with	gasprice	X	should	NOT	be	taken	as	evidence	that	there	are	not	still	many	transactions	with
gasprice	higher	than	X	left	to	process.	This	is	likely	because	of	imperfections	in	network	propagation.

In	general,	however,	what	we	see	seems	to	be	a	rather	well-functioning	fee	market,	though	there	is	still	room	to	improve	in	fee	estimation	and,	most	importantly
of	all,	continuing	to	work	hard	to	improve	base-chain	scalability	so	that	more	transactions	can	get	included	in	the	first	place.
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STARKs,	Part	II:	Thank	Goodness	It's	FRI-day

Special	thanks	to	Eli	Ben-Sasson	for	ongoing	help	and	explanations,	and	Justin	Drake	for	reviewing

In	the	last	part	of	this	series,	we	talked	about	how	you	can	make	some	pretty	interesting	succinct
proofs	of	computation,	such	as	proving	that	you	have	computed	the	millionth	Fibonacci	number,
using	a	technique	involving	polynomial	composition	and	division.	However,	it	rested	on	one	critical
ingredient:	the	ability	to	prove	that	at	least	the	great	majority	of	a	given	large	set	of	points	are	on	the
same	low-degree	polynomial.	This	problem,	called	"low-degree	testing",	is	perhaps	the	single	most
complex	part	of	the	protocol.

We'll	start	off	by	once	again	re-stating	the	problem.	Suppose	that	you	have	a	set	of	points,	and	you
claim	that	they	are	all	on	the	same	polynomial,	with	degree	less	than	\(D\)	(ie.	\(deg	<	2\)	means
they're	on	the	same	line,	\(deg	<	3\)	means	they're	on	the	same	line	or	parabola,	etc).	You	want	to
create	a	succinct	probabilistic	proof	that	this	is	actually	true.

Left:	points	all	on	the	same	\(deg	<	3\)	polynomial.	Right:	points	not	on	the	same	\(deg	<	3\)	polynomial

If	you	want	to	verify	that	the	points	are	all	on	the	same	degree	\(<	D\)	polynomial,	you	would	have	to
actually	check	every	point,	as	if	you	fail	to	check	even	one	point	there	is	always	some	chance	that
that	point	will	not	be	on	the	polynomial	even	if	all	the	others	are.	But	what	you	can	do	is
probabilistically	check	that	at	least	some	fraction	(eg.	90%)	of	all	the	points	are	on	the	same
polynomial.
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Top	left:	possibly	close	enough	to	a	polynomial.	Top	right:	not	close	enough	to	a	polynomial.	Bottom	left:	somewhat
close	to	two	polynomials,	but	not	close	enough	to	either	one.	Bottom	right:	definitely	not	close	enough	to	a

polynomial.

If	you	have	the	ability	to	look	at	every	point	on	the	polynomial,	then	the	problem	is	easy.	But	what	if
you	can	only	look	at	a	few	points	-	that	is,	you	can	ask	for	whatever	specific	point	you	want,	and	the
prover	is	obligated	to	give	you	the	data	for	that	point	as	part	of	the	protocol,	but	the	total	number	of
queries	is	limited?	Then	the	question	becomes,	how	many	points	do	you	need	to	check	to	be	able	to
tell	with	some	given	degree	of	certainty?

Clearly,	\(D\)	points	is	not	enough.	\(D\)	points	are	exactly	what	you	need	to	uniquely	define	a	degree
\(<	D\)	polynomial,	so	any	set	of	points	that	you	receive	will	correspond	to	some	degree	\(<	D\)
polynomial.	As	we	see	in	the	figure	above,	however,	\(D+1\)	points	or	more	do	give	some	indication.

The	algorithm	to	check	if	a	given	set	of	values	is	on	the	same	degree	\(<	D\)	polynomial	with	\(D+1\)
queries	is	not	too	complex.	First,	select	a	random	subset	of	\(D\)	points,	and	use	something	like
Lagrange	interpolation	(search	for	"Lagrange	interpolation"	here	for	a	more	detailed	description)	to
recover	the	unique	degree	\(<	D\)	polynomial	that	passes	through	all	of	them.	Then,	randomly	sample
one	more	point,	and	check	that	it	is	on	the	same	polynomial.

Note	that	this	is	only	a	proximity	test,	because	there's	always	the	possibility	that	most	points	are	on
the	same	low-degree	polynomial,	but	a	few	are	not,	and	the	\(D+1\)	sample	missed	those	points
entirely.	However,	we	can	derive	the	result	that	if	less	than	90%	of	the	points	are	on	the	same	degree
\(<	D\)	polynomial,	then	the	test	will	fail	with	high	probability.	Specifically,	if	you	make	\(D+k\)
queries,	and	if	at	least	some	portion	\(p\)	of	the	points	are	not	on	the	same	polynomial	as	the	rest	of
the	points,	then	the	test	will	only	pass	with	probability	\((1	-	p)^k\).

But	what	if,	as	in	the	examples	from	the	previous	article,	\(D\)	is	very	high,	and	you	want	to	verify	a
polynomial's	degree	with	less	than	\(D\)	queries?	This	is,	of	course,	impossible	to	do	directly,	because
of	the	simple	argument	made	above	(namely,	that	any	\(k	\leq	D\)	points	are	all	on	at	least	one	degree
\(<	D\)	polynomial).	However,	it's	quite	possible	to	do	this	indirectly	by	providing	auxiliary	data,	and
achieve	massive	efficiency	gains	by	doing	so.	And	this	is	exactly	what	new	protocols	like	FRI	("Fast
RS	IOPP",	RS	=	"Reed-Solomon",	IOPP	=	"Interactive	Oracle	Proofs	of	Proximity"),	and	similar	earlier
designs	called	probabilistically	checkable	proofs	of	proximity	(PCPPs),	try	to	achieve.

A	First	Look	at	Sublinearity

To	prove	that	this	is	at	all	possible,	we'll	start	off	with	a	relatively	simple	protocol,	with	fairly	poor
tradeoffs,	but	that	still	achieves	the	goal	of	sublinear	verification	complexity	-	that	is,	you	can	prove
proximity	to	a	degree	\(<	D\)	polynomial	with	less	than	\(D\)	queries	(and,	for	that	matter,	less	than	\
(O(D)\)	computation	to	verify	the	proof).

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
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The	idea	is	as	follows.	Suppose	there	are	N	points	(we'll	say	\(N\)	=	1	billion),	and	they	are	all	on	a
degree	\(<\)	1,000,000	polynomial	\(f(x)\).	We	find	a	bivariate	polynomial	(ie.	an	expression	like	\(1	+
x	+	xy	+	x^5	\cdot	y^3	+	x^{12}	+	x	\cdot	y^{11}\)),	which	we	will	denote	\(g(x,	y)\),	such	that	\
(g(x,	x^{1000})	=	f(x)\).	This	can	be	done	as	follows:	for	the	\(k\)th	degree	term	in	\(f(x)\)	(eg.	\(1744
\cdot	x^{185423}\)),	we	decompose	it	into	\(x^{k	\%	1000}	\cdot	y^{floor(k	/	1000)}\)	(in	this	case,
\(1744	\cdot	x^{423}	\cdot	y^{185}\)).	You	can	see	that	if	\(y	=	x^{1000}\),	then	\(1744	\cdot
x^{423}	\cdot	y^{185}\)	equals	\(1744	\cdot	x^{185423}\).

In	the	first	stage	of	the	proof,	the	prover	commits	to	(ie.	makes	a	Merkle	tree	of)	the	evaluation	of	\
(g(x,	y)\)	over	the	entire	square	\([1	...	N]	x	\{x^{1000}:	1	\leq	x	\leq	N\}\)	-	that	is,	all	1	billion	\(x\)
coordinates	for	the	columns,	and	all	1	billion	corresponding	thousandth	powers	for	the	\(y\)
coordinates	of	the	rows.	The	diagonal	of	the	square	represents	the	values	of	\(g(x,	y)\)	that	are	of	the
form	\(g(x,	x^{1000})\),	and	thus	correspond	to	values	of	\(f(x)\).

The	verifier	then	randomly	picks	perhaps	a	few	dozen	rows	and	columns	(possibly	using	the	Merkle
root	of	the	square	as	a	source	of	pseudorandomness	if	we	want	a	non-interactive	proof),	and	for	each
row	or	column	that	it	picks	the	verifier	asks	for	a	sample	of,	say,	1010	points	on	the	row	and	column,
making	sure	in	each	case	that	one	of	the	points	demanded	is	on	the	diagonal.	The	prover	must	reply
back	with	those	points,	along	with	Merkle	branches	proving	that	they	are	part	of	the	original	data
committed	to	by	the	prover.	The	verifier	checks	that	the	Merkle	branches	match	up,	and	that	the
points	that	the	prover	provides	actually	do	correspond	to	a	degree-1000	polynomial.

This	gives	the	verifier	a	statistical	proof	that	(i)	most	rows	are	populated	mostly	by	points	on	degree	\
(<	1000\)	polynomials,	(ii)	most	columns	are	populated	mostly	by	points	on	degree	\(<	1000\)
polynomials,	and	(iii)	the	diagonal	line	is	mostly	on	these	polynomials.	This	thus	convinces	the
verifier	that	most	points	on	the	diagonal	actually	do	correspond	to	a	degree	\(<	1,000,000\)
polynomial.

If	we	pick	thirty	rows	and	thirty	columns,	the	verifier	needs	to	access	a	total	of	1010	points	\(\cdot\)
60	rows+cols	=	60600	points,	less	than	the	original	1,000,000,	but	not	by	that	much.	As	far	as
computation	time	goes,	interpolating	the	degree	\(<	1000\)	polynomials	will	have	its	own	overhead,
though	since	polynomial	interpolation	can	be	made	subquadratic	the	algorithm	as	a	whole	is	still
sublinear	to	verify.	The	prover	complexity	is	higher:	the	prover	needs	to	calculate	and	commit	to	the
entire	\(N	\cdot	N\)	rectangle,	which	is	a	total	of	\(10^{18}\)	computational	effort	(actually	a	bit
more	because	polynomial	evaluation	is	still	superlinear).	In	all	of	these	algorithms,	it	will	be	the	case
that	proving	a	computation	is	substantially	more	complex	than	just	running	it;	but	as	we	will	see	the
overhead	does	not	have	to	be	that	high.

A	Modular	Math	Interlude

Before	we	go	into	our	more	complex	protocols,	we	will	need	to	take	a	bit	of	a	digression	into	the
world	of	modular	arithmetic.	Usually,	when	we	work	with	algebraic	expressions	and	polynomials,	we
are	working	with	regular	numbers,	and	the	arithmetic,	using	the	operators	+,	-,	\(\cdot\),	/	(and
exponentiation,	which	is	just	repeated	multiplication),	is	done	in	the	usual	way	that	we	have	all	been
taught	since	school:	\(2	+	2	=	4\),	\(72	/	5	=	14.4\),	\(1001	\cdot	1001	=	1002001\),	etc.	However,
what	mathematicians	have	realized	is	that	these	ways	of	defining	addition,	multiplication,	subtraction
and	division	are	not	the	only	self-consistent	ways	of	defining	those	operators.

The	simplest	example	of	an	alternate	way	to	define	these	operators	is	modular	arithmetic,	defined	as
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follows.	The	%	operator	means	"take	the	remainder	of":	\(15	%	7	=	1\),	\(53	%	10	=	3\),	etc	(note	that
the	answer	is	always	non-negative,	so	for	example	\(-1	%	10	=	9\)).	For	any	specific	prime	number	\
(p\),	we	can	redefine:

\(x	+	y	\Rightarrow	(x	+	y)\)	%	\(p\)

\(x	\cdot	y	\Rightarrow	(x	\cdot	y)\)	%	\(p\)

\(x^y	\Rightarrow	(x^y)\)	%	\(p\)

\(x	-	y	\Rightarrow	(x	-	y)\)	%	\(p\)

\(x	/	y	\Rightarrow	(x	\cdot	y	^{p-2})\)	%	\(p\)

The	above	rules	are	all	self-consistent.	For	example,	if	\(p	=	7\),	then:

\(5	+	3	=	1\)	(as	\(8\)	%	\(7	=	1\))
\(1	-	3	=	5\)	(as	\(-2\)	%	\(7	=	5\))
\(2	\cdot	5	=	3\)
\(3	/	5	=	2\)	(as	(\(3	\cdot	5^5\))	%	\(7	=	9375\)	%	\(7	=	2\))

More	complex	identities	such	as	the	distributive	law	also	hold:	\((2	+	4)	\cdot	3\)	and	\(2	\cdot	3	+	4
\cdot	3\)	both	evaluate	to	\(4\).	Even	formulas	like	\((a^2	-	b^2)\)	=	\((a	-	b)	\cdot	(a	+	b)\)	are	still
true	in	this	new	kind	of	arithmetic.	Division	is	the	hardest	part;	we	can't	use	regular	division	because
we	want	the	values	to	always	remain	integers,	and	regular	division	often	gives	non-integer	results	(as
in	the	case	of	\(3/5\)).	The	funny	\(p-2\)	exponent	in	the	division	formula	above	is	a	consequence	of
getting	around	this	problem	using	Fermat's	little	theorem,	which	states	that	for	any	nonzero	\(x	<
p\),	it	holds	that	\(x^{p-1}\)	%	\(p	=	1\).	This	implies	that	\(x^{p-2}\)	gives	a	number	which,	if
multiplied	by	\(x\)	one	more	time,	gives	\(1\),	and	so	we	can	say	that	\(x^{p-2}\)	(which	is	an	integer)
equals	\(\frac{1}{x}\).	A	somewhat	more	complicated	but	faster	way	to	evaluate	this	modular
division	operator	is	the	extended	Euclidean	algorithm,	implemented	in	python	here.

Because	of	how	the	numbers	"wrap	around",	modular	arithmetic	is	sometimes	called	"clock	math"

With	modular	math	we've	created	an	entirely	new	system	of	arithmetic,	and	because	it's	self-
consistent	in	all	the	same	ways	traditional	arithmetic	is	self-consistent	we	can	talk	about	all	of	the
same	kinds	of	structures	over	this	field,	including	polynomials,	that	we	talk	about	in	"regular	math".
Cryptographers	love	working	in	modular	math	(or,	more	generally,	"finite	fields")	because	there	is	a
bound	on	the	size	of	a	number	that	can	arise	as	a	result	of	any	modular	math	calculation	-	no	matter
what	you	do,	the	values	will	not	"escape"	the	set	\(\{0,	1,	2	...	p-1\}\).

Fermat's	little	theorem	also	has	another	interesting	consequence.	If	\(p-1\)	is	a	multiple	of	some
number	\(k\),	then	the	function	\(x	\rightarrow	x^k\)	has	a	small	"image"	-	that	is,	the	function	can
only	give	\(\frac{p-1}{k}	+	1\)	possible	results.	For	example,	\(x	\rightarrow	x^2\)	with	\(p=17\)	has
only	9	possible	results.

https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
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With	higher	exponents	the	results	are	more	striking:	for	example,	\(x	\rightarrow	x^8\)	with	\(p=17\)
has	only	3	possible	results.	And	of	course,	\(x	\rightarrow	x^{16}\)	with	\(p=17\)	has	only	2	possible
results:	for	\(0\)	it	returns	\(0\),	and	for	everything	else	it	returns	\(1\).

Now	A	Bit	More	Efficiency

Let	us	now	move	on	to	a	slightly	more	complicated	version	of	the	protocol,	which	has	the	modest	goal
of	reducing	the	prover	complexity	from	\(10^{18}\)	to	\(10^{15}\),	and	then	\(10^{9}\).	First,
instead	of	operating	over	regular	numbers,	we	are	going	to	be	checking	proximity	to	polynomials	as
evaluated	with	modular	math.	As	we	saw	in	the	previous	article,	we	need	to	do	this	to	prevent
numbers	in	our	STARKs	from	growing	to	200,000	digits	anyway.	Here,	however,	we	are	going	to	use
the	"small	image"	property	of	certain	modular	exponentiations	as	a	side	effect	to	make	our	protocols
far	more	efficient.

Specifically,	we	will	work	with	\(p	=\)	1,000,005,001.	We	pick	this	modulus	because	(i)	it's	greater
than	1	billion,	and	we	need	it	to	be	at	least	1	billion	so	we	can	check	1	billion	points,	(ii)	it's	prime,
and	(iii)	\(p-1\)	is	an	even	multiple	of	1000.	The	exponentiation	\(x^{1000}\)	will	have	an	image	of
size	1,000,006	-	that	is,	the	exponentiation	can	only	give	1,000,006	possible	results.

This	means	that	the	"diagonal"	(\(x\),	\(x^{1000}\))	now	becomes	a	diagonal	with	a	wraparound;	as	\
(x^{1000}\)	can	only	take	on	1,000,006	possible	values,	we	only	need	1,000,006	rows.	And	so,	the
full	evaluation	of	\(g(x,	x^{1000})\)	now	has	only	~\(10^{15}\)	elements.

As	it	turns	out,	we	can	go	further:	we	can	have	the	prover	only	commit	to	the	evaluation	of	\(g\)	on	a
single	column.	The	key	trick	is	that	the	original	data	itself	already	contains	1000	points	that	are	on
any	given	row,	so	we	can	simply	sample	those,	derive	the	degree	\(<	1000\)	polynomial	that	they	are
on,	and	then	check	that	the	corresponding	point	on	the	column	is	on	the	same	polynomial.	We	then
check	that	the	column	itself	is	\(a	<	1000\)	polynomial.



The	verifier	complexity	is	still	sublinear,	but	the	prover	complexity	has	now	decreased	to	\(10^9\),
making	it	linear	in	the	number	of	queries	(though	it's	still	superlinear	in	practice	because	of
polynomial	evaluation	overhead).

And	Even	More	Efficiency

The	prover	complexity	is	now	basically	as	low	as	it	can	be.	But	we	can	still	knock	the	verifier
complexity	down	further,	from	quadratic	to	logarithmic.	And	the	way	we	do	that	is	by	making	the
algorithm	recursive.	We	start	off	with	the	last	protocol	above,	but	instead	of	trying	to	embed	a
polynomial	into	a	2D	polynomial	where	the	degrees	in	\(x\)	and	\(y\)	are	equal,	we	embed	the
polynomial	into	a	2D	polynomial	where	the	degree	bound	in	\(x\)	is	a	small	constant	value;	for
simplicity,	we	can	even	say	this	must	be	2.	That	is,	we	express	\(f(x)	=	g(x,	x^2)\),	so	that	the	row
check	always	requires	only	checking	3	points	on	each	row	that	we	sample	(2	from	the	diagonal	plus
one	from	the	column).

If	the	original	polynomial	has	degree	\(<	n\),	then	the	rows	have	degree	\(<	2\)	(ie.	the	rows	are
straight	lines),	and	the	column	has	degree	\(<	\frac{n}{2}\).	Hence,	what	we	now	have	is	a	linear-
time	process	for	converting	a	problem	of	proving	proximity	to	a	polynomial	of	degree	\(<	n\)	into	a
problem	of	proving	proximity	to	a	polynomial	of	degree	\(<	\frac{n}{2}\).	Furthermore,	the	number
of	points	that	need	to	be	committed	to,	and	thus	the	prover's	computational	complexity,	goes	down
by	a	factor	of	2	each	time	(Eli	Ben-Sasson	likes	to	compare	this	aspect	of	FRI	to	fast	fourier
transforms,	with	the	key	difference	that	unlike	with	FFTs,	each	step	of	recursion	only	introduces	one
new	sub-problem	instead	of	branching	out	into	two).	Hence,	we	can	simply	keep	using	the	protocol
on	the	column	created	in	the	previous	round	of	the	protocol,	until	the	column	becomes	so	small	that
we	can	simply	check	it	directly;	the	total	complexity	is	something	like	\(n	+	\frac{n}{2}	+	\frac{n}
{4}	+	...	\approx	2n\).

In	reality,	the	protocol	will	need	to	be	repeated	several	times,	because	there	is	still	a	significant
probability	that	an	attacker	will	cheat	one	round	of	the	protocol.	However,	even	still	the	proofs	are
not	too	large;	the	verification	complexity	is	logarithmic	in	the	degree,	though	it	goes	up	to	\(\log
^{2}n\)	if	you	count	the	size	of	the	Merkle	proofs.

The	"real"	FRI	protocol	also	has	some	other	modifications;	for	example,	it	uses	a	binary	Galois	field
(another	weird	kind	of	finite	field;	basically,	the	same	thing	as	the	12th	degree	extension	fields	I	talk
about	here,	but	with	the	prime	modulus	being	2).	The	exponent	used	for	the	row	is	also	typically	4
and	not	2.	These	modifications	increase	efficiency	and	make	the	system	friendlier	to	building	STARKs
on	top	of	it.	However,	these	modifications	are	not	essential	to	understanding	how	the	algorithm
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works,	and	if	you	really	wanted	to,	you	could	definitely	make	STARKs	with	the	simple	modular	math-
based	FRI	described	here	too.

Soundness

I	will	warn	that	calculating	soundness	-	that	is,	determining	just	how	low	the	probability	is	that	an
optimally	generated	fake	proof	will	pass	the	test	for	a	given	number	of	checks	-	is	still	somewhat	of	a
"here	be	dragons"	area	in	this	space.	For	the	simple	test	where	you	take	1,000,000	\(+	k\)	points,
there	is	a	simple	lower	bound:	if	a	given	dataset	has	the	property	that,	for	any	polynomial,	at	least
portion	p	of	the	dataset	is	not	on	the	polynomial,	then	a	test	on	that	dataset	will	pass	with	at	most	\
((1-p)^k\)	probability.	However,	even	that	is	a	very	pessimistic	lower	bound	-	for	example,	it's	not
possible	to	be	much	more	than	50%	close	to	two	low-degree	polynomials	at	the	same	time,	and	the
probability	that	the	first	points	you	select	will	be	the	one	with	the	most	points	on	it	is	quite	low.	For
full-blown	FRI,	there	are	also	complexities	involving	various	specific	kinds	of	attacks.

Here	is	a	recent	article	by	Ben-Sasson	et	al	describing	soundness	properties	of	FRI	in	the	context	of
the	entire	STARK	scheme.	In	general,	the	"good	news"	is	that	it	seems	likely	that	in	order	to	pass	the
\(D(x)	\cdot	Z(x)	=	C(P(x))\)	check	on	the	STARK,	the	\(D(x)\)	values	for	an	invalid	solution	would
need	to	be	"worst	case"	in	a	certain	sense	-	they	would	need	to	be	maximally	far	from	any	valid
polynomial.	This	implies	that	we	don't	need	to	check	for	that	much	proximity.	There	are	proven	lower
bounds,	but	these	bounds	would	imply	that	an	actual	STARK	need	to	be	~1-3	megabytes	in	size;
conjectured	but	not	proven	stronger	bounds	reduce	the	required	number	of	checks	by	a	factor	of	4.

The	third	part	of	this	series	will	deal	with	the	last	major	part	of	the	challenge	in	building	STARKs:
how	we	actually	construct	constraint	checking	polynomials	so	that	we	can	prove	statements	about
arbitrary	computation,	and	not	just	a	few	Fibonacci	numbers.

https://eccc.weizmann.ac.il/report/2016/149/
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Hopefully	many	people	by	now	have	heard	of	ZK-SNARKs,	the	general-purpose	succinct	zero
knowledge	proof	technology	that	can	be	used	for	all	sorts	of	usecases	ranging	from	verifiable
computation	to	privacy-preserving	cryptocurrency.	What	you	might	not	know	is	that	ZK-SNARKs
have	a	newer,	shinier	cousin:	ZK-STARKs.	With	the	T	standing	for	"transparent",	ZK-STARKs	resolve
one	of	the	primary	weaknesses	of	ZK-SNARKs,	its	reliance	on	a	"trusted	setup".	They	also	come	with
much	simpler	cryptographic	assumptions,	avoiding	the	need	for	elliptic	curves,	pairings	and	the
knowledge-of-exponent	assumption	and	instead	relying	purely	on	hashes	and	information	theory;	this
also	means	that	they	are	secure	even	against	attackers	with	quantum	computers.

However,	this	comes	at	a	cost:	the	size	of	a	proof	goes	up	from	288	bytes	to	a	few	hundred	kilobytes.
Sometimes	the	cost	will	not	be	worth	it,	but	at	other	times,	particularly	in	the	context	of	public
blockchain	applications	where	the	need	for	trust	minimization	is	high,	it	may	well	be.	And	if	elliptic
curves	break	or	quantum	computers	do	come	around,	it	definitely	will	be.

So	how	does	this	other	kind	of	zero	knowledge	proof	work?	First	of	all,	let	us	review	what	a	general-
purpose	succinct	ZKP	does.	Suppose	that	you	have	a	(public)	function	\(f\),	a	(private)	input	\(x\)	and
a	(public)	output	\(y\).	You	want	to	prove	that	you	know	an	\(x\)	such	that	\(f(x)	=	y\),	without
revealing	what	\(x\)	is.	Furthermore,	for	the	proof	to	be	succinct,	you	want	it	to	be	verifiable	much
more	quickly	than	computing	\(f\)	itself.

Let's	go	through	a	few	examples:

\(f\)	is	a	computation	that	takes	two	weeks	to	run	on	a	regular	computer,	but	two	hours	on	a
data	center.	You	send	the	data	center	the	computation	(ie.	the	code	to	run	\(f\)	),	the	data	center
runs	it,	and	gives	back	the	answer	\(y\)	with	a	proof.	You	verify	the	proof	in	a	few	milliseconds,
and	are	convinced	that	\(y\)	actually	is	the	answer.
You	have	an	encrypted	transaction,	of	the	form	"\(X_1\)	was	my	old	balance.	\(X_2\)	was	your	old
balance.	\(X_3\)	is	my	new	balance.	\(X_4\)	is	your	new	balance".	You	want	to	create	a	proof	that
this	transaction	is	valid	(specifically,	old	and	new	balances	are	non-negative,	and	the	decrease	in
my	balance	cancels	out	the	increase	in	your	balance).	\(x\)	can	be	the	pair	of	encryption	keys,
and	\(f\)	can	be	a	function	which	contains	as	a	built-in	public	input	the	transaction,	takes	as
input	the	keys,	decrypts	the	transaction,	performs	the	check,	and	returns	1	if	it	passes	and	0	if	it
does	not.	\(y\)	would	of	course	be	1.
You	have	a	blockchain	like	Ethereum,	and	you	download	the	most	recent	block.	You	want	a
proof	that	this	block	is	valid,	and	that	this	block	is	at	the	tip	of	a	chain	where	every	block	in	the
chain	is	valid.	You	ask	an	existing	full	node	to	provide	such	a	proof.	\(x\)	is	the	entire	blockchain
(yes,	all	??	gigabytes	of	it),	\(f\)	is	a	function	that	processes	it	block	by	block,	verifies	the	validity
and	outputs	the	hash	of	the	last	block,	and	\(y\)	is	the	hash	of	the	block	you	just	downloaded.
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So	what's	so	hard	about	all	this?	As	it	turns	out,	the	zero	knowledge	(ie.	privacy)	guarantee	is
(relatively!)	easy	to	provide;	there	are	a	bunch	of	ways	to	convert	any	computation	into	an	instance	of
something	like	the	three	color	graph	problem,	where	a	three-coloring	of	the	graph	corresponds	to	a
solution	of	the	original	problem,	and	then	use	a	traditional	zero	knowledge	proof	protocol	to	prove
that	you	have	a	valid	graph	coloring	without	revealing	what	it	is.	This	excellent	post	by	Matthew
Green	from	2014	describes	this	in	some	detail.

The	much	harder	thing	to	provide	is	succinctness.	Intuitively	speaking,	proving	things	about
computation	succinctly	is	hard	because	computation	is	incredibly	fragile.	If	you	have	a	long	and
complex	computation,	and	you	as	an	evil	genie	have	the	ability	to	flip	a	0	to	a	1	anywhere	in	the
middle	of	the	computation,	then	in	many	cases	even	one	flipped	bit	will	be	enough	to	make	the
computation	give	a	completely	different	result.	Hence,	it's	hard	to	see	how	you	can	do	something	like
randomly	sampling	a	computation	trace	in	order	to	gauge	its	correctness,	as	it's	just	too	easy	to	miss
that	"one	evil	bit".	However,	with	some	fancy	math,	it	turns	out	that	you	can.

The	general	very	high	level	intuition	is	that	the	protocols	that	accomplish	this	use	similar	math	to
what	is	used	in	erasure	coding,	which	is	frequently	used	to	make	data	fault-tolerant.	If	you	have	a
piece	of	data,	and	you	encode	the	data	as	a	line,	then	you	can	pick	out	four	points	on	the	line.	Any
two	of	those	four	points	are	enough	to	reconstruct	the	original	line,	and	therefore	also	give	you	the
other	two	points.	Furthermore,	if	you	make	even	the	slightest	change	to	the	data,	then	it	is
guaranteed	at	least	three	of	those	four	points.	You	can	also	encode	the	data	as	a	degree-1,000,000
polynomial,	and	pick	out	2,000,000	points	on	the	polynomial;	any	1,000,001	of	those	points	will
recover	the	original	data	and	therefore	the	other	points,	and	any	deviation	in	the	original	data	will
change	at	least	1,000,000	points.	The	algorithms	shown	here	will	make	heavy	use	of	polynomials	in
this	way	for	error	amplification.

Changing	even	one	point	in	the	original	data	will	lead	to	large	changes	in	a	polynomial's	trajectory
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A	Somewhat	Simple	Example

Suppose	that	you	want	to	prove	that	you	have	a	polynomial	\(P\)	such	that	\(P(x)\)	is	an	integer	with	\
(0	\leq	P(x)	\leq	9\)	for	all	\(x\)	from	1	to	1	million.	This	is	a	simple	instance	of	the	fairly	common	task
of	"range	checking";	you	might	imagine	this	kind	of	check	being	used	to	verify,	for	example,	that	a
set	of	account	balances	is	still	positive	after	applying	some	set	of	transactions.	If	it	were	\(1	\leq	P(x)
\leq	9\),	this	could	be	part	of	checking	that	the	values	form	a	correct	Sudoku	solution.

The	"traditional"	way	to	prove	this	would	be	to	just	show	all	1,000,000	points,	and	verify	it	by
checking	the	values.	However,	we	want	to	see	if	we	can	make	a	proof	that	can	be	verified	in	less	than
1,000,000	steps.	Simply	randomly	checking	evaluations	of	\(P\)	won't	do;	there's	always	the
possibility	that	a	malicious	prover	came	up	with	a	\(P\)	which	satisfies	the	constraint	in	999,999
places	but	does	not	satisfy	it	in	the	last	one,	and	random	sampling	only	a	few	values	will	almost
always	miss	that	value.	So	what	can	we	do?

Let's	mathematically	transform	the	problem	somewhat.	Let	\(C(x)\)	be	a	constraint	checking
polynomial;	\(C(x)	=	0\)	if	\(0	\leq	x	\leq	9\)	and	is	nonzero	otherwise.	There's	a	simple	way	to
construct	\(C(x)\):	\(x	\cdot	(x-1)	\cdot	(x-2)	\cdot	\ldots(x-9)\)	(we'll	assume	all	of	our	polynomials	and
other	values	use	exclusively	integers,	so	we	don't	need	to	worry	about	numbers	in	between).

Now,	the	problem	becomes:	prove	that	you	know	\(P\)	such	that	\(C(P(x))	=	0\)	for	all	\(x\)	from	1	to
1,000,000.	Let	\(Z(x)	=	(x-1)	\cdot	(x-2)	\cdot	\ldots	(x-1000000)\).	It's	a	known	mathematical	fact	that
any	polynomial	which	equals	zero	at	all	\(x\)	from	1	to	1,000,000	is	a	multiple	of	\(Z(x)\).	Hence,	the
problem	can	now	be	transformed	again:	prove	that	you	know	\(P\)	and	\(D\)	such	that	\(C(P(x))	=	Z(x)
\cdot	D(x)\)	for	all	\(x\)	(note	that	if	you	know	a	suitable	\(C(P(x))\)	then	dividing	it	by	\(Z(x)\)	to
compute	\(D(x)\)	is	not	too	difficult;	you	can	use	long	polynomial	division	or	more	realistically	a	faster
algorithm	based	on	FFTs).	Now,	we've	converted	our	original	statement	into	something	that	looks
mathematically	clean	and	possibly	quite	provable.

So	how	does	one	prove	this	claim?	We	can	imagine	the	proof	process	as	a	three-step	communication
between	a	prover	and	a	verifier:	the	prover	sends	some	information,	then	the	verifier	sends	some
requests,	then	the	prover	sends	some	more	information.	First,	the	prover	commits	to	(ie.	makes	a
Merkle	tree	and	sends	the	verifier	the	root	hash	of)	the	evaluations	of	\(P(x)\)	and	\(D(x)\)	for	all	\(x\)
from	1	to	1	billion	(yes,	billion).	This	includes	the	1	million	points	where	\(0	\leq	P(x)	\leq	9\)	as	well
as	the	999	million	points	where	that	(probably)	is	not	the	case.
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We	assume	the	verifier	already	knows	the	evaluation	of	\(Z(x)\)	at	all	of	these	points;	the	\(Z(x)\)	is
like	a	"public	verification	key"	for	this	scheme	that	everyone	must	know	ahead	of	time	(clients	that	do
not	have	the	space	to	store	\(Z(x)\)	in	its	entirety	can	simply	store	the	Merkle	root	of	\(Z(x)\)	and
require	the	prover	to	also	provide	branches	for	every	\(Z(x)\)	value	that	the	verifier	needs	to	query;
alternatively,	there	are	some	number	fields	over	which	\(Z(x)\)	for	certain	\(x\)	is	very	easy	to
calculate).	After	receiving	the	commitment	(ie.	Merkle	root)	the	verifier	then	selects	a	random	16	\
(x\)	values	between	1	and	1	billion,	and	asks	the	prover	to	provide	the	Merkle	branches	for	\(P(x)\)
and	\(D(x)\)	there.	The	prover	provides	these	values,	and	the	verifier	checks	that	(i)	the	branches
match	the	Merkle	root	that	was	provided	earlier,	and	(ii)	\(C(P(x))\)	actually	equals	\(Z(x)	\cdot	D(x)\)
in	all	16	cases.

We	know	that	this	proof	perfect	completeness	-	if	you	actually	know	a	suitable	\(P(x)\),	then	if	you
calculate	\(D(x)\)	and	construct	the	proof	correctly	it	will	always	pass	all	16	checks.	But	what	about
soundness	-	that	is,	if	a	malicious	prover	provides	a	bad	\(P(x)\),	what	is	the	minimum	probability	that
they	will	get	caught?	We	can	analyze	as	follows.	Because	\(C(P(x))\)	is	a	degree-10	polynomial
composed	with	a	degree-1,000,000	polynomial,	its	degree	will	be	at	most	10,000,000.	In	general,	we
know	that	two	different	degree-\(N\)	polynomials	agree	on	at	most	\(N\)	points;	hence,	a	degree-
10,000,000	polynomial	which	is	not	equal	to	any	polynomial	which	always	equals	\(Z(x)	\cdot	D(x)\)
for	some	\(x\)	will	necessarily	disagree	with	them	all	at	at	least	990,000,000	points.	Hence,	the
probability	that	a	bad	\(P(x)\)	will	get	caught	in	even	one	round	is	already	99%;	with	16	checks,	the
probability	of	getting	caught	goes	up	to	\(1	-	10^{-32}\);	that	is	to	say,	the	scheme	is	about	as	hard
to	spoof	as	it	is	to	compute	a	hash	collision.

So...	what	did	we	just	do?	We	used	polynomials	to	"boost"	the	error	in	any	bad	solution,	so	that	any
incorrect	solution	to	the	original	problem,	which	would	have	required	a	million	checks	to	find
directly,	turns	into	a	solution	to	the	verification	protocol	that	can	get	flagged	as	erroneous	at	99%	of
the	time	with	even	a	single	check.

We	can	convert	this	three-step	mechanism	into	a	non-interactive	proof,	which	can	be	broadcasted	by
a	single	prover	once	and	then	verified	by	anyone,	using	the	Fiat-Shamir	heuristic.	The	prover	first
builds	up	a	Merkle	tree	of	the	\(P(x)\)	and	\(D(x)\)	values,	and	computes	the	root	hash	of	the	tree.	The
root	itself	is	then	used	as	the	source	of	entropy	that	determines	what	branches	of	the	tree	the	prover
needs	to	provide.	The	prover	then	broadcasts	the	Merkle	root	and	the	branches	together	as	the
proof.	The	computation	is	all	done	on	the	prover	side;	the	process	of	computing	the	Merkle	root	from
the	data,	and	then	using	that	to	select	the	branches	that	get	audited,	effectively	substitutes	the	need
for	an	interactive	verifier.

The	only	thing	a	malicious	prover	without	a	valid	\(P(x)\)	can	do	is	try	to	make	a	valid	proof	over	and
over	again	until	eventually	they	get	extremely	lucky	with	the	branches	that	a	Merkle	root	that	they
compute	selects,	but	with	a	soundness	of	\(1	-	10^{-32}\)	(ie.	probability	of	at	least	\(1	-	10^{-32}\)
that	a	given	attempted	fake	proof	will	fail	the	check)	it	would	take	a	malicious	prover	billions	of	years
to	make	a	passable	proof.

https://en.wikipedia.org/wiki/Fiat%E2%80%93Shamir_heuristic


Going	Further

To	illustrate	the	power	of	this	technique,	let's	use	it	to	do	something	a	little	less	trivial:	prove	that
you	know	the	millionth	Fibonacci	number.	To	accomplish	this,	we'll	prove	that	you	have	knowledge	of
a	polynomial	which	represents	a	computation	tape,	with	\(P(x)\)	representing	the	\(x\)th	Fibonacci
number.	The	constraint	checking	polynomial	will	now	hop	across	three	x-coordinates:	\(C(x_1,	x_2,
x_3)	=	x_3-x_2-x_1\)	(notice	how	if	\(C(P(x),	P(x+1),	P(x+2))	=	0\)	for	all	\(x\)	then	\(P(x)\)	represents	a
Fibonacci	sequence).

The	translated	problem	becomes:	prove	that	you	know	\(P\)	and	\(D\)	such	that	\(C(P(x),	P(x+1),
P(x+2))	=	Z(x)	\cdot	D(x)\).	For	each	of	the	16	indices	that	the	proof	audits,	the	prover	will	need	to
provide	Merkle	branches	for	\(P(x)\),	\(P(x+1)\),	\(P(x+2)\)	and	\(D(x)\).	The	prover	will	additionally
need	to	provide	Merkle	branches	to	show	that	\(P(0)	=	P(1)	=	1\).	Otherwise,	the	entire	process	is	the
same.

Now,	to	accomplish	this	in	reality	there	are	two	problems	that	need	to	be	resolved.	The	first	problem
is	that	if	we	actually	try	to	work	with	regular	numbers	the	solution	would	not	be	efficient	in	practice,
because	the	numbers	themselves	very	easily	get	extremely	large.	The	millionth	Fibonacci	number,
for	example,	has	208988	digits.	If	we	actually	want	to	achieve	succinctness	in	practice,	instead	of
doing	these	polynomials	with	regular	numbers,	we	need	to	use	finite	fields	-	number	systems	that	still
follow	the	same	arithmetic	laws	we	know	and	love,	like	\(a	\cdot	(b+c)	=	(a\cdot	b)	+	(a\cdot	c)\)	and
\((a^2	-	b^2)	=	(a-b)	\cdot	(a+b)\),	but	where	each	number	is	guaranteed	to	take	up	a	constant
amount	of	space.	Proving	claims	about	the	millionth	Fibonacci	number	would	then	require	a	more
complicated	design	that	implements	big-number	arithmetic	on	top	of	this	finite	field	math.

The	simplest	possible	finite	field	is	modular	arithmetic;	that	is,	replace	every	instance	of	\(a	+	b\)
with	\(a	+	b	\mod{N}\)	for	some	prime	\(N\),	do	the	same	for	subtraction	and	multiplication,	and	for
division	use	modular	inverses	(eg.	if	\(N	=	7\),	then	\(3	+	4	=	0\),	\(2	+	6	=	1\),	\(3	\cdot	4	=	5\),	\(4	/	2
=	2\)	and	\(5	/	2	=	6\)).	You	can	learn	more	about	these	kinds	of	number	systems	from	my	description
on	prime	fields	here	(search	"prime	field"	in	the	page)	or	this	Wikipedia	article	on	modular	arithmetic
(the	articles	that	you'll	find	by	searching	directly	for	"finite	fields"	and	"prime	fields"	unfortunately
tend	to	be	very	complicated	and	go	straight	into	abstract	algebra,	don't	bother	with	those).

Second,	you	might	have	noticed	that	in	my	above	proof	sketch	for	soundness	I	neglected	to	cover	one
kind	of	attack:	what	if,	instead	of	a	plausible	degree-1,000,000	\(P(x)\)	and	degree-9,000,000	\(D(x)\),
the	attacker	commits	to	some	values	that	are	not	on	any	such	relatively-low-degree	polynomial?
Then,	the	argument	that	an	invalid	\(C(P(x))\)	must	differ	from	any	valid	\(C(P(x))\)	on	at	least	990
million	points	does	not	apply,	and	so	different	and	much	more	effective	kinds	of	attacks	are	possible.
For	example,	an	attacker	could	generate	a	random	value	\(p\)	for	every	\(x\),	then	compute	\(d	=	C(p)
/	Z(x)\)	and	commit	to	these	values	in	place	of	\(P(x)\)	and	\(D(x)\).	These	values	would	not	be	on	any
kind	of	low-degree	polynomial,	but	they	would	pass	the	test.

It	turns	out	that	this	possibility	can	be	effectively	defended	against,	though	the	tools	for	doing	so	are
fairly	complex,	and	so	you	can	quite	legitimately	say	that	they	make	up	the	bulk	of	the	mathematical
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innovation	in	STARKs.	Also,	the	solution	has	a	limitation:	you	can	weed	out	commitments	to	data	that
are	very	far	from	any	degree-1,000,000	polynomial	(eg.	you	would	need	to	change	20%	of	all	the
values	to	make	it	a	degree-1,000,000	polynomial),	but	you	cannot	weed	out	commitments	to	data	that
only	differ	from	a	polynomial	in	only	one	or	two	coordinates.	Hence,	what	these	tools	will	provide	is
proof	of	proximity	-	proof	that	most	of	the	points	on	\(P\)	and	\(D\)	correspond	to	the	right	kind	of
polynomial.

As	it	turns	out,	this	is	sufficient	to	make	a	proof,	though	there	are	two	"catches".	First,	the	verifier
needs	to	check	a	few	more	indices	to	make	up	for	the	additional	room	for	error	that	this	limitation
introduces.	Second,	if	we	are	doing	"boundary	constraint	checking"	(eg.	verifying	\(P(0)	=	P(1)	=	1\)
in	the	Fibonacci	example	above),	then	we	need	to	extend	the	proof	of	proximity	to	not	only	prove	that
most	points	are	on	the	same	polynomial,	but	also	prove	that	those	two	specific	points	(or	whatever
other	number	of	specific	points	you	want	to	check)	are	on	that	polynomial.

In	the	next	part	of	this	series,	I	will	describe	the	solution	to	proximity	checking	in	much	more	detail,
and	in	the	third	part	I	will	describe	how	more	complex	constraint	functions	can	be	constructed	to
check	not	just	Fibonacci	numbers	and	ranges,	but	also	arbitrary	computation.
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On	Medium-of-Exchange	Token	Valuations

One	kind	of	token	model	that	has	become	popular	among	many	recent	token	sale	projects	is	the
"network	medium	of	exchange	token".	The	general	pitch	for	this	kind	of	token	goes	as	follows.	We,
the	developers,	build	a	network,	and	this	network	allows	you	to	do	new	cool	stuff.	This	network	is	a
sharing-economy-style	system:	it	consists	purely	of	a	set	of	sellers,	that	provide	resources	within
some	protocol,	and	buyers	that	purchase	the	services,	where	both	buyers	and	sellers	come	from	the
community.	But	the	purchase	and	sale	of	things	within	this	network	must	be	done	with	the	new	token
that	we're	selling,	and	this	is	why	the	token	will	have	value.

If	it	were	the	developers	themselves	that	were	acting	as	the	seller,	then	this	would	be	a	very
reasonable	and	normal	arrangement,	very	similar	in	nature	to	a	Kickstarter-style	product	sale.	The
token	actually	would,	in	a	meaningful	economic	sense,	be	backed	by	the	services	that	are	provided	by
the	developers.

We	can	see	this	in	more	detail	by	describing	what	is	going	on	in	a	simple	economic	model.	Suppose
that	\(N\)	people	value	a	product	that	a	developer	wants	to	release	at	\(\$x\),	and	believe	the
developer	will	give	them	the	product.	The	developer	does	a	sale,	and	raises	\(N\)	units	for	\(\$w	<	x\)
each,	thus	raising	a	total	revenue	of	\(\$Nw\).	The	developer	builds	the	product,	and	gives	it	to	each
of	the	buyers.	At	the	end	of	the	day,	the	buyers	are	happy,	and	the	developer	is	happy.	Nobody	feels
like	they	made	an	avoidable	mistake	in	participating,	and	everyone's	expectations	have	been	met.
This	kind	of	economic	model	is	clearly	stable.

Now,	let's	look	at	the	story	with	a	"medium	of	exchange"	token.	\(N\)	people	value	a	product	that	will
exist	in	a	decentralized	network	at	\(\$x\);	the	product	will	be	sold	at	a	price	of	\(\$w	<	x\).	They	each
buy	\(\$w\)	of	tokens	in	the	sale.	The	developer	builds	the	network.	Some	sellers	come	in,	and	offer
the	product	inside	the	network	for	\(\$w\).	The	buyers	use	their	tokens	to	purchase	this	product,
spending	\(\$w\)	of	tokens	and	getting	\(\$x\)	of	value.	The	sellers	spend	\(\$v	<	w\)	of	resources	and
effort	producing	this	product,	and	they	now	have	\(\$w\)	worth	of	tokens.

Notice	that	here,	the	cycle	is	not	complete,	and	in	fact	it	never	will	be;	there	needs	to	be	an	ongoing
stream	of	buyers	and	sellers	for	the	token	to	continue	having	its	value.	The	stream	does	not	strictly
speaking	have	to	be	endless;	if	in	every	round	there	is	a	chance	of	at	least	\(\frac{v}{w}\)	that	there
will	be	a	next	round,	then	the	model	still	works,	as	even	though	someone	will	eventually	be	cheated,
the	risk	of	any	individual	participant	becoming	that	person	is	lower	than	the	benefit	that	they	get
from	participating.	It's	also	totally	possible	that	the	token	would	depreciate	in	each	round,	with	its
value	multiplying	by	some	factor	\(f\)	where	\(\frac{v}{w}	<	f	<	1\),	until	it	eventually	reaches	a
price	of	zero,	and	it	would	still	be	on	net	in	everyone's	interest	to	participate.	Hence,	the	model	is
theoretically	feasible,	but	you	can	see	how	this	model	is	more	complex	and	more	tenuous	than	the
simple	"developers	as	seller"	model.

Traditional	macroeconomics	has	a	simple	equation	to	try	to	value	a	medium	of	exchange:

\(MV	=	PT\)

Here:

\(M\)	is	the	total	money	supply;	that	is,	the	total	number	of	coins
\(V\)	is	the	"velocity	of	money";	that	is,	the	number	of	times	that	an	average	coin	changes	hands
every	day
\(P\)	is	the	"price	level".	This	is	the	price	of	goods	and	services	in	terms	of	the	token;	so	it	is
actually	the	inverse	of	the	currency's	price
\(T\)	is	the	transaction	volume:	the	economic	value	of	transactions	per	day

The	proof	for	this	is	a	trivial	equality:	if	there	are	\(N\)	coins,	and	each	changes	hands	\(M\)	times	per
day,	then	this	is	\(M	\cdot	N\)	coins'	worth	of	economic	value	transacted	per	day.	If	this	represents	\
(\$T\)	worth	of	economic	value,	then	the	price	of	each	coin	is	\(\frac{T}{M	\cdot	N}\),	so	the	"price
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level"	is	the	inverse	of	this,	\(\frac{M	\cdot	N}{T}\).

For	easier	analysis,	we	can	recast	two	variables:

We	refer	to	\(\frac{1}{V}\)	with	\(H\),	the	time	that	a	user	holds	a	coin	before	using	it	to	make	a
transaction
We	refer	to	\(\frac{1}{P}\)	with	\(C\),	the	price	of	the	currency	(think	\(C	=	cost\))

Now,	we	have:

\(\frac{M}{H}	=	\frac{T}{C}\)

\(MC	=	TH\)

The	left	term	is	quite	simply	the	market	cap.	The	right	term	is	the	economic	value	transacted	per
day,	multiplied	by	the	amount	of	time	that	a	user	holds	a	coin	before	using	it	to	transact.

This	is	a	steady-state	model,	assuming	that	the	same	quantity	of	users	will	also	be	there.	In	reality,
however,	the	quantity	of	users	may	change,	and	so	the	price	may	change.	The	time	that	users	hold	a
coin	may	change,	and	this	may	cause	the	price	to	change	as	well.

Let	us	now	look	once	again	at	the	economic	effect	on	the	users.	What	do	users	lose	by	using	an
application	with	a	built-in	appcoin	rather	than	plain	old	ether	(or	bitcoin,	or	USD)?	The	simplest	way
to	express	this	is	as	follows:	the	"implicit	cost"	imposed	by	such	a	system	on	users	the	cost	to	the
user	of	holding	those	coins	for	that	period	of	time,	instead	of	holding	that	value	in	the	currency	that
they	would	otherwise	have	preferred	to	hold.

There	are	many	factors	involved	in	this	cost:	cognitive	costs,	exchange	costs	and	spreads,	transaction
fees,	and	many	smaller	items.	One	particular	significant	factor	of	this	implicit	cost	is	expected	return.
If	a	user	expects	the	appcoin	to	only	grow	in	value	by	1%	per	year,	while	their	other	available
alternatives	grow	3%	per	year,	and	they	hold	$20	of	the	currency	for	five	days,	then	that	is	an
expected	loss	of	roughly	\(\$20	\cdot	2%	\cdot	5	/	365	=	\$0.0054\).

One	immediate	conclusion	from	this	particular	insight	is	that	appcoins	are	very	much	a	multi-
equilibrium	game.	If	the	appcoin	grows	at	2%	per	year,	then	the	fee	drops	to	$0.0027,	and	this
essentially	makes	the	"de-facto	fee"	of	the	application	(or	at	least	a	large	component	of	it)	2x
cheaper,	attracting	more	users	and	growing	its	value	more.	If	the	appcoin	starts	falling	at	10%	per
year,	however,	then	the	"de-facto	fee"	grows	to	$0.035,	driving	many	users	away	and	accelerating	its
growth.

This	leads	to	increased	opportunities	for	market	manipulation,	as	a	manipulator	would	not	just	be
wasting	their	money	fighting	against	a	single	equilibrium,	but	may	in	fact	successfully	nudge	a	given
currency	from	one	equilibrium	into	another,	and	profit	from	successfully	"predicting"	(ie.	causing)
this	shift.	It	also	means	there	is	a	large	amount	of	path	dependency,	and	established	brands	matter	a
lot;	witness	the	epic	battles	over	which	fork	of	the	bitcoin	blockchain	can	be	called	Bitcoin	for	one
particular	high-profile	example.

Another,	and	perhaps	even	more	important,	conclusion	is	that	the	market	cap	of	an	appcoin	depends
crucially	on	the	holding	time	\(H\).	If	someone	creates	a	very	efficient	exchange,	which	allows
users	to	purchase	an	appcoin	in	real	time	and	then	immediately	use	it	in	the	application,	then
allowing	sellers	to	immediately	cash	out,	then	the	market	cap	would	drop	precipitously.	If	a	currency
is	stable	or	prospects	are	looking	optimistic,	then	this	may	not	matter	because	users	actually	see	no
disadvantage	from	holding	the	token	instead	of	holding	something	else	(ie.	zero	"de-facto	fee"),	but	if
prospects	start	to	turn	sour	then	such	a	well-functioning	exchange	can	acelerate	its	demise.

You	might	think	that	exchanges	are	inherently	inefficient,	requiring	users	to	create	an	account,	login,
deposit	coins,	wait	for	36	confirmations,	trade	and	logout,	but	in	fact	hyper-efficient	exchanges	are
around	the	corner.	Here	is	a	thread	discussing	designs	for	fully	autonomous	synchronous	on-chain
transactions,	which	can	convert	token	A	into	token	B,	and	possibly	even	then	use	token	B	to	do
something,	within	a	single	transaction.	Many	other	platforms	are	being	developed	as	well.

What	this	all	serves	to	show	is	that	relying	purely	on	the	medium-of-exchange	argument	to	support	a
token	value,	while	attractive	because	of	its	seeming	ability	to	print	money	out	of	thin	air,	is	ultimately
quite	brittle.	Protocol	tokens	using	this	model	may	well	be	sustained	for	some	time	due	to
irrationality	and	temporary	equilibria	where	the	implicit	cost	of	holding	the	token	is	zero,	but	it	is	a
kind	of	model	which	always	has	an	unavoidable	risk	of	collapsing	at	any	time.
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So	what	is	the	alternative?	One	simple	alternative	is	the	etherdelta	approach,	where	an	application
simply	collects	fees	in	the	interface.	One	common	criticism	is:	but	can't	someone	fork	the	interface	to
take	out	the	fees?	A	counter-retort	is:	someone	can	also	fork	the	interface	to	replace	your	protocol
token	with	ETH,	BTC,	DOGE	or	whatever	else	users	would	prefer	to	use.	One	can	make	a	more
sophisticated	argument	that	this	is	hard	because	the	"pirate"	version	would	have	to	compete	with	the
"official"	version	for	network	effect,	but	one	can	just	as	easily	create	an	official	fee-paying	client	that
refuses	to	interact	with	non-fee-paying	clients	as	well;	this	kind	of	network	effect-based	enforcement
is	similar	to	how	value-added-taxes	are	typically	enforced	in	Europe	and	other	places.	Official-client
buyers	would	not	interact	with	non-official-client	sellers,	and	official-client	sellers	would	not	interact
with	non-official-client	buyers,	so	a	large	group	of	users	would	need	to	switch	to	the	"pirate"	client	at
the	same	time	to	successfully	dodge	fees.	This	is	not	perfectly	robust,	but	it	is	certainly	as	good	as
the	approach	of	creating	a	new	protocol	token.

If	developers	want	to	front-load	revenue	to	fund	initial	development,	then	they	can	sell	a	token,	with
the	property	that	all	fees	paid	are	used	to	buy	back	some	of	the	token	and	burn	it;	this	would	make
the	token	backed	by	the	future	expected	value	of	upcoming	fees	spent	inside	the	system.	One	can
transform	this	design	into	a	more	direct	utility	token	by	requiring	users	to	use	the	utility	token	to	pay
fees,	and	having	the	interface	use	an	exchange	to	automatically	purchase	tokens	if	the	user	does	not
have	tokens	already.

The	important	thing	is	that	for	the	token	to	have	a	stable	value,	it	is	highly	beneficial	for	the	token
supply	to	have	sinks	-	places	where	tokens	actually	disappear	and	so	the	total	token	quantity
decreases	over	time.	This	way,	there	is	a	more	transparent	and	explicit	fee	paid	by	users,	instead	of
the	highly	variable	and	difficult	to	calculate	"de-facto	fee",	and	there	is	also	a	more	transparent	and
explicit	way	to	figure	out	what	the	value	of	protocol	tokens	should	be.
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A	Prehistory	of	the	Ethereum	Protocol

Although	the	ideas	behind	the	current	Ethereum	protocol	have	largely	been	stable	for	two	years,	Ethereum	did	not	emerge	all	at	once,	in	its	current	conception
and	fully	formed.	Before	the	blockchain	has	launched,	the	protocol	went	through	a	number	of	significant	evolutions	and	design	decisions.	The	purpose	of	this
article	will	be	to	go	through	the	various	evolutions	that	the	protocol	went	through	from	start	to	launch;	the	countless	work	that	was	done	on	the	implementations	of
the	protocol	such	as	Geth,	cppethereum,	pyethereum,	and	EthereumJ,	as	well	as	the	history	of	applications	and	businesses	in	the	Ethereum	ecosystem,	is
deliberately	out	of	scope.

Also	out	of	scope	is	the	history	of	Casper	and	sharding	research.	While	we	can	certainly	make	more	blog	posts	talking	about	all	of	the	various	ideas	Vlad,	Gavin,
myself	and	others	came	up	with,	and	discarded,	including	"proof	of	proof	of	work",	hub-and-spoke	chains,	"hypercubes",	shadow	chains	(arguably	a	precursor	to
Plasma),	chain	fibers,	and	various	iterations	of	Casper,	as	well	as	Vlad's	rapidly	evolving	thoughts	on	reasoning	about	incentives	of	actors	in	consensus	protocols
and	properties	thereof,	this	would	also	be	far	too	complex	a	story	to	go	through	in	one	post,	so	we	will	leave	it	out	for	now.

Let	us	first	begin	with	the	very	earliest	version	of	what	would	eventually	become	Ethereum,	back	when	it	was	not	even	called	Ethereum.	When	I	was	visiting	Israel
in	October	2013,	I	spent	quite	a	bit	of	time	with	the	Mastercoin	team,	and	even	suggested	a	few	features	for	them.	After	spending	a	couple	of	times	thinking	about
what	they	were	doing,	I	sent	the	team	a	proposal	to	make	their	protocol	more	generalized	and	support	more	types	of	contracts	without	adding	an	equally	large	and
complex	set	of	features:

https://web.archive.org/web/20150627031414/http://vbuterin.com/ultimatescripting.html

Notice	that	this	is	very	far	from	the	later	and	more	expansive	vision	of	Ethereum:	it	specialized	purely	in	what	Mastercoin	was	trying	to	specialize	in	already,
namely	two-party	contracts	where	parties	A	and	B	would	both	put	in	money,	and	then	they	would	later	get	money	out	according	to	some	formula	specified	in	the
contract	(eg.	a	bet	would	say	"if	X	happens	then	give	all	the	money	to	A,	otherwise	give	all	the	money	to	B").	The	scripting	language	was	not	Turing-complete.

The	Mastercoin	team	was	impressed,	but	they	were	not	interested	in	dropping	everything	they	were	doing	to	go	in	this	direction,	which	I	was	increasingly
convinced	is	the	correct	choice.	So	here	comes	version	2,	circa	December:

https://web.archive.org/web/20131219030753/http://vitalik.ca/ethereum.html

Here	you	can	see	the	results	of	a	substantial	rearchitecting,	largely	a	result	of	a	long	walk	through	San	Francisco	I	took	in	November	once	I	realized	that	smart
contracts	could	potentially	be	fully	generalized.	Instead	of	the	scripting	language	being	simply	a	way	of	describing	the	terms	of	relations	between	two	parties,
contracts	were	themselves	fully-fledged	accounts,	and	had	the	ability	to	hold,	send	and	receive	assets,	and	even	maintain	a	permanent	storage	(back	then,	the
permanent	storage	was	called	"memory",	and	the	only	temporary	"memory"	was	the	256	registers).	The	language	switched	from	being	a	stack-based	machine	to
being	a	register-based	one	on	my	own	volition;	I	had	little	argument	for	this	other	than	that	it	seemed	more	sophisticated.

Additionally,	notice	that	there	is	now	a	built-in	fee	mechanism:

file:///home/runner/index.html
https://blog.ethereum.org/2014/10/21/scalability-part-2-hypercubes
https://blog.ethereum.org/2014/09/17/scalability-part-1-building-top/
http://plasma.io/
https://github.com/ethereum/wiki/wiki/Chain-Fibers-Redux
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https://web.archive.org/web/20150627031414/http://vbuterin.com/ultimatescripting.html
https://lh6.googleusercontent.com/soPo_aa2YSpV8DvGGZbGjAkZehtiqJEa8dPzOM4ZSZxAvZcAfNbnVqErQL1JlG8lcmgpQyXmb3cO9m21asJQKZZmTXGQsLOtvTgBTp_5LOxfdWRZpgh3pys7Os3GK5dFGCL6aIpd


At	this	point,	ether	literally	was	gas;	after	every	single	computational	step,	the	balance	of	the	contract	that	a	transaction	was	calling	would	drop	a	little	bit,	and	if
the	contract	ran	out	of	money	execution	would	halt.	Note	that	this	"receiver	pays"	mechanism	meant	that	the	contract	itself	had	to	require	the	sender	to	pay	the
contract	a	fee,	and	immediately	exit	if	this	fee	is	not	present;	the	protocol	allocated	an	allowance	of	16	free	execution	steps	to	allow	contracts	to	reject	non-fee-
paying	transactions.

This	was	the	time	when	the	Ethereum	protocol	was	entirely	my	own	creation.	From	here	on,	however,	new	participants	started	to	join	the	fold.	By	far	the	most
prominent	on	the	protocol	side	was	Gavin	Wood,	who	reached	out	to	me	in	an	about.me	message	in	December	2013:

Jeffrey	Wilcke,	lead	developer	of	the	Go	client	(back	then	called	"ethereal")	also	reached	out	and	started	coding	around	the	same	time,	though	his	contributions
were	much	more	on	the	side	of	client	development	rather	than	protocol	research.

"Hey	Jeremy,	glad	to	see	you're	interested	in	Ethereum..."

Gavin's	initial	contributions	were	two-fold.	First,	you	might	notice	that	the	contract	calling	model	in	the	initial	design	was	an	asynchronous	one:	although	contract



A	could	create	an	"internal	transaction"	to	contract	B	("internal	transaction"	is	Etherscan's	lingo;	initially	they	were	just	called	"transactions"	and	then	later
"message	calls"	or	"calls"),	the	internal	transaction's	execution	would	not	start	until	the	execution	of	the	first	transaction	completely	finished.	This	meant	that
transactions	could	not	use	internal	transactions	as	a	way	of	getting	information	from	other	contracts;	the	only	way	to	do	that	was	the	EXTRO	opcode	(kind	of	like
an	SLOAD	that	you	could	use	to	read	other	contracts'	storage),	and	this	too	was	later	removed	with	the	support	of	Gavin	and	others.

When	implementing	my	initial	spec,	Gavin	naturally	implemented	internal	transactions	synchronously	without	even	realizing	that	the	intent	was	different	-	that	is
to	say,	in	Gavin's	implementation,	when	a	contract	calls	another	contract,	the	internal	transaction	gets	executed	immediately,	and	once	that	execution	finishes,	the
VM	returns	back	to	the	contract	that	created	the	internal	transaction	and	proceeds	to	the	next	opcode.	This	approach	seemed	to	both	of	us	to	be	superior,	so	we
decided	to	make	it	part	of	the	spec.

Second,	a	discussion	between	him	and	myself	(during	a	walk	in	San	Francisco,	so	the	exact	details	will	be	forever	lost	to	the	winds	of	history	and	possibly	a	copy	or
two	in	the	deep	archives	of	the	NSA)	led	to	a	re-factoring	of	the	transaction	fee	model,	moving	away	from	the	"contract	pays"	approach	to	a	"sender	pays"
approach,	and	also	switching	to	the	"gas"	architecture.	Instead	of	each	individual	transaction	step	immediately	taking	away	a	bit	of	ether,	the	transaction	sender
pays	for	and	is	allocated	some	"gas"	(roughly,	a	counter	of	computational	steps),	and	computational	steps	drew	from	this	allowance	of	gas.	If	a	transaction	runs	out
of	gas,	the	gas	would	still	be	forfeit,	but	the	entire	execution	would	be	reverted;	this	seemed	like	the	safest	thing	to	do,	as	it	removed	an	entire	class	of	"partial
execution"	attacks	that	contracts	previously	had	to	worry	about.	When	a	transaction	execution	finishes,	the	fee	for	any	unused	gas	is	refunded.

Gavin	can	also	be	largely	credited	for	the	subtle	change	in	vision	from	viewing	Ethereum	as	a	platform	for	building	programmable	money,	with	blockchain-based
contracts	that	can	hold	digital	assets	and	transfer	them	according	to	pre-set	rules,	to	a	general-purpose	computing	platform.	This	started	with	subtle	changes	in
emphasis	and	terminology,	and	later	this	influence	became	stronger	with	the	increasing	emphasis	on	the	"Web	3"	ensemble,	which	saw	Ethereum	as	being	one
piece	of	a	suite	of	decentralized	technologies,	the	other	two	being	Whisper	and	Swarm.

There	were	also	changes	made	around	the	start	of	2014	that	were	suggested	by	others.	We	ended	up	moving	back	to	a	stack-based	architecture	after	the	idea	was
suggested	by	Andrew	Miller	and	others.

Charles	Hoskinson	suggested	the	switch	from	Bitcoin's	SHA256	to	the	newer	SHA3	(or,	more	accurately,	keccak256).	Although	there	was	some	controversy	for	a
while,	discussions	with	Gavin,	Andrew	and	others	led	to	establishing	that	the	size	of	values	on	the	stack	should	be	limited	to	32	bytes;	the	other	alternative	being
considered,	unlimited-size	integers,	had	the	problem	that	it	was	too	difficult	to	figure	out	how	much	gas	to	charge	for	additions,	multiplications	and	other
operations.

The	initial	mining	algorithm	that	we	had	in	mind,	back	in	January	2014,	was	a	contraption	called	Dagger:

https://github.com/ethereum/wiki/blob/master/Dagger.md

https://github.com/ethereum/wiki/blob/master/Dagger.md


Dagger	was	named	after	the	"directed	acyclic	graph"	(DAG),	the	mathematical	structure	that	is	used	in	the	algorithm.	The	idea	is	that	every	N	blocks,	a	new	DAG
would	be	pseudorandomly	generated	from	a	seed,	and	the	bottom	layer	of	the	DAG	would	be	a	collection	of	nodes	that	takes	several	gigabytes	to	store.	However,
generating	any	individual	value	in	the	DAG	would	require	calculating	only	a	few	thousand	entries.	A	"Dagger	computation"	involved	getting	some	number	of	values
in	random	positions	in	this	bottom-level	dataset	and	hashing	them	together.	This	meant	that	there	was	a	fast	way	to	make	a	Dagger	calculation	-	already	having	the
data	in	memory,	and	a	slow,	but	not	memory	intensive	way	-	regenerating	each	value	from	the	DAG	that	you	need	to	get	from	scratch.

The	intention	of	this	algorithm	was	to	have	the	same	"memory-hardness"	properties	as	algorithms	that	were	popular	at	the	time,	like	Scrypt,	but	still	be	light-client
friendly.	Miners	would	use	the	fast	way,	and	so	their	mining	would	be	constrained	by	memory	bandwidth	(the	theory	is	that	consumer-grade	RAM	is	already	very
heavily	optimized,	and	so	it	would	be	hard	to	further	optimize	it	with	ASICs),	but	light	clients	could	use	the	memory-free	but	slower	version	for	verification.	The
fast	way	might	take	a	few	microseconds	and	the	slow	but	memory-free	way	a	few	milliseconds,	so	it	would	still	be	very	viable	for	light	clients.

From	here,	the	algorithm	would	change	several	times	over	the	course	of	Ethereum	development.	The	next	idea	that	we	went	through	is	"adaptive	proof	of	work";
here,	the	proof	of	work	would	involve	executing	randomly	selected	Ethereum	contracts,	and	there	is	a	clever	reason	why	this	is	expected	to	be	ASIC-resistant:	if	an
ASIC	was	developed,	competing	miners	would	have	the	incentive	to	create	and	publish	many	contracts	that	that	ASIC	was	not	good	at	executing.	There	is	no	such
thing	as	an	ASIC	for	general	computation,	the	story	goes,	as	that	is	just	a	CPU,	so	we	could	instead	use	this	kind	of	adversarial	incentive	mechanism	to	make	a
proof	of	work	that	essentially	was	executing	general	computation.

This	fell	apart	for	one	simple	reason:	long-range	attacks.	An	attacker	could	start	a	chain	from	block	1,	fill	it	up	with	only	simple	contracts	that	they	can	create
specialized	hardware	for,	and	rapidly	overtake	the	main	chain.	So...	back	to	the	drawing	board.

The	next	algorithm	was	something	called	Random	Circuit,	described	in	this	google	doc	here,	proposed	by	myself	and	Vlad	Zamfir,	and	analyzed	by	Matthew
Wampler-Doty	and	others.	The	idea	here	was	also	to	simulate	general-purpose	computation	inside	a	mining	algorithm,	this	time	by	executing	randomly	generated
circuits.	There's	no	hard	proof	that	something	based	on	these	principles	could	not	work,	but	the	computer	hardware	experts	that	we	reached	out	to	in	2014	tended
to	be	fairly	pessimistic	on	it.	Matthew	Wampler-Doty	himself	suggested	a	proof	of	work	based	on	SAT	solving,	but	this	too	was	ultimately	rejected.

Finally,	we	came	full	circle	with	an	algorithm	called	"Dagger	Hashimoto".	"Dashimoto",	as	it	was	sometimes	called	in	short,	borrowed	many	ideas	from	Hashimoto,
a	proof	of	work	algorithm	by	Thaddeus	Dryja	that	pioneered	the	notion	of	"I/O	bound	proof	of	work",	where	the	dominant	limiting	factor	in	mining	speed	was	not
hashes	per	second,	but	rather	megabytes	per	second	of	RAM	access.	However,	it	combined	this	with	Dagger's	notion	of	light-client-friendly	DAG-generated
datasets.	After	many	rounds	of	tweaking	by	myself,	Matthew,	Tim	and	others,	the	ideas	finally	converged	into	the	algorithm	we	now	call	Ethash.

By	the	summer	of	2014,	the	protocol	had	considerably	stabilized,	with	the	major	exception	of	the	proof	of	work	algorithm	which	would	not	reach	the	Ethash	phase
until	around	the	beginning	of	2015,	and	a	semi-formal	specification	existed	in	the	form	of	Gavin's	yellow	paper.
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In	August	2014,	I	developed	and	introduced	the	uncle	mechanism,	which	allows	Ethereum's	blockchain	to	have	a	shorter	block	time	and	higher	capacity	while
mitigating	centralization	risks.	This	was	introduced	as	part	of	PoC6.

Discussions	with	the	Bitshares	team	led	us	to	consider	adding	heaps	as	a	first-class	data	structure,	though	we	ended	up	not	doing	this	due	to	lack	of	time,	and	later
security	audits	and	DoS	attacks	will	show	that	it	is	actually	much	harder	than	we	had	thought	at	the	time	to	do	this	safely.

In	September,	Gavin	and	I	planned	out	the	next	two	major	changes	to	the	protocol	design.	First,	alongside	the	state	tree	and	transaction	tree,	every	block	would
also	contain	a	"receipt	tree".	The	receipt	tree	would	include	hashes	of	the	logs	created	by	a	transaction,	along	with	intermediate	state	roots.	Logs	would	allow
transactions	to	create	"outputs"	that	are	saved	in	the	blockchain,	and	are	accessible	to	light	clients,	but	that	are	not	accessible	to	future	state	calculations.	This
could	be	used	to	allow	decentralized	applications	to	easily	query	for	events,	such	as	token	transfers,	purchases,	exchange	orders	being	created	and	filled,	auctions
being	started,	and	so	forth.

There	were	other	ideas	that	were	considered,	like	making	a	Merkle	tree	out	of	the	entire	execution	trace	of	a	transaction	to	allow	anything	to	be	proven;	logs	were
chosen	because	they	were	a	compromise	between	simplicity	and	completeness.

The	second	was	the	idea	of	"precompiles",	solving	the	problem	of	allowing	complex	cryptographic	computations	to	be	usable	in	the	EVM	without	having	to	deal
with	EVM	overhead.	We	had	also	gone	through	many	more	ambitious	ideas	about	"native	contracts",	where	if	miners	have	an	optimized	implementation	of	some
contracts	they	could	"vote"	the	gasprice	of	those	contracts	down,	so	contracts	that	most	miners	could	execute	much	more	quickly	would	naturally	have	a	lower	gas
price;	however,	all	of	these	ideas	were	rejected	because	we	could	not	come	up	with	a	cryptoeconomically	safe	way	to	implement	such	a	thing.	An	attacker	could
always	create	a	contract	which	executes	some	trapdoored	cryptographic	operation,	distribute	the	trapdoor	to	themselves	and	their	friends	to	allow	them	to	execute
this	contract	much	faster,	then	vote	the	gasprice	down	and	use	this	to	DoS	the	network.	Instead	we	opted	for	the	much	less	ambitious	approach	of	having	a	smaller
number	of	precompiles	that	are	simply	specified	in	the	protocol,	for	common	operations	such	as	hashes	and	signature	schemes.

Gavin	was	also	a	key	initial	voice	in	developing	the	idea	of	"protocol	abstraction"	-	moving	as	many	parts	of	the	protocol	such	as	ether	balances,	transaction	signing
algorithms,	nonces,	etc	into	the	protocol	itself	as	contracts,	with	a	theoretical	final	goal	of	reaching	a	situation	where	the	entire	ethereum	protocol	could	be
described	as	making	a	function	call	into	a	virtual	machine	that	has	some	pre-initialized	state.	There	was	not	enough	time	for	these	ideas	to	get	into	the	initial
Frontier	release,	but	the	principles	are	expected	to	start	slowly	getting	integrated	through	some	of	the	Constantinople	changes,	the	Casper	contract	and	the
sharding	specification.

This	was	all	implemented	in	PoC7;	after	PoC7,	the	protocol	did	not	really	change	much,	with	the	exception	of	minor,	though	in	some	cases	important,	details	that
would	come	out	through	security	audits...

In	early	2015,	came	the	pre-launch	security	audits	organized	by	Jutta	Steiner	and	others,	which	included	both	software	code	audits	and	academic	audits.	The
software	audits	were	primarily	on	the	C++	and	Go	implementations,	which	were	led	by	Gavin	Wood	and	Jeffrey	Wilcke,	respectively,	though	there	was	also	a
smaller	audit	on	my	pyethereum	implementation.	Of	the	two	academic	audits,	one	was	performed	by	Ittay	Eyal	(of	"selfish	mining"	fame),	and	the	other	by	Andrew
Miller	and	others	from	Least	Authority.	The	Eyal	audit	led	to	a	minor	protocol	change:	the	total	difficulty	of	a	chain	would	not	include	uncles.	The	Least	Authority
audit	was	more	focused	on	smart	contract	and	gas	economics,	as	well	as	the	Patricia	tree.	This	audit	led	to	several	protocol	changes.	One	small	one	is	the	use	of
sha3(addr)	and	sha3(key)	as	trie	keys	instead	of	the	address	and	key	directly;	this	would	make	it	harder	to	perform	a	worst-case	attack	on	the	trie.

And	a	warning	that	was	perhaps	a	bit	too	far	ahead	of	its	time...

Another	significant	thing	that	we	discussed	was	the	gas	limit	voting	mechanism.	At	the	time,	we	were	already	concerned	by	perceived	lack	of	progress	in	the
bitcoin	block	size	debate,	and	wanted	to	have	a	more	flexible	design	in	Ethereum	that	could	adjust	over	time	as	needed.	But	the	challenge	is:	what	is	the	optimal
limit?	My	initial	thought	had	been	to	make	a	dynamic	limit,	targeting	\(1.5	\cdot\)	the	long-term	exponential	moving	average	of	the	actual	gas	usage,	so	that	in	the
long	run	on	average	blocks	would	be	\(\frac{2}{3}\)	full.	However,	Andrew	showed	that	this	was	exploitable	in	some	ways	-	specifically,	miners	who	wanted	to
raise	the	limit	would	simply	include	transactions	in	their	own	blocks	that	consume	a	very	large	amount	of	gas,	but	take	very	little	time	to	process,	and	thereby
always	create	full	blocks	at	no	cost	to	themselves.	The	security	model	was	thus,	at	least	in	the	upward	direction,	equivalent	to	simply	having	miners	vote	on	the	gas
limit.

We	did	not	manage	to	come	up	with	a	gas	limit	strategy	that	was	less	likely	to	break,	and	so	Andrew's	recommended	solution	was	to	simply	have	miners	vote	on
the	gas	limit	explicitly,	and	have	the	default	strategy	for	voting	be	the	\(1.5\cdot\)	EMA	rule.	The	reasoning	was	that	we	were	still	very	far	from	knowing	the	right
approach	for	setting	maximum	gas	limits,	and	the	risk	of	any	specific	approach	failing	seemed	greater	than	the	risk	of	miners	abusing	their	voting	power.	Hence,
we	might	as	well	simply	let	miners	vote	on	the	gas	limit,	and	accept	the	risk	that	the	limit	will	go	too	high	or	too	low,	in	exchange	for	the	benefit	of	flexibility,	and
the	ability	for	miners	to	work	together	to	very	quickly	adjust	the	limit	upwards	or	downwards	as	needed.
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After	a	mini-hackathon	between	Gavin,	Jeff	and	myself,	PoC9	was	launched	in	March,	and	was	intended	to	be	the	final	proof	of	concept	release.	A	testnet,	Olympic,
ran	for	four	months,	using	the	protocol	that	was	intended	to	be	used	in	the	livenet,	and	Ethereum's	long-term	plan	was	established.	Vinay	Gupta	wrote	a	blog	post,
"The	Ethereum	Launch	Process",	that	described	the	four	expected	stages	of	Ethereum	livenet	development,	and	gave	them	their	current	names:	Frontier,
Homestead,	Metropolis	and	Serenity.

Olympic	ran	for	four	months.	In	the	first	two	months,	many	bugs	were	found	in	the	various	implementations,	consensus	failures	happened,	among	other	issues,	but
around	June	the	network	noticeably	stabilized.	In	July	a	decision	was	made	to	make	a	code-freeze,	followed	by	a	release,	and	on	July	30	the	release	took	place.

https://blog.ethereum.org/2015/03/03/ethereum-launch-process/
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A	Note	on	Metcalfe's	Law,	Externalities	and
Ecosystem	Splits

Looks	like	it's	blockchain	split	season	again.	For	background	of	various	people	discussing	the	topic,
and	whether	such	splits	are	good	or	bad:

Power	laws	and	network	effects	(arguing	the	BTC/BCC	split	may	destroy	value	due	to	network
effect	loss):	https://medium.com/crypto-fundamental/power-laws-and-network-effects-why-
bitcoincash-is-not-a-free-lunch-5adb579972aa
Brian	Armstrong	on	the	Ethereum	Hard	Fork	(last	year):	https://blog.coinbase.com/on-the-
ethereum-hard-fork-780f1577e986
Phil	Daian	on	the	ETH/ETC	split:	http://pdaian.com/blog/stop-worrying-love-etc/

Given	that	ecosystem	splits	are	not	going	away,	and	we	may	well	see	more	of	them	in	the	crypto
industry	over	the	next	decade,	it	seems	useful	to	inform	the	discussion	with	some	simple	economic
modeling.	With	that	in	mind,	let's	get	right	to	it.	

Suppose	that	there	exist	two	projects	A	and	B,	and	a	set	of	users	of	total	size	\(N\),	where	A	has	\
(N_a\)	users	and	B	has	\(N_b\)	users.	Both	projects	benefit	from	network	effects,	so	they	have	a	utility
that	increases	with	the	number	of	users.	However,	users	also	have	their	own	differing	taste
preferences,	and	this	may	lead	them	to	choose	the	smaller	platform	over	the	bigger	platform	if	it
suits	them	better.

We	can	model	each	individual's	private	utility	in	one	of	four	ways:

1.	\(U(A)	=	p	+	N_a\) \(U(B)	=	q	+	N_b\)
2.	\(U(A)	=	p	\cdot	N_a\) \(U(B)	=	q	\cdot	N_b\)
3.	\(U(A)	=	p	+	\ln{N_a}\) \(U(B)	=	q	+	\ln{N_b}\)
4.	\(U(A)	=	p	\cdot	\ln{N_a}\)							 \(U(B)	=	q	\cdot	\ln{N_b}\)

\(p\)	and	\(q\)	are	private	per-user	parameters	that	you	can	think	of	as	corresponding	to	users'
distinct	preferences.	The	difference	between	the	first	two	approaches	and	the	last	two	reflects
differences	between	interpretations	of	Metcalfe's	law,	or	more	broadly	the	idea	that	the	per-user
value	of	a	system	grows	with	the	number	of	users.	The	original	formulation	suggested	a	per-user
value	of	\(N\)	(that	is,	a	total	network	value	of	\(N^{2}\)),	but	other	analysis	(see	here)	suggests	that
above	very	small	scales	\(N\log{N}\)	usually	dominates;	there	is	a	controversy	over	which	model	is
correct.	The	difference	between	the	first	and	second	(and	between	the	third	and	fourth)	is	the	extent
to	which	utility	from	a	system's	intrinsic	quality	and	utility	from	network	effects	are	complementary	-
that	is,	are	the	two	things	good	in	completely	separate	ways	that	do	not	interact	with	each	other,	like
social	media	and	coconuts,	or	are	network	effects	an	important	part	of	letting	the	intrinsic	quality	of
a	system	shine?

We	can	now	analyze	each	case	in	turn	by	looking	at	a	situation	where	\(N_a\)	users	choose	A	and	\
(N_b\)	users	choose	B,	and	analyze	each	individual's	decision	to	choose	one	or	the	other	from	the
perspective	of	economic	externalities	-	that	is,	does	a	user's	choice	to	switch	from	A	to	B	have	a
positive	net	effect	on	others'	utility	or	a	negative	one?	If	switching	has	a	positive	externality,	then	it
is	virtuous	and	should	be	socially	nudged	or	encouraged,	and	if	it	has	a	negative	externality	then	it
should	be	discouraged.	We	model	an	"ecosystem	split"	as	a	game	where	to	start	off	\(N_a	=	N\)	and	\
(N_b	=	0\)	and	users	are	deciding	for	themselves	whether	or	not	to	join	the	split,	that	is,	to	move
from	A	to	B,	possibly	causing	\(N_a\)	to	fall	and	\(N_b\)	to	rise.

Switching	(or	not	switching)	from	A	to	B	has	externalties	because	A	and	B	both	have	network	effects;
switching	from	A	to	B	has	the	negative	externality	of	reducing	A's	network	effect,	and	so	hurting	all
remaining	A	users,	but	it	also	has	the	positive	externality	of	increasing	B's	network	effect,	and	so
benefiting	all	B	users.
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Case	1

Switching	from	A	to	B	gives	\(N_a\)	users	a	negative	externality	of	one,	so	a	total	loss	of	\(N_a\),	and
it	gives	\(N_b\)	users	a	positive	externality	of	one,	so	a	total	gain	of	\(N_b\).	Hence,	the	total
externality	is	of	size	\(N_b	-	N_a\);	that	is,	switching	from	the	smaller	to	the	larger	platform	has
positive	externalities,	and	switching	from	the	larger	platform	to	the	smaller	platform	has	negative
externalities.

Case	2

Suppose	\(P_a\)	is	the	sum	of	\(p\)	values	of	\(N_a\)	users,	and	\(Q_b\)	is	the	sum	of	\(q\)	values	of	\
(N_b\)	users.	The	total	negative	externality	is	\(P_a\)	and	the	total	positive	externality	is	\(Q_b\).
Hence,	switching	from	the	smaller	platform	to	the	larger	has	positive	social	externalities	if	the	two
platforms	have	equal	intrinsic	quality	to	their	users	(ie.	users	of	A	intrinsically	enjoy	A	as	much	as
users	of	B	intrinsically	enjoy	B,	so	\(p\)	and	\(q\)	values	are	evenly	distributed),	but	if	it	is	the	case
that	A	is	bigger	but	B	is	better,	then	there	are	positive	externalities	in	switching	to	B.

Furthermore,	notice	that	if	a	user	is	making	a	switch	from	a	larger	A	to	a	smaller	B,	then	this	itself	is
revealed-preference	evidence	that,	for	that	user,	and	for	all	existing	users	of	B,	\(\frac{q}{p}	>
\frac{N_a}{N_b}\).	However,	if	the	split	stays	as	a	split,	and	does	not	proceed	to	become	a	full-scale
migration,	then	that	means	that	users	of	A	hold	different	views,	though	this	could	be	for	two	reasons:
(i)	they	intrinsically	dislike	A	but	not	by	enough	to	justify	the	switch,	(ii)	they	intrinsically	like	A	more
than	B.	This	could	arise	because	(a)	A	users	have	a	higher	opinion	of	A	than	B	users,	or	(b)	A	users
have	a	lower	opinion	of	B	than	B	users.	In	general,	we	see	that	moving	from	a	system	that	makes	its
average	user	less	happy	to	a	system	that	makes	its	average	user	more	happy	has	positive
externalities,	and	in	other	situations	it's	difficult	to	say.

Case	3

The	derivative	of	\(\ln{x}\)	is	\(\frac{1}{x}\).	Hence,	switching	from	A	to	B	gives	\(N_a\)	users	a
negative	externality	of	\(\frac{1}{N_a}\),	and	it	gives	\(N_b\)	users	a	positive	externality	of	\(\frac{1}
{N_b}\).	Hence,	the	negative	and	positive	externalities	are	both	of	total	size	one,	and	thus	cancel	out.
Hence,	switching	from	one	platform	to	the	other	imposes	no	social	externalities,	and	it	is	socially
optimal	if	all	users	switch	from	A	to	B	if	and	only	if	they	think	that	it	is	a	good	idea	for	them
personally	to	do	so.

Case	4

Let	\(P_a\)	and	\(Q_b\)	are	before.	The	negative	externality	is	of	total	size	\(\frac{P_a}{N_a}\)	and	the
positive	externality	is	of	total	size	\(\frac{Q_b}{N_b}\).	Hence,	if	the	two	systems	have	equal	intrinsic
quality,	the	externality	is	of	size	zero,	but	if	one	system	has	higher	intrinsic	quality,	then	it	is	virtuous
to	switch	to	it.	Note	that	as	in	case	2,	if	users	are	switching	from	a	larger	system	to	a	smaller	system,
then	that	means	that	they	find	the	smaller	system	to	have	higher	intrinsic	quality,	although,	also	as	in
case	2,	if	the	split	remains	a	split	and	does	not	become	a	full-scale	migration,	then	that	means	other
users	see	the	intrinsic	quality	of	the	larger	system	as	higher,	or	at	least	not	lower	by	enough	to	be
worth	the	network	effects.

The	existence	of	users	switching	to	B	suggests	that	for	them,	\(\frac{q}{p}	\geq	\frac{log{N_a}}
{log{N_b}}\),	so	for	the	\(\frac{Q_B}{N_b}	>	\frac{P_a}{N_a}\)	condition	to	not	hold	(ie.	for	a	move
from	a	larger	system	to	a	smaller	system	not	to	have	positive	externalities)	it	would	need	to	be	the
case	that	users	of	A	have	similarly	high	values	of	\(p\)	-	an	approximate	heuristic	is,	the	users	of	A
would	need	to	love	A	so	much	that	if	they	were	the	ones	in	the	minority	that	would	be	willing	to	split
off	and	move	to	(or	stay	with)	the	smaller	system.	In	general,	it	thus	seems	that	moves	from	larger
systems	to	smaller	systems	that	actually	do	happen	will	have	positive	externalities,	but	it	is	far	from
ironclad	that	this	is	the	case.

Hence,	if	the	first	model	is	true,	then	to	maximize	social	welfare	we	should	be	trying	to	nudge	people
to	switch	to	(or	stay	with)	larger	systems	over	smaller	systems,	and	splits	should	be	discouraged.	If
the	fourth	model	is	true,	then	we	should	be	at	least	slightly	trying	to	nudge	people	to	switch	to
smaller	systems	over	larger	systems,	and	splits	should	be	slightly	encouraged.	If	the	third	model	is
true,	then	people	will	choose	the	socially	optimal	thing	all	by	themselves,	and	if	the	second	model	is
true,	it's	a	toss-up.



It	is	my	personal	view	that	the	truth	lies	somewhere	between	the	third	and	fourth	models,	and	the
first	and	second	greatly	overstate	network	effects	above	small	scales.	The	first	and	second	model	(the
\(N^{2}\)	form	of	Metcalfe's	law)	essentially	state	that	a	system	growing	from	990	million	to	1	billion
users	gives	the	same	increase	in	per-user	utility	as	growing	from	100,000	to	10.1	million	users,
which	seems	very	unrealistic,	whereas	the	\(N\log{N}\)	model	(growing	from	100	million	to	1	billion
users	gives	the	same	increase	in	per-user	utility	as	growing	from	100,000	to	10	million	users)
intuitively	seems	much	more	correct.

And	the	third	model	says:	if	you	see	people	splitting	off	from	a	larger	system	to	create	a	smaller
system	because	they	want	something	that	more	closely	matches	their	personal	values,	then	the	fact
that	these	people	have	already	shown	that	they	value	this	switch	enough	to	give	up	the	comforts	of
the	original	system's	network	effects	is	by	itself	enough	evidence	to	show	that	the	split	is	socially
beneficial.	Hence,	unless	I	can	be	convinced	that	the	first	model	is	true,	or	that	the	second	model	is
true	and	the	specific	distributions	of	\(p\)	and	\(q\)	values	make	splits	make	negative	negative
externalities,	I	maintain	my	existing	view	that	those	splits	that	actually	do	happen	(though	likely	not
hypothetical	splits	that	end	up	not	happening	due	to	lack	of	interest)	are	in	the	long	term	socially
beneficial,	value-generating	events.
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The	Triangle	of	Harm

The	following	is	a	diagram	from	a	slide	that	I	made	in	one	of	my	presentations	at	Cornell	this	week:	

If	there	was	one	diagram	that	could	capture	the	core	principle	of	Casper's	incentivization	philosophy,
this	might	be	it.	Hence,	it	warrants	some	further	explanation.

The	diagram	shows	three	constituencies	-	the	minority,	the	majority	and	the	protocol	(ie.	users),	and
four	arrows	representing	possible	adversarial	actions:	the	minority	attacking	the	protocol,	the
minority	attacking	the	majority,	the	majority	attacking	the	protocol,	and	the	majority	attacking	the
minority.	Examples	of	each	include:

Minority	attacking	the	protocol	-	Finney	attacks	(an	attack	done	by	a	miner	on	a	proof	of
work	blockchain	where	the	miner	double-spends	unconfirmed,	or	possibly	single-confirmed,
transactions)
Minority	attacking	the	majority	-	feather	forking	(a	minority	in	a	proof	of	work	chain
attempting	to	revert	any	block	that	contains	some	undesired	transactions,	though	giving	up	if
the	block	gets	two	confirmations)
Majority	attacking	the	protocol	-	traditional	51%	attacks
Majority	attacking	the	minority	-	a	51%	censorship	attack,	where	a	cartel	refuses	to	accept
any	blocks	from	miners	(or	validators)	outside	the	cartel

The	essence	of	Casper's	philosophy	is	this:	for	all	four	categories	of	attack,	we	want	to	put	an
upper	bound	on	the	ratio	between	the	amount	of	harm	suffered	by	the	victims	of	the	attack	and	the
cost	to	the	attacker.	In	some	ways,	every	design	decision	in	Casper	flows	out	of	this	principle.

This	differs	greatly	from	the	usual	proof	of	work	incentivization	school	of	thought	in	that	in	the	proof
of	work	view,	the	last	two	attacks	are	left	undefended	against.	The	first	two	attacks,	Finney	attacks
and	feather	forking,	are	costly	because	the	attacker	risks	their	blocks	not	getting	included	into	the
chain	and	so	loses	revenue.	If	the	attacker	is	a	majority,	however,	the	attack	is	costless,	because	the
attacker	can	always	guarantee	that	their	chain	will	be	the	main	chain.	In	the	long	run,	difficulty
adjustment	ensures	that	the	total	revenue	of	all	miners	is	exactly	the	same	no	matter	what,	and	this
further	means	that	if	an	attack	causes	some	victims	to	lose	money,	then	the	attacker	gains	money.

This	property	of	proof	of	work	arises	because	traditional	Nakamoto	proof	of	work	fundamentally
punishes	dissent	-	if	you	as	a	miner	make	a	block	that	aligns	with	the	consensus,	you	get	rewarded,
and	if	you	make	a	block	that	does	not	align	with	the	consensus	you	get	penalized	(the	penalty	is	not
in	the	protocol;	rather,	it	comes	from	the	fact	that	such	a	miner	expends	electricity	and	capital	to
produce	the	block	and	gets	no	reward).

Casper,	on	the	other	hand,	works	primarily	by	punishing	equivocation	-	if	you	send	two	messages
that	conflict	with	each	other,	then	you	get	very	heavily	penalized,	even	if	one	of	those	messages
aligns	with	the	consensus	(read	more	on	this	in	the	blog	post	on	"minimal	slashing	conditions").
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Hence,	in	the	event	of	a	finality	reversion	attack,	those	who	caused	the	reversion	event	are
penalized,	and	everyone	else	is	left	untouched;	the	majority	can	attack	the	protocol	only	at	heavy
cost,	and	the	majority	cannot	cause	the	minority	to	lose	money.	

It	gets	more	challenging	when	we	move	to	talking	about	two	other	kinds	of	attacks	-	liveness	faults,
and	censorship.	A	liveness	fault	is	one	where	a	large	portion	of	Casper	validators	go	offline,
preventing	the	consensus	from	reaching	finality,	and	a	censorship	fault	is	one	where	a	majority	of
Casper	validators	refuse	to	accept	some	transactions,	or	refuse	to	accept	consensus	messages	from
other	Casper	validators	(the	victims)	in	order	to	deprive	them	of	rewards.

This	touches	on	a	fundamental	dichotomy:	speaker/listener	fault	equivalence.

Suppose	that	person	B	says	that	they	did	not	receive	a	message	from	person	A.	There	are	two
possible	explanations:	(i)	person	A	did	not	send	the	message,	(ii)	person	B	pretended	not	to	hear	the
message.	Given	just	the	evidence	of	B's	claim,	there	is	no	way	to	tell	which	of	the	two	explanations	is
correct.	The	relation	to	blockchain	protocol	incentivization	is	this:	if	you	see	a	protocol	execution
where	70%	of	validators'	messages	are	included	in	the	chain	and	30%	are	not,	and	see	nothing	else
(and	this	is	what	the	blockchain	sees),	then	there	is	no	way	to	tell	whether	the	problem	is	that	30%
are	offline	or	70%	are	censoring.	If	we	want	to	make	both	kinds	of	attacks	expensive,	there	is	only
one	thing	that	we	can	do:	penalize	both	sides.

Penalizing	both	sides	allows	either	side	to	"grief"	the	other,	by	going	offline	if	they	are	a	minority	and
censoring	if	they	are	a	majority.	However,	we	can	establish	bounds	on	how	easy	this	griefing	is,
through	the	technique	of	griefing	factor	analysis.	The	griefing	factor	of	a	strategy	is	essentially	the
amount	of	money	lost	by	the	victims	divided	by	the	amount	of	money	lost	by	the	attackers,	and	the
griefing	factor	of	a	protocol	is	the	highest	griefing	factor	that	it	allows.	For	example,	if	a	protocol
allows	me	to	cause	you	to	lose	$3	at	a	cost	of	$1	to	myself,	then	the	griefing	factor	is	3.	If	there	are



no	ways	to	cause	others	to	lose	money,	the	griefing	factor	is	zero,	and	if	you	can	cause	others	to	lose
money	at	no	cost	to	yourself	(or	at	a	benefit	to	yourself),	the	griefing	factor	is	infinity.

In	general,	wherever	a	speaker/listener	dichotomy	exists,	the	griefing	factor	cannot	be
globally	bounded	above	by	any	value	below	1.	The	reason	is	simple:	either	side	can	grief	the
other,	so	if	side	\(A\)	can	grief	side	\(B\)	with	a	factor	of	\(x\)	then	side	\(B\)	can	grief	side	\(A\)	with	a
factor	of	\(\frac{1}{x}\);	\(x\)	and	\(\frac{1}{x}\)	cannot	both	be	below	1	simultaneously.	We	can	play
around	with	the	factors;	for	example,	it	may	be	considered	okay	to	allow	griefing	factors	of	2	for
majority	attackers	in	exchange	for	keeping	the	griefing	factor	at	0.5	for	minorities,	with	the
reasoning	that	minority	attackers	are	more	likely.	We	can	also	allow	griefing	factors	of	1	for	small-
scale	attacks,	but	specifically	for	large-scale	attacks	force	a	chain	split	where	on	one	chain	one	side
is	penalized	and	on	another	chain	another	side	is	penalized,	trusting	the	market	to	pick	the	chain
where	attackers	are	not	favored.	Hence	there	is	a	lot	of	room	for	compromise	and	making	tradeoffs
between	different	concerns	within	this	framework.

Penalizing	both	sides	has	another	benefit:	it	ensures	that	if	the	protocol	is	harmed,	the	attacker	is
penalized.	This	ensures	that	whoever	the	attacker	is,	they	have	an	incentive	to	avoid	attacking	that	is
commensurate	with	the	amount	of	harm	done	to	the	protocol.	However,	if	we	want	to	bound	the	ratio
of	harm	to	the	protocol	over	cost	to	attackers,	we	need	a	formalized	way	of	measuring	how	much
harm	to	the	protocol	was	done.

This	introduces	the	concept	of	the	protocol	utility	function	-	a	formula	that	tells	us	how	well	the
protocol	is	doing,	that	should	ideally	be	calculable	from	inside	the	blockchain.	In	the	case	of	a	proof
of	work	chain,	this	could	be	the	percentage	of	all	blocks	produced	that	are	in	the	main	chain.	In
Casper,	protocol	utility	is	zero	for	a	perfect	execution	where	every	epoch	is	finalized	and	no	safety
failures	ever	take	place,	with	some	penalty	for	every	epoch	that	is	not	finalized,	and	a	very	large
penalty	for	every	safety	failure.	If	a	protocol	utility	function	can	be	formalized,	then	penalties	for
faults	can	be	set	as	close	to	the	loss	of	protocol	utility	resulting	from	those	faults	as	possible.
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On	Path	Independence

Suppose	that	someone	walks	up	to	you	and	starts	exclaiming	to	you	that	he	thinks	he	has	figured	out
how	to	create	a	source	of	unlimited	free	energy.	His	scheme	looks	as	follows.	First,	you	get	a
spaceship	up	to	low	Earth	orbit.	There,	Earth's	gravity	is	fairly	high,	and	so	the	spaceship	will	start	to
accelerate	heavily	toward	the	earth.	The	spaceship	puts	itself	into	a	trajectory	so	that	it	barely
brushes	past	the	Earth's	atmosphere,	and	then	keeps	hurtling	far	into	space.	Further	in	space,	the
gravity	is	lower,	and	so	the	spaceship	can	go	higher	before	it	starts	once	again	coming	down.	When	it
comes	down,	it	takes	a	curved	path	toward	the	Earth,	so	as	to	maximize	its	time	in	low	orbit,
maximizing	the	acceleration	it	gets	from	the	high	gravity	there,	so	that	after	it	passes	by	the	Earth	it
goes	even	higher.	After	it	goes	high	enough,	it	flies	through	the	Earth's	atmosphere,	slowing	itself
down	but	using	the	waste	heat	to	power	a	thermal	reactor.	Then,	it	would	go	back	to	step	one	and
keep	going.

Something	like	this:

Now,	if	you	know	anything	about	Newtonian	dynamics,	chances	are	you'll	immediately	recognize	that
this	scheme	is	total	bollocks.	But	how	do	you	know?	You	could	make	an	appeal	to	symmetry,	saying
"look,	for	every	slice	of	the	orbital	path	where	you	say	gravity	gives	you	high	acceleration,	there's	a
corresponding	slice	of	the	orbital	path	where	gravity	gives	you	just	as	high	deceleration,	so	I	don't
see	where	the	net	gains	are	coming	from".	But	then,	suppose	the	man	presses	you.	"Ah,"	he	says,
"but	in	that	slice	where	there	is	high	acceleration	your	initial	velocity	is	low,	and	so	you	spend	a	lot	of
time	inside	of	it,	whereas	in	the	corresponding	slice,	your	incoming	velocity	is	high,	and	so	you	have
less	time	to	decelerate".	How	do	you	really,	conclusively,	prove	him	wrong?

One	approach	is	to	dig	deeply	into	the	math,	calculate	the	integrals,	and	show	that	the	supposed	net
gains	are	in	fact	exactly	equal	to	zero.	But	there	is	also	a	simple	approach:	recognize	that	energy	is
path-independent.	That	is,	when	the	spaceship	moves	from	point	\(A\)	to	point	\(B\),	where	point	\
(B\)	is	closer	to	the	earth,	its	kinetic	energy	certainly	goes	up	because	its	speed	increases.	But
because	total	energy	(kinetic	plus	potential)	is	conserved,	and	potential	energy	is	only	dependent	on
the	spaceship's	position,	and	not	how	it	got	there,	we	know	that	regardless	of	what	path	from	point	\
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(A\)	to	point	\(B\)	the	spaceship	takes,	once	it	gets	to	point	\(B\)	the	total	change	in	kinetic	energy	will
be	exactly	the	same.

Different	paths,	same	change	in	energy

Furthermore,	we	know	that	the	kinetic	energy	gain	from	going	from	point	\(A\)	to	point	\(A\)	is	also
independent	of	the	path	you	take	along	the	way:	in	all	cases	it's	exactly	zero.	
One	concern	sometimes	cited	against	on-chain	market	makers	(that	is,	fully	automated	on-chain
mechanisms	that	act	as	always-available	counterparties	for	people	who	wish	to	trade	one	type	of
token	for	another)	is	that	they	are	invariably	easy	to	exploit.

As	an	example,	let	me	quote	a	recent	post	discussing	this	issue	in	the	context	of	Bancor:

The	prices	that	Bancor	offers	for	tokens	have	nothing	to	do	with	the	actual	market
equilibrium.	Bancor	will	always	trail	the	market,	and	in	doing	so,	will	bleed	its	reserves.	A
simple	thought	experiment	suffices	to	illustrate	the	problem.	Suppose	that	market	panic
sets	around	X.	Unfounded	news	about	your	system	overtake	social	media.	Let's	suppose
that	people	got	convinced	that	your	CEO	has	absconded	to	a	remote	island	with	no
extradition	treaty,	that	your	CFO	has	been	embezzling	money,	and	your	CTO	was	buying
drugs	from	the	darknet	markets	and	shipping	them	to	his	work	address	to	make	a	Scarface-
like	mound	of	white	powder	on	his	desk.	Worse,	let's	suppose	that	you	know	these
allegations	to	be	false.	They	were	spread	by	a	troll	army	wielded	by	a	company	with	no
products,	whose	business	plan	is	to	block	everyone's	coin	stream.	Bancor	would	offer	ever
decreasing	prices	for	X	coins	during	a	bank	run,	until	it	has	no	reserves	left.	You'd	watch
the	market	panic	take	hold	and	eat	away	your	reserves.	Recall	that	people	are	convinced
that	the	true	value	of	X	is	0	in	this	scenario,	and	the	Bancor	formula	is	guaranteed	to	offer
a	price	above	that.	So	your	entire	reserve	would	be	gone.

The	post	discusses	many	issues	around	the	Bancor	protocol,	including	details	such	as	code	quality,
and	I	will	not	touch	on	any	of	those;	instead,	I	will	focus	purely	on	the	topic	of	on-chain	market	maker
efficiency	and	exploitability,	using	Bancor	(along	with	MKR)	purely	as	examples	and	not	seeing	to
make	any	judgements	on	the	quality	of	either	project	as	a	whole.

For	many	classes	of	naively	designed	on-chain	market	makers,	the	comment	above	about
exploitability	and	trailing	markets	applies	verbatim,	and	quite	seriously	so.	However,	there	are	also
classes	of	on-chain	market	makers	that	are	definitely	not	suspect	to	their	entire	reserve	being
drained	due	to	some	kind	of	money-pumping	attack.	To	take	a	simple	example,	consider	the	market
maker	selling	MKR	for	ETH	whose	internal	state	consists	of	a	current	price,	\(p\),	and	which	is	willing
to	buy	or	sell	an	infinitesimal	amount	of	MKR	at	each	price	level.	For	example,	suppose	that	\(p	=	5\),
and	you	wanted	to	buy	2	MKR.	The	market	would	sell	you:

0.00...01	MKR	at	a	price	of	5	ETH/MKR
0.00...01	MKR	at	a	price	of	5.00...01	ETH/MKR
0.00...01	MKR	at	a	price	of	5.00...02	ETH/MKR
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....
0.00...01	MKR	at	a	price	of	6.99...98	ETH/MKR
0.00...01	MKR	at	a	price	of	6.99...99	ETH/MKR

Altogether,	it's	selling	you	2	MKR	at	an	average	price	of	6	ETH/MKR	(ie.	total	cost	12	ETH),	and	at
the	end	of	the	operation	\(p\)	has	increased	to	7.	If	someone	then	wanted	to	sell	1	MKR,	they	would
be	spending	6.5	ETH,	and	at	the	end	of	that	operation	\(p\)	would	drop	back	down	to	6.

Now,	suppose	that	I	told	you	that	such	a	market	maker	started	off	at	a	price	of	\(p	=	5\),	and	after	an
unspecified	series	of	events	\(p\)	is	now	4.	Two	questions:

1.	 How	much	MKR	did	the	market	maker	gain	or	lose?
2.	 How	much	ETH	did	the	market	maker	gain	or	lose?

The	answers	are:	it	gained	1	MKR,	and	lost	4.5	ETH.	Notice	that	this	result	is	totally	independent	of
the	path	that	\(p\)	took.	Those	answers	are	correct	if	\(p\)	went	from	5	to	4	directly	with	one	buyer,
they're	correct	if	there	was	first	one	buyer	that	took	\(p\)	from	5	to	4.7	and	a	second	buyer	that	took	\
(p\)	the	rest	of	the	way	to	4,	and	they're	even	correct	if	\(p\)	first	dropped	to	2,	then	increased	to
9.818,	then	dropped	again	to	0.53,	then	finally	rose	again	to	4.

Why	is	this	the	case?	The	simplest	way	to	see	this	is	to	see	that	if	\(p\)	drops	below	4	and	then	comes
back	up	to	4,	the	sells	on	the	way	down	are	exactly	counterbalanced	by	buys	on	the	way	up;	each	sell
has	a	corresponding	buy	of	the	same	magnitude	at	the	exact	same	price.	But	we	can	also	see	this	by
viewing	the	market	maker's	core	mechanism	differently.	Define	the	market	maker	as	having	a	single-
dimensional	internal	state	\(p\),	and	having	MKR	and	ETH	balances	defined	by	the	following
formulas:

\(mkr\_balance(p)	=	10	-	p\)

\(eth\_balance(p)	=	p^2/2\)

Anyone	has	the	power	to	"edit"	\(p\)	(though	only	to	values	between	0	and	10),	but	they	can	only	do
so	by	supplying	the	right	amount	of	MKR	or	ETH,	and	getting	the	right	amount	of	MKR	and	ETH
back,	so	that	the	balances	still	match	up;	that	is,	so	that	the	amount	of	MKR	and	ETH	held	by	the
market	maker	after	the	operation	is	the	amount	that	they	are	supposed	to	hold	according	to	the
above	formulas,	with	the	new	value	for	\(p\)	that	was	set.	Any	edit	to	\(p\)	that	does	not	come	with
MKR	and	ETH	transactions	that	make	the	balances	match	up	automatically	fails.

Now,	the	fact	that	any	series	of	events	that	drops	\(p\)	from	5	to	4	also	raises	the	market	maker's
MKR	balance	by	1	and	drops	its	ETH	balance	by	4.5,	regardless	of	what	series	of	events	it	was,
should	look	elementary:	\(mkr\_balance(4)	-	mkr\_balance(5)	=	1\)	and	\(eth\_balance(4)	-
eth\_balance(5)	=	-4.5\).

What	this	means	is	that	a	"reserve	bleeding"	attack	on	a	market	maker	that	preserves	this	kind	of
path	independence	property	is	impossible.	Even	if	some	trolls	successfully	create	a	market	panic	that
drops	prices	to	near-zero,	when	the	panic	subsides,	and	prices	return	to	their	original	levels,	the
market	maker's	position	will	be	unchanged	-	even	if	both	the	price,	and	the	market	maker's	balances,
made	a	bunch	of	crazy	moves	in	the	meantime.

Now,	this	does	not	mean	that	market	makers	cannot	lose	money,	compared	to	other	holding
strategies.	If,	when	you	start	off,	1	MKR	=	5	ETH,	and	then	the	MKR	price	moves,	and	we	compare
the	performance	of	holding	5	MKR	and	12.5	ETH	in	the	market	maker	versus	the	performance	of	just
holding	the	assets,	the	result	looks	like	this:



Holding	a	balanced	portfolio	always	wins,	except	in	the	case	where	prices	stay	exactly	the	same,	in
which	case	the	returns	of	the	market	maker	and	the	balanced	portfolio	are	equal.	Hence,	the	purpose
of	a	market	maker	of	this	type	is	to	subsidize	guaranteed	liquidity	as	a	public	good	for	users,	serving
as	trader	of	last	resort,	and	not	to	earn	revenue.	However,	we	certainly	can	modify	the	market	maker
to	earn	revenue,	and	quite	simply:	we	have	it	charge	a	spread.	That	is,	the	market	maker	might
charge	\(1.005\cdot	p\)	for	buys	and	offer	only	\(0.995\cdot	p\)	for	sells.	Now,	being	the	beneficiary	of
a	market	maker	becomes	a	bet:	if,	in	the	long	run,	prices	tend	to	move	in	one	direction,	then	the
market	maker	loses,	at	least	relative	to	what	they	could	have	gained	if	they	had	a	balanced	portfolio.
If,	on	the	other	hand,	prices	tend	to	bounce	around	wildly	but	ultimately	come	back	to	the	same
point,	then	the	market	maker	can	earn	a	nice	profit.	This	sacrifices	the	"path	independence"
property,	but	in	such	a	way	that	any	deviations	from	path	independence	are	always	in	the	market
maker's	favor.

There	are	many	designs	that	path-independent	market	makers	could	take;	if	you	are	willing	to	create
a	token	that	can	issue	an	unlimited	quantity	of	units,	then	the	"constant	reserve	ratio"	mechanism
(where	for	some	constant	ratio	\(0	\leq	r	\leq	1\),	the	token	supply	is	\(p^{1/r	-	1}\)	and	the	reserve
size	is	\(r	\cdot	p^{1/r}\)	also	counts	as	one,	provided	that	it	is	implemented	correctly	and	path
independence	is	not	compromised	by	bounds	and	rounding	errors.

If	you	want	to	make	a	market	maker	for	existing	tokens	without	a	price	cap,	my	favorite	(credit	to
Martin	Koppelmann)	mechanism	is	that	which	maintains	the	invariant	\(tokenA\_balance(p)	\cdot
tokenB\_balance(p)	=	k\)	for	some	constant	\(k\).	So	the	formulas	would	be:

\(tokenA\_balance(p)	=	\sqrt{k\cdot	p}\)

\(tokenB\_balance(p)	=	\sqrt{k/p}\)

Where	\(p\)	is	the	price	of	\(tokenB\)	denominated	in	\(tokenA\).	In	general,	you	can	make	a	path-
independent	market	maker	by	defining	any	(monotonic)	relation	between	\(tokenA\_balance\)	and	\
(tokenB\_balance\)	and	calculating	its	derivative	at	any	point	to	give	the	price.



The	above	only	discusses	the	role	of	path	independence	in	preventing	one	particular	type	of	issue:
that	where	an	attacker	somehow	makes	a	series	of	transactions	in	the	context	of	a	series	of	price
movements	in	order	to	repeatedly	drain	the	market	maker	of	money.	With	a	path	independent	market
maker,	such	"money	pump"	vulnerabilities	are	impossible.	However,	there	certainly	are	other	kinds
of	inefficiencies	that	may	exist.	If	the	price	of	MKR	drops	from	5	ETH	to	1	ETH,	then	the	market
maker	used	in	the	example	above	will	have	lost	28	ETH	worth	of	value,	whereas	a	balanced	portfolio
would	only	have	lost	20	ETH.	Where	did	that	8	ETH	go?

In	the	best	case,	the	price	(that	is	to	say,	the	"real"	price,	the	price	level	where	supply	and	demand
among	all	users	and	traders	matches	up)	drops	quickly,	and	some	lucky	trader	snaps	up	the	deal,
claiming	an	8	ETH	profit	minus	negligible	transaction	fees.	But	what	if	there	are	multiple	traders?
Then,	if	the	price	between	block	\(n\)	and	block	\(n+1\)	differs,	the	fact	that	traders	can	bid	against
each	other	by	setting	transaction	fees	creates	an	all-pay	auction,	with	revenues	going	to	the	miner.
As	a	consequence	of	the	revenue	equivalence	theorem,	we	can	deduce	that	we	can	expect	that	the
transaction	fees	that	traders	send	into	this	mechanism	will	keep	going	up	until	they	are	roughly
equal	to	the	size	of	the	profit	earned	(at	least	initially;	the	real	equilibrium	is	for	miners	to	just	snap
up	the	money	themselves).	Hence,	either	way	schemes	like	this	are	ultimately	a	gift	to	the	miners.

One	way	to	increase	social	welfare	in	such	a	design	is	to	make	it	possible	to	create	purchase
transactions	that	are	only	worthwhile	for	miners	to	include	if	they	actually	make	the	purchase.	That
is,	if	the	"real"	price	of	MKR	falls	from	5	to	4.9,	and	there	are	50	traders	racing	to	arbitrage	the
market	maker,	and	only	the	first	one	of	those	50	will	make	the	trade,	then	only	that	one	should	pay
the	miner	a	transaction	fee.	This	way,	the	other	49	failed	trades	will	not	clog	up	the	blockchain.	EIP
86,	slated	for	Metropolis,	opens	up	a	path	toward	standardizing	such	a	conditional	transaction	fee
mechanism	(another	good	side	effect	is	that	this	can	also	make	token	sales	more	unobtrusive,	as
similar	all-pay-auction	mechanics	apply	in	many	token	sales).

Additionally,	there	are	other	inefficiencies	if	the	market	maker	is	the	only	available	trading	venue	for
tokens.	For	example,	if	two	traders	want	to	exchange	a	large	amount,	then	they	would	need	to	do	so
via	a	long	series	of	small	buy	and	sell	transactions,	needlessly	clogging	up	the	blockchain.	To
mitigate	such	efficiencies,	an	on-chain	market	maker	should	only	be	one	of	the	trading	venues
available,	and	not	the	only	one.	However,	this	is	arguably	not	a	large	concern	for	protocol
developers;	if	there	ends	up	being	a	demand	for	a	venue	for	facilitating	large-scale	trades,	then
someone	else	will	likely	provide	it.

Furthermore,	the	arguments	here	only	talk	about	path	independence	of	the	market	maker	assuming
a	given	starting	price	and	ending	price.	However,	because	of	various	psychological	effects,	as	well	as
multi-equilibrium	effects,	the	ending	price	is	plausibly	a	function	not	just	of	the	starting	price	and
recent	events	that	affect	the	"fundamental"	value	of	the	asset,	but	also	of	the	pattern	of	trades	that
happens	in	response	to	those	events.	If	a	price-dropping	event	takes	place,	and	because	of	poor
liquidity	the	price	of	the	asset	drops	quickly,	it	may	end	up	recovering	to	a	lower	point	than	if	more
liquidity	had	been	present	in	the	first	place.	That	said,	this	may	actually	be	an	argument	in	favor	of
subsidied	market	makers:	if	such	multiplier	effects	exist,	then	they	will	have	a	positive	impact	on
price	stability	that	goes	beyond	the	first-order	effect	of	the	liquidity	that	the	market	maker	itself
provides.

There	is	likely	a	lot	of	research	to	be	done	in	determining	exactly	which	path-independent	market
maker	is	optimal.	There	is	also	the	possibility	of	hybrid	semi-automated	market	makers	that	have	the
same	guaranteed-liquidity	properties,	but	which	include	some	element	of	asynchrony,	as	well	as	the
ability	for	the	operator	to	"cut	in	line"	and	collect	the	profits	in	cases	where	large	amounts	of	capital
would	otherwise	be	lost	to	miners.	There	is	also	not	yet	a	coherent	theory	of	just	how	much	(if	any)
on-chain	automated	guaranteed	liquidity	is	optimal	for	various	objectives,	and	to	what	extent,	and	by
whom,	these	market	makers	should	be	subsidized.	All	in	all,	the	on-chain	mechanism	design	space	is
still	in	its	early	days,	and	it's	certainly	worth	much	more	broadly	researching	and	exploring	various
options.
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Analyzing	Token	Sale	Models

Note:	I	mention	the	names	of	various	projects	below	only	to	compare	and	contrast	their	token	sale
mechanisms;	this	should	NOT	be	taken	as	an	endorsement	or	criticism	of	any	specific	project	as	a	whole.
It's	entirely	possible	for	any	given	project	to	be	total	trash	as	a	whole	and	yet	still	have	an	awesome
token	sale	model.

The	last	few	months	have	seen	an	increasing	amount	of	innovation	in	token	sale	models.	Two	years
ago,	the	space	was	simple:	there	were	capped	sales,	which	sold	a	fixed	number	of	tokens	at	a	fixed
price	and	hence	fixed	valuation	and	would	often	quickly	sell	out,	and	there	were	uncapped	sales,
which	sold	as	many	tokens	as	people	were	willing	to	buy.	Now,	we	have	been	seeing	a	surge	of
interest,	both	in	terms	of	theoretical	investigation	and	in	many	cases	real-world	implementation,	of
hybrid	capped	sales,	reverse	dutch	auctions,	Vickrey	auctions,	proportional	refunds,	and	many	other
mechanisms.

Many	of	these	mechanisms	have	arisen	as	responses	to	perceived	failures	in	previous	designs.	Nearly
every	significant	sale,	including	Brave's	Basic	Attention	Tokens,	Gnosis,	upcoming	sales	such	as
Bancor,	and	older	ones	such	as	Maidsafe	and	even	the	Ethereum	sale	itself,	has	been	met	with	a
substantial	amount	of	criticism,	all	of	which	points	to	a	simple	fact:	so	far,	we	have	still	not	yet
discovered	a	mechanism	that	has	all,	or	even	most,	of	the	properties	that	we	would	like.

Let	us	review	a	few	examples.

Maidsafe

The	decentralized	internet	platform	raised	$7m	in	five	hours.	However,	they	made	the	mistake	of
accepting	payment	in	two	currencies	(BTC	and	MSC),	and	giving	a	favorable	rate	to	MSC	buyers.
This	led	to	a	temporary	~2x	appreciation	in	the	MSC	price,	as	users	rushed	in	to	buy	MSC	to
participate	in	the	sale	at	the	more	favorable	rate,	but	then	the	price	saw	a	similarly	steep	drop	after
the	sale	ended.	Many	users	converted	their	BTC	to	MSC	to	participate	in	the	sale,	but	then	the	sale
closed	too	quickly	for	them,	leading	to	them	being	stuck	with	a	~30%	loss.

This	sale,	and	several	others	after	it	(cough	cough	WeTrust,	TokenCard),	showed	a	lesson	that	should
hopefully	by	now	be	uncontroversial:	running	a	sale	that	accepts	multiple	currencies	at	a	fixed
exchange	rate	is	dangerous	and	bad.	Don't	do	it.

Ethereum

The	Ethereum	sale	was	uncapped,	and	ran	for	42	days.	The	sale	price	was	2000	ETH	for	1	BTC	for
the	first	14	days,	and	then	started	increasing	linearly,	finishing	at	1337	ETH	for	1	BTC.
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Nearly	every	uncapped	sale	is	criticized	for	being	"greedy"	(a	criticism	I	have	significant	reservations
about,	but	we'll	get	back	to	this	later),	though	there	is	also	another	more	interesting	criticism	of
these	sales:	they	give	participants	high	uncertainty	about	the	valuation	that	they	are	buying	at.	To
use	a	not-yet-started	sale	as	a	example,	there	are	likely	many	people	who	would	be	willing	to	pay
$10,000	for	a	pile	of	Bancor	tokens	if	they	knew	for	a	fact	that	this	pile	represented	1%	of	all	Bancor
tokens	in	existence,	but	many	of	them	would	become	quite	apprehensive	if	they	were	buying	a	pile	of,
say,	5000	Bancor	tokens,	and	they	had	no	idea	whether	the	total	supply	would	be	50000,	500000	or
500	million.

In	the	Ethereum	sale,	buyers	who	really	cared	about	predictability	of	valuation	generally	bought	on
the	14th	day,	reasoning	that	this	was	the	last	day	of	the	full	discount	period	and	so	on	this	day	they
had	maximum	predictability	together	with	the	full	discount,	but	the	pattern	above	is	hardly
economically	optimal	behavior;	the	equilibrium	would	be	something	like	everyone	buying	in	on	the
last	hour	of	the	14th	day,	making	a	private	tradeoff	between	certainty	of	valuation	and	taking	the
1.5%	hit	(or,	if	certainty	was	really	important,	purchases	could	spill	over	into	the	15th,	16th	and	later
days).	Hence,	the	model	certainly	has	some	rather	weird	economic	properties	that	we	would	really
like	to	avoid	if	there	is	a	convenient	way	to	do	so.

BAT

Throughout	2016	and	early	2017,	the	capped	sale	design	was	most	popular.	Capped	sales	have	the
property	that	it	is	very	likely	that	interest	is	oversubscribed,	and	so	there	is	a	large	incentive	to
getting	in	first.	Initially,	sales	took	a	few	hours	to	finish.	However,	soon	the	speed	began	to
accelerate.	First	Blood	made	a	lot	of	news	by	finishing	their	$5.5m	sale	in	two	minutes	-	while	active
denial-of-service	attacks	on	the	Ethereum	blockchain	were	taking	place.	However,	the	apotheosis	of
this	race-to-the-Nash-equilibrium	did	not	come	until	the	BAT	sale	last	month,	when	a	$35m	sale	was
completed	within	30	seconds	due	to	the	large	amount	of	interest	in	the	project.

Not	only	did	the	sale	finish	within	two	blocks,	but	also:

The	total	transaction	fees	paid	were	70.15	ETH	(>$15,000),	with	the	highest	single	fee	being
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~$6,600
185	purchases	were	successful,	and	over	10,000	failed
The	Ethereum	blockchain's	capacity	was	full	for	3	hours	after	the	sale	started

Thus,	we	are	starting	to	see	capped	sales	approach	their	natural	equilibrium:	people	trying	to	outbid
each	other's	transaction	fees,	to	the	point	where	potentially	millions	of	dollars	of	surplus	would	be
burned	into	the	hands	of	miners.	And	that's	before	the	next	stage	starts:	large	mining	pools	butting
into	the	start	of	the	line	and	just	buying	up	all	of	the	tokens	themselves	before	anyone	else	can.

Gnosis

The	Gnosis	sale	attempted	to	alleviate	these	issues	with	a	novel	mechanism:	the	reverse	dutch
auction.	The	terms,	in	simplified	form,	are	as	follows.	There	was	a	capped	sale,	with	a	cap	of	$12.5
million	USD.	However,	the	portion	of	tokens	that	would	actually	be	given	to	purchasers	depended	on
how	long	the	sale	took	to	finish.	If	it	finished	on	the	first	day,	then	only	~5%	of	tokens	would	be
distributed	among	purchasers,	and	the	rest	held	by	the	Gnosis	team;	if	it	finished	on	the	second	day,
it	would	be	~10%,	and	so	forth.

The	purpose	of	this	is	to	create	a	scheme	where,	if	you	buy	at	time	\(T\),	then	you	are	guaranteed	to
buy	in	at	a	valuation	which	is	at	most	\(\frac{1}{T}\).

The	goal	is	to	create	a	mechanism	where	the	optimal	strategy	is	simple.	First,	you	personally	decide
what	is	the	highest	valuation	you	would	be	willing	to	buy	at	(call	it	V).	Then,	when	the	sale	starts,	you
don't	buy	in	immediately;	rather,	you	wait	until	the	valuation	drops	to	below	that	level,	and	then	send
your	transaction.

There	are	two	possible	outcomes:

1.	 The	sale	closes	before	the	valuation	drops	to	below	V.	Then,	you	are	happy	because	you	stayed
out	of	what	you	thought	is	a	bad	deal.

2.	 The	sale	closes	after	the	valuation	drops	to	below	V.	Then,	you	sent	your	transaction,	and	you
are	happy	because	you	got	into	what	you	thought	is	a	good	deal.

However,	many	people	predicted	that	because	of	"fear	of	missing	out"	(FOMO),	many	people	would
just	"irrationally"	buy	in	at	the	first	day,	without	even	looking	at	the	valuation.	And	this	is	exactly
what	happened:	the	sale	finished	in	a	few	hours,	with	the	result	that	the	sale	reached	its	cap	of	$12.5
million	when	it	was	only	selling	about	5%	of	all	tokens	that	would	be	in	existence	-	an	implied
valuation	of	over	$300	million.

All	of	this	would	of	course	be	an	excellent	piece	of	confirming	evidence	for	the	narrative	that	markets
are	totally	irrational,	people	don't	think	clearly	before	throwing	in	large	quantities	of	money	(and
often,	as	a	subtext,	that	the	entire	space	needs	to	be	somehow	suppressed	to	prevent	further
exuberance)	if	it	weren't	for	one	inconvenient	fact:	the	traders	who	bought	into	the	sale	were
right.
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Even	in	ETH	terms,	despite	the	massive	ETH	price	rise,	the	price	of	1	GNO	has	increased	from	~0.6
ETH	to	~0.8	ETH.

What	happened?	A	couple	of	weeks	before	the	sale	started,	facing	public	criticism	that	if	they	end	up
holding	the	majority	of	the	coins	they	would	act	like	a	central	bank	with	the	ability	to	heavily
manipulate	GNO	prices,	the	Gnosis	team	agreed	to	hold	90%	of	the	coins	that	were	not	sold	for	a
year.	From	a	trader's	point	of	view,	coins	that	are	locked	up	for	a	long	time	are	coins	that	cannot
affect	the	market,	and	so	in	a	short	term	analysis,	might	as	well	not	exist.	This	is	what	initially
propped	up	Steem	to	such	a	high	valuation	last	year	in	July,	as	well	as	Zcash	in	the	very	early
moments	when	the	price	of	each	coin	was	over	$1,000.

Now,	one	year	is	not	that	long	a	time,	and	locking	up	coins	for	a	year	is	nowhere	close	to	the	same
thing	as	locking	them	up	forever.	However,	the	reasoning	goes	further.	Even	after	the	one	year
holding	period	expires,	you	can	argue	that	it	is	in	the	Gnosis	team's	interest	to	only	release	the
locked	coins	if	they	believe	that	doing	so	will	make	the	price	go	up,	and	so	if	you	trust	the	Gnosis
team's	judgement	this	means	that	they	are	going	to	do	something	which	is	at	least	as	good	for	the
GNO	price	as	simply	locking	up	the	coins	forever.	Hence,	in	reality,	the	GNO	sale	was	really	much
more	like	a	capped	sale	with	a	cap	of	$12.5	million	and	a	valuation	of	$37.5	million.	And	the	traders
who	participated	in	the	sale	reacted	exactly	as	they	should	have,	leaving	scores	of	internet
commentators	wondering	what	just	happened.

There	is	certainly	a	weird	bubbliness	about	crypto-assets,	with	various	no-name	assets	attaining
market	caps	of	$1-100	million	(including	BitBean	as	of	the	time	of	this	writing	at	$12m,	PotCoin	at
$22m,	PepeCash	at	$13m	and	SmileyCoin	at	$14.7m)	just	because.	However,	there's	a	strong	case	to
be	made	that	the	participants	at	the	sale	stage	are	in	many	cases	doing	nothing	wrong,	at	least	for
themselves;	rather,	traders	who	buy	in	sales	are	simply	(correctly)	predicting	the	existence	of	an
ongoing	bubble	has	been	brewing	since	the	start	of	2015	(and	arguably,	since	the	start	of	2010).

More	importantly	though,	bubble	behavior	aside,	there	is	another	legitimate	criticism	of	the	Gnosis
sale:	despite	their	1-year	no-selling	promise,	eventually	they	will	have	access	to	the	entirety	of	their
coins,	and	they	will	to	a	limited	extent	be	able	to	act	like	a	central	bank	with	the	ability	to	heavily
manipulate	GNO	prices,	and	traders	will	have	to	deal	with	all	of	the	monetary	policy	uncertainty	that
that	entails.

Specifying	the	problem

So	what	would	a	good	token	sale	mechanism	look	like?	One	way	that	we	can	start	off	is	by	looking
through	the	criticisms	of	existing	sale	models	that	we	have	seen	and	coming	up	with	a	list	of	desired
properties.

Let's	do	that.	Some	natural	properties	include:

1.	 Certainty	of	valuation	-	if	you	participate	in	a	sale,	you	should	have	certainty	over	at	least	a
ceiling	on	the	valuation	(or,	in	other	words,	a	floor	on	the	percentage	of	all	tokens	you	are
getting).

2.	 Certainty	of	participation	-	if	you	try	to	participate	in	a	sale,	you	should	be	able	to	generally
count	on	succeeding.

3.	 Capping	the	amount	raised	-	to	avoid	being	perceived	as	greedy	(or	possibly	to	mitigate	risk
of	regulatory	attention),	the	sale	should	have	a	limit	on	the	amount	of	money	it	is	collecting.

4.	 No	central	banking	-	the	token	sale	issuer	should	not	be	able	to	end	up	with	an	unexpectedly
very	large	percentage	of	the	tokens	that	would	give	them	control	over	the	market.

5.	 Efficiency	-	the	sale	should	not	lead	to	substantial	economic	inefficiencies	or	deadweight	losses.
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Sounds	reasonable?

Well,	here's	the	not-so-fun	part.

(1)	and	(2)	cannot	be	fully	satisfied	simultaneously.
At	least	without	resorting	to	very	clever	tricks,	(3),	(4)	and	(5)	cannot	be	satisfied
simultaneously.

These	can	be	cited	as	"the	first	token	sale	dilemma"	and	"the	second	token	sale	trilemma".

The	proof	for	the	first	dilemma	is	easy:	suppose	you	have	a	sale	where	you	provide	users	with
certainty	of	a	$100	million	valuation.	Now,	suppose	that	users	try	to	throw	$101	million	into	the	sale.
At	least	some	will	fail.	The	proof	for	the	second	trilemma	is	a	simple	supply-and-demand	argument.	If
you	satisfy	(4),	then	you	are	selling	all,	or	some	fixed	large	percentage,	of	the	tokens,	and	so	the
valuation	you	are	selling	at	is	proportional	to	the	price	you	are	selling	at.	If	you	satisfy	(3),	then	you
are	putting	a	cap	on	the	price.	However,	this	implies	the	possibility	that	the	equilibrium	price	at	the
quantity	you	are	selling	exceeds	the	price	cap	that	you	set,	and	so	you	get	a	shortage,	which
inevitably	leads	to	either	(i)	the	digital	equivalent	of	standing	in	line	for	4	hours	at	a	very	popular
restaurant,	or	(ii)	the	digital	equivalent	of	ticket	scalping	-	both	large	deadwight	losses,	contradicting
(5).

The	first	dilemma	cannot	be	overcome;	some	valuation	uncertainty	or	participation	uncertainty	is
inescapable,	though	when	the	choice	exists	it	seems	better	to	try	to	choose	participation	uncertainty
rather	than	valuation	uncertainty.	The	closest	that	we	can	come	is	compromising	on	full	participation
to	guarantee	partial	participation.	This	can	be	done	with	a	proportional	refund	(eg.	if	$101	million
buy	in	at	a	$100	million	valuation,	then	everyone	gets	a	1%	refund).	We	can	also	think	of	this
mechanism	as	being	an	uncapped	sale	where	part	of	the	payment	comes	in	the	form	of	locking	up
capital	rather	than	spending	it;	from	this	viewpoint,	however,	it	becomes	clear	that	the	requirement
to	lock	up	capital	is	an	efficiency	loss,	and	so	such	a	mechanism	fails	to	satisfy	(5).	If	ether	holdings
are	not	well-distributed	then	it	arguably	harms	fairness	by	favoring	wealthy	stakeholders.

The	second	dilemma	is	difficult	to	overcome,	and	many	attempts	to	overcome	it	can	easily	fail	or
backfire.	For	example,	the	Bancor	sale	is	considering	limiting	the	transaction	gas	price	for	purchases
to	50	shannon	(~12x	the	normal	gasprice).	However,	this	now	means	that	the	optimal	strategy	for	a
buyer	is	to	set	up	a	large	number	of	accounts,	and	from	each	of	those	accounts	send	a	transaction
that	triggers	a	contract,	which	then	attempts	to	buy	in	(the	indirection	is	there	to	make	it	impossible
for	the	buyer	to	accidentally	buy	in	more	than	they	wanted,	and	to	reduce	capital	requirements).	The
more	accounts	a	buyer	sets	up,	the	more	likely	they	are	to	get	in.	Hence,	in	equilibrium,	this	could
lead	to	even	more	clogging	of	the	Ethereum	blockchain	than	a	BAT-style	sale,	where	at	least	the
$6600	fees	were	spent	on	a	single	transaction	and	not	an	entire	denial-of-service	attack	on	the
network.	Furthermore,	any	kind	of	on-chain	transaction	spam	contest	severely	harms	fairness,
because	the	cost	of	participating	in	the	contest	is	constant,	whereas	the	reward	is	proportional	to
how	much	money	you	have,	and	so	the	result	disproportionately	favors	wealthy	stakeholders.

Moving	forward

There	are	three	more	clever	things	that	you	can	do.	First,	you	can	do	a	reverse	dutch	auction	just	like
Gnosis,	but	with	one	change:	instead	of	holding	the	unsold	tokens,	put	them	toward	some	kind	of
public	good.	Simple	examples	include:	(i)	airdrop	(ie.	redistributing	to	all	ETH	holders),	(ii)	donating
to	the	Ethereum	Foundation,	(iii)	donating	to	Parity,	Brainbot,	Smartpool	or	other	companies	and
individuals	independently	building	infrastructure	for	the	Ethereum	space,	or	(iv)	some	combination	of
all	three,	possibly	with	the	ratios	somehow	being	voted	on	by	the	token	buyers.

Second,	you	can	keep	the	unsold	tokens,	but	solve	the	"central	banking"	problem	by	committing	to	a
fully	automated	plan	for	how	they	would	be	spent.	The	reasoning	here	is	similar	to	that	for	why	many
economists	are	interested	in	rules-based	monetary	policy:	even	if	a	centralized	entity	has	a	large
amount	of	control	over	a	powerful	resource,	much	of	the	political	uncertainty	that	results	can	be
mitigated	if	the	entity	credibly	commits	to	following	a	set	of	programmatic	rules	for	how	they	apply
it.	For	example,	the	unsold	tokens	can	be	put	into	a	market	maker	that	is	tasked	with	preserving	the
tokens'	price	stability.

Third,	you	can	do	a	capped	sale,	where	you	limit	the	amount	that	can	be	bought	by	each	person.
Doing	this	effectively	requires	a	KYC	process,	but	the	nice	thing	is	a	KYC	entity	can	do	this	once,
whitelisting	users'	addresses	after	they	verify	that	the	address	represents	a	unique	individual,	and
this	can	then	be	reused	for	every	token	sale,	alongside	other	applications	that	can	benefit	from	per-
person	sybil	resistance	like	Akasha's	quadratic	voting.	There	is	still	deadweight	loss	(ie.	inefficiency)
here,	because	this	will	lead	to	individuals	with	no	personal	interest	in	tokens	participating	in	sales
because	they	know	they	will	be	able	to	quickly	flip	them	on	the	market	for	a	profit.	However,	this	is
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arguably	not	that	bad:	it	creates	a	kind	of	crypto	universal	basic	income,	and	if	behavioral	economics
assumptions	like	the	endowment	effect	are	even	slightly	true	it	will	also	succeed	at	the	goal	of
ensuring	widely	distributed	ownership.

Are	single	round	sales	even	good?

Let	us	get	back	to	the	topic	of	"greed".	I	would	claim	that	not	many	people	are,	in	principle,	opposed
to	the	idea	of	development	teams	that	are	capable	of	spending	$500	million	to	create	a	really	great
project	getting	$500	million.	Rather,	what	people	are	opposed	to	is	(i)	the	idea	of	completely	new	and
untested	development	teams	getting	$50	million	all	at	once,	and	(ii)	even	more	importantly,	the	time
mismatch	between	developers'	rewards	and	token	buyers'	interests.	In	a	single-round	sale,	the
developers	have	only	one	chance	to	get	money	to	build	the	project,	and	that	is	near	the	start	of	the
development	process.	There	is	no	feedback	mechanism	where	teams	are	first	given	a	small	amount	of
money	to	prove	themselves,	and	then	given	access	to	more	and	more	capital	over	time	as	they	prove
themselves	to	be	reliable	and	successful.	During	the	sale,	there	is	comparatively	little	information	to
filter	between	good	development	teams	and	bad	ones,	and	once	the	sale	is	completed,	the	incentive
to	developers	to	keep	working	is	relatively	low	compared	to	traditional	companies.	The	"greed"	isn't
about	getting	lots	of	money,	it's	about	getting	lots	of	money	without	working	hard	to	show	you're
capable	of	spending	it	wisely.

If	we	want	to	strike	at	the	heart	of	this	problem,	how	would	we	solve	it?	I	would	say	the	answer	is
simple:	start	moving	to	mechanisms	other	than	single	round	sales.

I	can	offer	several	examples	as	inspiration:

Angelshares	-	this	project	ran	a	sale	in	2014	where	it	sold	off	a	fixed	percentage	of	all	AGS
every	day	for	a	period	of	several	months.	During	each	day,	people	could	contribute	an	unlimited
amount	to	the	crowdsale,	and	the	AGS	allocation	for	that	day	would	be	split	among	all
contributors.	Basically,	this	is	like	having	a	hundred	"micro-rounds"	of	uncapped	sales	over	the
course	of	most	of	a	year;	I	would	claim	that	the	duration	of	the	sales	could	be	stretched	even
further.
Mysterium,	which	held	a	little-noticed	micro-sale	six	months	before	the	big	one.
Bancor,	which	recently	agreed	to	put	all	funds	raised	over	a	cap	into	a	market	maker	which	will
maintain	price	stability	along	with	maintaining	a	price	floor	of	0.01	ETH.	These	funds	cannot	be
removed	from	the	market	maker	for	two	years.

It	seems	hard	to	see	the	relationship	between	Bancor's	strategy	and	solving	time	mismatch
incentives,	but	an	element	of	a	solution	is	there.	To	see	why,	consider	two	scenarios.	As	a	first	case,
suppose	the	sale	raises	$30	million,	the	cap	is	$10	million,	but	then	after	one	year	everyone	agrees
that	the	project	is	a	flop.	In	this	case,	the	price	would	try	to	drop	below	0.01	ETH,	and	the	market
maker	would	lose	all	of	its	money	trying	to	maintain	the	price	floor,	and	so	the	team	would	only	have
$10	million	to	work	with.	As	a	second	case,	suppose	the	sale	raises	$30	million,	the	cap	is	$10
million,	and	after	two	years	everyone	is	happy	with	the	project.	In	this	case,	the	market	maker	will
not	have	been	triggered,	and	the	team	would	have	access	to	the	entire	$30	million.

A	related	proposal	is	Vlad	Zamfir's	"safe	token	sale	mechanism".	The	concept	is	a	very	broad	one	that
could	be	parametrized	in	many	ways,	but	one	way	to	parametrize	it	is	to	sell	coins	at	a	price	ceiling
and	then	have	a	price	floor	slightly	below	that	ceiling,	and	then	allow	the	two	to	diverge	over	time,
freeing	up	capital	for	development	over	time	if	the	price	maintains	itself.

Arguably,	none	of	the	above	three	are	sufficient;	we	want	sales	that	are	spread	out	over	an	even
longer	period	of	time,	giving	us	much	more	time	to	see	which	development	teams	are	the	most
worthwhile	before	giving	them	the	bulk	of	their	capital.	But	nevertheless,	this	seems	like	the	most
productive	direction	to	explore	in.

Coming	out	of	the	Dilemmas

From	the	above,	it	should	hopefully	be	clear	that	while	there	is	no	way	to	counteract	the	dilemma
and	trilemma	head	on,	there	are	ways	to	chip	away	at	the	edges	by	thinking	outside	the	box	and
compromising	on	variables	that	are	not	apparent	from	a	simplistic	view	of	the	problem.	We	can
compromise	on	guarantee	of	participation	slightly,	mitigating	the	impact	by	using	time	as	a	third
dimension:	if	you	don't	get	in	during	round	\(N\),	you	can	just	wait	until	round	\(N+1\)	which	will	be
in	a	week	and	where	the	price	probably	will	not	be	that	different.

We	can	have	a	sale	which	is	uncapped	as	a	whole,	but	which	consists	of	a	variable	number	of	periods,
where	the	sale	within	each	period	is	capped;	this	way	teams	would	not	be	asking	for	very	large
amounts	of	money	without	proving	their	ability	to	handle	smaller	rounds	first.	We	can	sell	small
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portions	of	the	token	supply	at	a	time,	removing	the	political	uncertainty	that	this	entails	by	putting
the	remaining	supply	into	a	contract	that	continues	to	sell	it	automatically	according	to	a
prespecified	formula.

Here	are	a	few	possible	mechanisms	that	follow	some	of	the	spirit	of	the	above	ideas:

Host	a	Gnosis-style	reverse	dutch	auction	with	a	low	cap	(say,	$1	million).	If	the	auction	sells
less	than	100%	of	the	token	supply,	automatically	put	the	remaining	funds	into	another	auction
two	months	later	with	a	30%	higher	cap.	Repeat	until	the	entire	token	supply	is	sold.
Sell	an	unlimited	number	of	tokens	at	a	price	of	\(\$X\)	and	put	90%	of	the	proceeds	into	a	smart
contract	that	guarantees	a	price	floor	of	\(\$0.9	\cdot	X\).	Have	the	price	ceiling	go	up
hyperbolically	toward	infinity,	and	the	price	floor	go	down	linearly	toward	zero,	over	a	five-year
period.
Do	the	exact	same	thing	AngelShares	did,	though	stretch	it	out	over	5	years	instead	of	a	few
months.
Host	a	Gnosis-style	reverse	dutch	auction.	If	the	auction	sells	less	than	100%	of	the	token
supply,	put	the	remaining	funds	into	an	automated	market	maker	that	attempts	to	ensure	the
token's	price	stability	(note	that	if	the	price	continues	going	up	anyway,	then	the	market	maker
would	be	selling	tokens,	and	some	of	these	earnings	could	be	given	to	the	development	team).
Immediately	put	all	tokens	into	a	market	maker	with	parameters+variables	\(X\)	(minimum
price),	\(s\)	(fraction	of	all	tokens	already	sold),	\(t\)	(time	since	sale	started),	\(T\)	(intended
duration	of	sale,	say	5	years),	that	sells	tokens	at	a	price	of	\(\dfrac{k}{(\frac{t}{T	-	s})}\)	(this
one	is	weird	and	may	need	to	be	economically	studied	more).

Note	that	there	are	other	mechanisms	that	should	be	tried	to	solve	other	problems	with	token	sales;
for	example,	revenues	going	into	a	multisig	of	curators,	which	only	hand	out	funds	if	milestones	are
being	met,	is	one	very	interesting	idea	that	should	be	done	more.	However,	the	design	space	is	highly
multidimensional,	and	there	are	a	lot	more	things	that	could	be	tried.
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Engineering	Security	Through	Coordination
Problems

Recently,	there	was	a	small	spat	between	the	Core	and	Unlimited	factions	of	the	Bitcoin	community,
a	spat	which	represents	perhaps	the	fiftieth	time	the	same	theme	was	debated,	but	which	is
nonetheless	interesting	because	of	how	it	highlights	a	very	subtle	philosophical	point	about	how
blockchains	work.

ViaBTC,	a	mining	pool	that	favors	Unlimited,	tweeted	"hashpower	is	law",	a	usual	talking	point	for
the	Unlimited	side,	which	believes	that	miners	have,	and	should	have,	a	very	large	role	in	the
governance	of	Bitcoin,	the	usual	argument	for	this	being	that	miners	are	the	one	category	of	users
that	has	a	large	and	illiquid	financial	incentive	in	Bitcoin's	success.	Greg	Maxwell	(from	the	Core
side)	replied	that	"Bitcoin's	security	works	precisely	because	hash	power	is	NOT	law".

The	Core	argument	is	that	miners	only	have	a	limited	role	in	the	Bitcoin	system,	to	secure	the
ordering	of	transactions,	and	they	should	NOT	have	the	power	to	determine	anything	else,	including
block	size	limits	and	other	block	validity	rules.	These	constraints	are	enforced	by	full	nodes	run	by
users	-	if	miners	start	producing	blocks	according	to	a	set	of	rules	different	than	the	rules	that	users'
nodes	enforce,	then	the	users'	nodes	will	simply	reject	the	blocks,	regardless	of	whether	10%	or	60%
or	99%	of	the	hashpower	is	behind	them.	To	this,	Unlimited	often	replies	with	something	like	"if	90%
of	the	hashpower	is	behind	a	new	chain	that	increases	the	block	limit,	and	the	old	chain	with	10%
hashpower	is	now	ten	times	slower	for	five	months	until	difficulty	readjusts,	would	you	really	not
update	your	client	to	accept	the	new	chain?"	

Many	people	often	argue	against	the	use	of	public	blockchains	for	applications	that	involve	real-
world	assets	or	anything	with	counterparty	risk.	The	critiques	are	either	total,	saying	that	there	is	no
point	in	implementing	such	use	cases	on	public	blockchains,	or	partial,	saying	that	while	there	may
be	advantages	to	storing	the	data	on	a	public	chain,	the	business	logic	should	be	executed	off	chain.

The	argument	usually	used	is	that	in	such	applications,	points	of	trust	exist	already	-	there	is
someone	who	owns	the	physical	assets	that	back	the	on-chain	permissioned	assets,	and	that	someone
could	always	choose	to	run	away	with	the	assets	or	be	compelled	to	freeze	them	by	a	government	or
bank,	and	so	managing	the	digital	representations	of	these	assets	on	a	blockchain	is	like	paying	for	a
reinforced	steel	door	for	one's	house	when	the	window	is	open.	Instead,	such	systems	should	use
private	chains,	or	even	traditional	server-based	solutions,	perhaps	adding	bits	and	pieces	of
cryptography	to	improve	auditability,	and	thereby	save	on	the	inefficiencies	and	costs	of	putting
everything	on	a	blockchain.	

The	arguments	above	are	both	flawed	in	their	pure	forms,	and	they	are	flawed	in	a	similar	way.	While
it	is	theoretically	possible	for	miners	to	switch	99%	of	their	hashpower	to	a	chain	with	new	rules	(to
make	an	example	where	this	is	uncontroversially	bad,	suppose	that	they	are	increasing	the	block
reward),	and	even	spawn-camp	the	old	chain	to	make	it	permanently	useless,	and	it	is	also
theoretically	possible	for	a	centralized	manager	of	an	asset-backed	currency	to	cease	honoring	one
digital	token,	make	a	new	digital	token	with	the	same	balances	as	the	old	token	except	with	one
particular	account's	balance	reduced	to	zero,	and	start	honoring	the	new	token,	in	practice	those
things	are	both	quite	hard	to	do.

In	the	first	case,	users	will	have	to	realize	that	something	is	wrong	with	the	existing	chain,	agree	that
they	should	go	to	the	new	chain	that	the	miners	are	now	mining	on,	and	download	the	software	that
accepts	the	new	rules.	In	the	second	case,	all	clients	and	applications	that	depend	on	the	original
digital	token	will	break,	users	will	need	to	update	their	clients	to	switch	to	the	new	digital	token,	and
smart	contracts	with	no	capacity	to	look	to	the	outside	world	and	see	that	they	need	to	update	will
break	entirely.	In	the	middle	of	all	this,	opponents	of	the	switch	can	create	a	fear-uncertainty-and-
doubt	campaign	to	try	to	convince	people	that	maybe	they	shouldn't	update	their	clients	after	all,	or
update	their	client	to	some	third	set	of	rules	(eg.	changing	proof	of	work),	and	this	makes
implementing	the	switch	even	more	difficult.

file:///home/runner/index.html
https://i.redd.it/x9f7t3rhn4wy.png
https://np.reddit.com/r/Bitcoin/comments/69t452/viabtc_comment_to_the_recent_segwit_pool/dh95hat/
http://www.ofnumbers.com/2015/07/27/what-is-permissioned-on-permissionless/
http://www.multichain.com/blog/2015/11/smart-contracts-good-bad-lazy/
https://twitter.com/vitalikbuterin/status/827783678910558208


Hence,	we	can	say	that	in	both	cases,	even	though	there	theoretically	are	centralized	or	quasi-
centralized	parties	that	could	force	a	transition	from	state	A	to	state	B,	where	state	B	is	disagreeable
to	users	but	preferable	to	the	centralized	parties,	doing	so	requires	breaking	through	a	hard
coordination	problem.	Coordination	problems	are	everywhere	in	society	and	are	often	a	bad	thing	-
while	it	would	be	better	for	most	people	if	the	English	language	got	rid	of	its	highly	complex	and
irregular	spelling	system	and	made	a	phonetic	one,	or	if	the	United	States	switched	to	metric,	or	if
we	could	immediately	drop	all	prices	and	wages	by	ten	percent	in	the	event	of	a	recession,	in
practice	this	requires	everyone	to	agree	on	the	switch	at	the	same	time,	and	this	is	often	very	very
hard.

With	blockchain	applications,	however,	we	are	doing	something	different:	we	are	using
coordination	problems	to	our	advantage,	using	the	friction	that	coordination	problems	create	as
a	bulwark	against	malfeasance	by	centralized	actors.	We	can	build	systems	that	have	property	X,	and
we	can	guarantee	that	they	will	preserve	property	X	to	a	high	degree	because	changing	the	rules
from	X	to	not-X	would	require	a	whole	bunch	of	people	to	agree	to	update	their	software	at	the	same
time.	Even	if	there	is	an	actor	that	could	force	the	change,	doing	so	would	be	hard.	This	is	the	kind	of
security	that	you	gain	from	client-side	validation	of	blockchain	consensus	rules.

Note	that	this	kind	of	security	relies	on	the	decentralization	of	users	specifically.	Even	if	there	is	only
one	miner	in	the	world,	there	is	still	a	difference	between	a	cryptocurrency	mined	by	that	miner	and
a	PayPal-like	centralized	system.	In	the	latter	case,	the	operator	can	choose	to	arbitrarily	change	the
rules,	freeze	people's	money,	offer	bad	service,	jack	up	their	fees	or	do	a	whole	host	of	other	things,
and	the	coordination	problems	are	in	the	operator's	favor,	as	such	systems	have	substantial	network
effects	and	so	very	many	users	would	have	to	agree	at	the	same	time	to	switch	to	a	better	system.	In
the	former	case,	client-side	validation	means	that	many	attempts	at	mischief	that	the	miner	might
want	to	engage	in	are	by	default	rejected,	and	the	coordination	problem	now	works	in	the	users'
favor.	

Note	that	the	arguments	above	do	NOT,	by	themselves,	imply	that	it	is	a	bad	idea	for	miners	to	be
the	principal	actors	coordinating	and	deciding	the	block	size	(or	in	Ethereum's	case,	the	gas	limit).	It
may	well	be	the	case	that,	in	the	specific	case	of	the	block	size/gas	limit,	"government	by	coordinated
miners	with	aligned	incentives"	is	the	optimal	approach	for	deciding	this	one	particular	policy
parameter,	perhaps	because	the	risk	of	miners	abusing	their	power	is	lower	than	the	risk	that	any
specific	chosen	hard	limit	will	prove	wildly	inappropriate	for	market	conditions	a	decade	after	the
limit	is	set.	However,	there	is	nothing	unreasonable	about	saying	that	government-by-miners	is	the
best	way	to	decide	one	policy	parameter,	and	at	the	same	saying	that	for	other	parameters	(eg.	block
reward)	we	want	to	rely	on	client-side	validation	to	ensure	that	miners	are	constrained.	This	is	the
essence	of	engineering	decentralized	instutitions:	it	is	about	strategically	using	coordination
problems	to	ensure	that	systems	continue	to	satisfy	certain	desired	properties.

The	arguments	above	also	do	not	imply	that	it	is	always	optimal	to	try	to	put	everything	onto	a
blockchain	even	for	services	that	are	trust-requiring.	There	generally	are	at	least	some	gains	to	be
made	by	running	more	business	logic	on	a	blockchain,	but	they	are	often	much	smaller	than	the
losses	to	efficiency	or	privacy.	And	this	ok;	the	blockchain	is	not	the	best	tool	for	every	task.	What	the
arguments	above	do	imply,	though,	is	that	if	you	are	building	a	blockchain-based	application	that
contains	many	centralized	components	out	of	necessity,	then	you	can	make	substantial	further	gains
in	trust-minimization	by	giving	users	a	way	to	access	your	application	through	a	regular	blockchain
client	(eg.	in	the	case	of	Ethereum,	this	might	be	Mist,	Parity,	Metamask	or	Status),	instead	of
getting	them	to	use	a	web	interface	that	you	personally	control.	

Theoretically,	the	benefits	of	user-side	validation	are	optimized	if	literally	every	user	runs	an
independent	"ideal	full	node"	-	a	node	that	accepts	all	blocks	that	follow	the	protocol	rules	that
everyone	agreed	to	when	creating	the	system,	and	rejects	all	blocks	that	do	not.	In	practice,
however,	this	involves	asking	every	user	to	process	every	transaction	run	by	everyone	in	the
network,	which	is	clearly	untenable,	especially	keeping	in	mind	the	rapid	growth	of	smartphone
users	in	the	developing	world.

There	are	two	ways	out	here.	The	first	is	that	we	can	realize	that	while	it	is	optimal	from	the	point	of
view	of	the	above	arguments	that	everyone	runs	a	full	node,	it	is	certainly	not	required.	Arguably,
any	major	blockchain	running	at	full	capacity	will	have	already	reached	the	point	where	it	will	not
make	sense	for	"the	common	people"	to	expend	a	fifth	of	their	hard	drive	space	to	run	a	full	node,
and	so	the	remaining	users	are	hobbyists	and	businesses.	As	long	as	there	is	a	fairly	large	number	of
them,	and	they	come	from	diverse	backgrounds,	the	coordination	problem	of	getting	these	users	to
collude	will	still	be	very	hard.
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Second,	we	can	rely	on	strong	light	client	technology.

There	are	two	levels	of	"light	clients"	that	are	generally	possible	in	blockchain	systems.	The	first,
weaker,	kind	of	light	client	simply	convinces	the	user,	with	some	degree	of	economic	assurance,	that
they	are	on	the	chain	that	is	supported	by	the	majority	of	the	network.	This	can	be	done	much	more
cheaply	than	verifying	the	entire	chain,	as	all	clients	need	to	do	is	in	proof	of	work	schemes	verify
nonces	or	in	proof	stake	schemes	verify	signed	certificates	that	state	"either	the	root	hash	of	the
state	is	what	I	say	it	is,	or	you	can	publish	this	certificate	into	the	main	chain	to	delete	a	large
amount	of	my	money".	Once	the	light	client	verifies	a	root	hash,	they	can	use	Merkle	trees	to	verify
any	specific	piece	of	data	that	they	might	want	to	verify.

Look,	it's	a	Merkle	tree!

The	second	level	is	a	"nearly	fully	verifying"	light	client.	This	kind	of	client	doesn't	just	try	to	follow
the	chain	that	the	majority	follows;	rather,	it	also	tries	to	follow	only	chains	that	follow	all	the	rules.
This	is	done	by	a	combination	of	strategies;	the	simplest	to	explain	is	that	a	light	client	can	work
together	with	specialized	nodes	(credit	to	Gavin	Wood	for	coming	up	with	the	name	"fishermen")
whose	purpose	is	to	look	for	blocks	that	are	invalid	and	generate	"fraud	proofs",	short	messages	that
essentially	say	"Look!	This	block	has	a	flaw	over	here!".	Light	clients	can	then	verify	that	specific
part	of	a	block	and	check	if	it's	actually	invalid.

If	a	block	is	found	to	be	invalid,	it	is	discarded;	if	a	light	client	does	not	hear	any	fraud	proofs	for	a
given	block	for	a	few	minutes,	then	it	assumes	that	the	block	is	probably	legitimate.	There's	a	bit
more	complexity	involved	in	handling	the	case	where	the	problem	is	not	data	that	is	bad,	but	rather
data	that	is	missing,	but	in	general	it	is	possible	to	get	quite	close	to	catching	all	possible	ways	that
miners	or	validators	can	violate	the	rules	of	the	protocol.

Note	that	in	order	for	a	light	client	to	be	able	to	efficiently	validate	a	set	of	application	rules,	those
rules	must	be	executed	inside	of	consensus	-	that	is,	they	must	be	either	part	of	the	protocol	or	part
of	a	mechanism	executing	inside	the	protocol	(like	a	smart	contract).	This	is	a	key	argument	in	favor
of	using	the	blockchain	for	both	data	storage	and	business	logic	execution,	as	opposed	to	just	data
storage.

These	light	client	techniques	are	imperfect,	in	that	they	do	rely	on	assumptions	about	network
connectivity	and	the	number	of	other	light	clients	and	fishermen	that	are	in	the	network.	But	it	is
actually	not	crucial	for	them	to	work	100%	of	the	time	for	100%	of	validators.	Rather,	all	that	we
want	is	to	create	a	situation	where	any	attempt	by	a	hostile	cartel	of	miners/validators	to	push	invalid
blocks	without	user	consent	will	cause	a	large	amount	of	headaches	for	lots	of	people	and	ultimately
require	everyone	to	update	their	software	if	they	want	to	continue	to	synchronize	with	the	invalid
chain.	As	long	as	this	is	satisfied,	we	have	achieved	the	goal	of	security	through	coordination
frictions.
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Hard	Forks,	Soft	Forks,	Defaults	and
Coercion

One	of	the	important	arguments	in	the	blockchain	space	is	that	of	whether	hard	forks	or	soft	forks
are	the	preferred	protocol	upgrade	mechanism.	The	basic	difference	between	the	two	is	that	soft
forks	change	the	rules	of	a	protocol	by	strictly	reducing	the	set	of	transactions	that	is	valid,	so	nodes
following	the	old	rules	will	still	get	on	the	new	chain	(provided	that	the	majority	of	miners/validators
implements	the	fork),	whereas	hard	forks	allow	previously	invalid	transactions	and	blocks	to	become
valid,	so	clients	must	upgrade	their	clients	in	order	to	stay	on	the	hard-forked	chain.	There	are	also
two	sub-types	of	hard	forks:	strictly	expanding	hard	forks,	which	strictly	expand	the	set	of
transactions	that	is	valid,	and	so	effectively	the	old	rules	are	a	soft	fork	with	respect	to	the	new	rules,
and	bilateral	hard	forks,	where	the	two	rulesets	are	incompatible	both	ways.

Here	is	a	Venn	diagram	to	illustrate	the	fork	types:

The	benefits	commonly	cited	for	the	two	are	as	follows.

Hard	forks	allow	the	developers	much	more	flexibility	in	making	the	protocol	upgrade,	as	they
do	not	have	to	take	care	to	make	sure	that	the	new	rules	"fit	into"	the	old	rules
Soft	forks	are	more	convenient	for	users,	as	users	do	not	need	to	upgrade	to	stay	on	the	chain
Soft	forks	are	less	likely	to	lead	to	a	chain	split
Soft	forks	only	really	require	consent	from	miners/validators	(as	even	if	users	still	use	the	old
rules,	if	the	nodes	making	the	chain	use	the	new	rules	then	only	things	valid	under	the	new
rules	will	get	into	the	chain	in	any	case);	hard	forks	require	opt-in	consent	from	users

Aside	from	this,	one	major	criticism	often	given	for	hard	forks	is	that	hard	forks	are	"coercive".	The
kind	of	coercion	implied	here	is	not	physical	force;	rather,	it's	coercion	through	network	effect.	That
is,	if	the	network	changes	rules	from	A	to	B,	then	even	if	you	personally	like	A,	if	most	other	users
like	B	and	switch	to	B	then	you	have	to	switch	to	B	despite	your	personal	disapproval	of	the	change
in	order	to	be	on	the	same	network	as	everyone	else.

Proponents	of	hard	forks	are	often	derided	as	trying	to	effect	a	"hostile	take	over"	of	a	network,	and
"force"	users	to	go	along	with	them.	Additionally,	the	risk	of	chain	splits	is	often	used	to	bill	hard
forks	as	"unsafe".	
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It	is	my	personal	viewpoint	that	these	criticisms	are	wrong,	and	furthermore	in	many	cases
completely	backwards.	This	viewpoint	is	not	specific	to	Ethereum,	or	Bitcoin,	or	any	other
blockchain;	it	arises	out	of	general	properties	of	these	systems,	and	is	applicable	to	any	of	them.
Furthermore,	the	arguments	below	only	apply	to	controversial	changes,	where	a	large	portion	of	at
least	one	constituency	(miners/validators	and	users)	disapprove	of	them;	if	a	change	is	non-
contentious,	then	it	can	generally	be	done	safely	no	matter	what	the	format	of	the	fork	is.

First	of	all,	let	us	discuss	the	question	of	coercion.	Hard	forks	and	soft	forks	both	change	the	protocol
in	ways	that	some	users	may	not	like;	any	protocol	change	will	do	this	if	it	has	less	than	exactly	100%
support.	Furthermore,	it	is	almost	inevitable	that	at	least	some	of	the	dissenters,	in	any	scenario,
value	the	network	effect	of	sticking	with	the	larger	group	more	than	they	value	their	own
preferences	regarding	the	protocol	rules.	Hence,	both	fork	types	are	coercive,	in	the	network-effect
sense	of	the	word.

However,	there	is	an	essential	difference	between	hard	forks	and	soft	forks:	hard	forks	are	opt-in,
whereas	soft	forks	allow	users	no	"opting"	at	all.	In	order	for	a	user	to	join	a	hard	forked	chain,	they
must	personally	install	the	software	package	that	implements	the	fork	rules,	and	the	set	of	users	that
disagrees	with	a	rule	change	even	more	strongly	than	they	value	network	effects	can	theoretically
simply	stay	on	the	old	chain	-	and,	practically	speaking,	such	an	event	has	already	happened.

This	is	true	in	the	case	of	both	strictly	expanding	hard	forks	and	bilateral	hard	forks.	In	the	case	of
soft	forks,	however,	if	the	fork	succeeds	the	unforked	chain	does	not	exist.	Hence,	soft	forks	clearly
institutionally	favor	coercion	over	secession,	whereas	hard	forks	have	the	opposite	bias.	My
own	moral	views	lead	me	to	favor	secession	over	coercion,	though	others	may	differ	(the	most
common	argument	raised	is	that	network	effects	are	really	really	important	and	it	is	essential	that
"one	coin	rule	them	all",	though	more	moderate	versions	of	this	also	exist).

If	I	had	to	guess	why,	despite	these	arguments,	soft	forks	are	often	billed	as	"less	coercive"	than	hard
forks,	I	would	say	that	it	is	because	it	feels	like	a	hard	fork	"forces"	the	user	into	installing	a	software
update,	whereas	with	a	soft	fork	users	do	not	"have"	to	do	anything	at	all.	However,	this	intuition	is
misguided:	what	matters	is	not	whether	or	not	individual	users	have	to	perform	the	simple
bureaucratic	step	of	clicking	a	"download"	button,	but	rather	whether	or	not	the	user	is	coerced	into
accepting	a	change	in	protocol	rules	that	they	would	rather	not	accept.	And	by	this	metric,	as
mentioned	above,	both	kinds	of	forks	are	ultimately	coercive,	and	it	is	hard	forks	that	come	out	as
being	somewhat	better	at	preserving	user	freedom.

Now,	let's	look	at	highly	controversial	forks,	particularly	forks	where	miner/validator	preferences	and
user	preferences	conflict.	There	are	three	cases	here:	(i)	bilateral	hard	forks,	(ii)	strictly	expanding
hard	forks,	and	(iii)	so-called	"user-activated	soft	forks"	(UASF).	A	fourth	category	is	where	miners
activate	a	soft	fork	without	user	consent;	we	will	get	to	this	later.

First,	bilateral	hard	forks.	In	the	best	case,	the	situation	is	simple.	The	two	coins	trade	on	the	market,
and	traders	decide	the	relative	value	of	the	two.	From	the	ETC/ETH	case,	we	have	overwhelming
evidence	that	miners	are	overwhelmingly	likely	to	simply	assign	their	hashrate	to	coins	based	on	the
ratio	of	prices	in	order	to	maximize	their	profit,	regardless	of	their	own	ideological	views.

Even	if	some	miners	profess	ideological	preferences	toward	one	side	or	the	other,	it	is

https://ethereumclassic.github.io/
https://blog.ethereum.org/2014/11/20/bitcoin-maximalism-currency-platform-network-effects/


overwhemingly	likely	that	there	will	be	enough	miners	that	are	willing	to	arbitrage	any	mismatch
between	price	ratio	and	hashpower	ratio,	and	bring	the	two	into	alignment.	If	a	cartel	of	miners	tries
to	form	to	not	mine	on	one	chain,	there	are	overwheming	incentives	to	defect.

There	are	two	edge	cases	here.	The	first	is	the	possibilty	that,	because	of	an	inefficient	difficulty
adjustment	algorithm,	the	value	of	mining	the	coin	goes	down	becase	price	drops	but	difficulty	does
not	go	down	to	compensate,	making	mining	very	unprofitable,	and	there	are	no	miners	willing	to
mine	at	a	loss	to	keep	pushing	the	chain	forward	until	its	difficulty	comes	back	into	balance.	This	was
not	the	case	with	Ethereum,	but	may	well	be	the	case	with	Bitcoin.	Hence,	the	minority	chain	may
well	simply	never	get	off	the	ground,	and	so	it	will	die.	Note	that	the	normative	question	of	whether
or	not	this	is	a	good	thing	depends	on	your	views	on	coercion	versus	secession;	as	you	can	imagine
from	what	I	wrote	above	I	personally	believe	that	such	minority-chain-hostile	difficulty	adjustment
algorithms	are	bad.

The	second	edge	case	is	that	if	the	disparity	is	very	large,	the	large	chain	can	51%	attack	the	smaller
chain.	Even	in	the	case	of	an	ETH/ETC	split	with	a	10:1	ratio,	this	has	not	happened;	so	it	is	certainly
not	a	given.	However,	it	is	always	a	possibility	if	miners	on	the	dominant	chain	prefer	coercion	to
allowing	secession	and	act	on	these	values.	

Next,	let's	look	at	strictly	expanding	hard	forks.	In	an	SEHF,	there	is	the	property	that	the	non-forked
chain	is	valid	under	the	forked	rules,	and	so	if	the	fork	has	a	lower	price	than	the	non-forked	chain,	it
will	have	less	hashpower	than	the	non-forked	chain,	and	so	the	non-forked	chain	will	end	up	being
accepted	as	the	longest	chain	by	both	original-client	and	forked-client	rules	-	and	so	the	forked	chain
"will	be	annihilated".

There	is	an	argument	that	there	is	thus	a	strong	inherent	bias	against	such	a	fork	succeeding,	as	the
possibility	that	the	forked	chain	will	get	annihiliated	will	be	baked	into	the	price,	pushing	the	price
lower,	making	it	even	more	likely	that	the	chain	will	be	annihilated...	This	argument	to	me	seems
strong,	and	so	it	is	a	very	good	reason	to	make	any	contentious	hard	fork	bilateral	rather	than	strictly
expanding.

Bitcoin	Unlimited	developers	suggest	dealing	with	this	problem	by	making	the	hard	fork	bilateral
manually	after	it	happens,	but	a	better	choice	would	be	to	make	the	bilaterality	built-in;	for	example,
in	the	bitcoin	case,	one	can	add	a	rule	to	ban	some	unused	opcode,	and	then	make	a	transaction
containing	that	opcode	on	the	non-forked	chain,	so	that	under	the	forked	rules	the	non-forked	chain
will	from	then	on	be	considered	forever	invalid.	In	the	Ethereum	case,	because	of	various	details
about	how	state	calculation	works,	nearly	all	hard	forks	are	bilateral	almost	automatically.	Other
chains	may	have	different	properties	depending	on	their	architecture.	

The	last	type	of	fork	that	was	mentioned	above	is	the	user-activated	soft	fork.	In	a	UASF,	users	turn
on	the	soft	fork	rules	without	bothering	to	get	consensus	from	miners;	miners	are	expected	to	simply
fall	in	line	out	of	economic	interest.	If	many	users	do	not	go	along	with	the	UASF,	then	there	will	be	a
coin	split,	and	this	will	lead	to	a	scenario	identical	to	the	strictly	expanding	hard	fork,	except	-	and
this	is	the	really	clever	and	devious	part	of	the	concept	-	the	same	"risk	of	annihilation"	pressure	that
strongly	disfavors	the	forked	chain	in	a	strictly	expanding	hard	fork	instead	strongly	favors	the
forked	chain	in	a	UASF.	Even	though	a	UASF	is	opt-in,	it	uses	economic	asymmetry	in	order	to	bias
itself	toward	success	(though	the	bias	is	not	absolute;	if	a	UASF	is	decidedly	unpopular	then	it	will
not	succeed	and	will	simply	lead	to	a	chain	split).

However,	UASFs	are	a	dangerous	game.	For	example,	let	us	suppose	that	the	developers	of	a	project
want	to	make	a	UASF	patch	that	converts	an	unused	opcode	that	previously	accepted	all	transactions
into	an	opcode	that	only	accepts	transactions	that	comply	with	the	rules	of	some	cool	new	feature,
though	one	that	is	politically	or	technically	controversial	and	miners	dislike.	Miners	have	a	clever	and
devious	way	to	fight	back:	they	can	unilaterally	implement	a	miner-activated	soft	fork	that	makes	all
transactions	using	the	feature	created	by	the	soft	fork	always	fail.

Now,	we	have	three	rulesets:

1.	 The	original	rules	where	opcode	X	is	always	valid.
2.	 The	rules	where	opcode	X	is	only	valid	if	the	rest	of	the	transaction	complies	with	the	new	rules
3.	 The	rules	where	opcode	X	is	always	invalid.

Note	that	(2)	is	a	soft-fork	with	respect	to	(1),	and	(3)	is	a	soft-fork	with	respect	to	(2).	Now,	there	is
strong	economic	pressure	in	favor	of	(3),	and	so	the	soft-fork	fails	to	accomplish	its	objective.

https://www.reddit.com/r/Bitcoin/comments/3axspf/doesnt_the_lag_in_difficulty_adjustment_mean_any/
https://twitter.com/SatoshiLite/status/839673905627353088
https://medium.com/@g.andrew.stone/what-if-3a48100a6c18#.882uzyyvs


The	conclusion	is	this.	Soft	forks	are	a	dangerous	game,	and	they	become	even	more	dangerous	if
they	are	contentious	and	miners	start	fighting	back.	Strictly	expanding	hard	forks	are	also	a
dangerous	game.	Miner-activated	soft	forks	are	coercive;	user-activated	soft	forks	are	less	coercive,
though	still	quite	coercive	because	of	the	economic	pressure,	and	they	also	have	their	dangers.	If	you
really	want	to	make	a	contentious	change,	and	have	decided	that	the	high	social	costs	of	doing	so	are
worth	it,	just	do	a	clean	bilateral	hard	fork,	spend	some	time	to	add	some	proper	replay	protection,
and	let	the	market	sort	it	out.
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A	Note	On	Charity	Through	Marginal	Price
Discrimination

Updated	2018-07-28.	See	end	note.

The	following	is	an	interesting	idea	that	I	had	two	years	ago	that	I	personally	believe	has	promise
and	could	be	easily	implemented	in	the	context	of	a	blockchain	ecosystem,	though	if	desired	it	could
certainly	also	be	implemented	with	more	traditional	technologies	(blockchains	would	help	get	the
scheme	network	effects	by	putting	the	core	logic	on	a	more	neutral	platform).

Suppose	that	you	are	a	restaurant	selling	sandwiches,	and	you	ordinarily	sell	sandwiches	for	$7.50.
Why	did	you	choose	to	sell	them	for	$7.50,	and	not	$7.75	or	$7.25?	It	clearly	can't	be	the	case	that
the	cost	of	production	is	exactly	$7.49999,	as	in	that	case	you	would	be	making	no	profit,	and	would
not	be	able	to	cover	fixed	costs;	hence,	in	most	normal	situations	you	would	still	be	able	to	make
some	profit	if	you	sold	at	$7.25	or	$7.75,	though	less.	Why	less	at	$7.25?	Because	the	price	is	lower.
Why	less	at	$7.75?	Because	you	get	fewer	customers.	It	just	so	happens	that	$7.50	is	the	point	at
which	the	balance	between	those	two	factors	is	optimal	for	you.

Notice	one	consequence	of	this:	if	you	make	a	slight	distortion	to	the	optimal	price,	then	even
compared	to	the	magnitude	of	the	distortion	the	losses	that	you	face	are	minimal.	If	you	raise	prices
by	1%,	from	$7.50	to	$7.575,	then	your	profit	declines	from	$6750	to	$6733.12 - a	tiny	0.25%
reduction.	And	that's	profit - if	you	had	instead	donated	1%	of	the	price	of	each	sandwich,	it	would
have	reduced	your	profit	by	5%.	The	smaller	the	distortion	the	more	favorable	the	ratio:	raising
prices	by	0.2%	only	cuts	your	profits	down	by	0.01%.
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Now,	you	could	argue	that	stores	are	not	perfectly	rational,	and	not	perfectly	informed,	and	so	they
may	not	actually	be	charging	at	optimal	prices,	all	factors	considered.	However,	if	you	don't	know
what	direction	the	deviation	is	in	for	any	given	store,	then	even	still,	in	expectation,	the	scheme
works	the	same	way - except	instead	of	losing	$17	it's	more	like	flipping	a	coin	where	half	the	time
you	gain	$50	and	half	the	time	you	lose	$84.	Furthermore,	in	the	more	complex	scheme	that	we	will
describe	later,	we'll	be	adjusting	prices	in	both	directions	simultaneously,	and	so	there	will	not	even
be	any	extra	risk	-	no	matter	how	correct	or	incorrect	the	original	price	was,	the	scheme	will	give	you
a	predictable	small	net	loss.

Also,	the	above	example	was	one	where	marginal	costs	are	high,	and	customers	are	picky	about
prices - in	the	above	model,	charging	$9	would	have	netted	you	no	customers	at	all.	In	a	situation
where	marginal	costs	are	much	lower,	and	customers	are	less	price-sensitive,	the	losses	from	raising
or	lowering	prices	would	be	even	lower.

So	what	is	the	point	of	all	this?	Well,	suppose	that	our	sandwich	shop	changes	its	policy:	it	sells
sandwiches	for	$7.55	to	the	general	public,	but	lowers	the	prices	to	$7.35	for	people	who
volunteered	in	some	charity	that	maintains	some	local	park	(say,	this	is	25%	of	the	population).	The
store's	new	profit	is	\(\$6682.5	\cdot	0.25+\$6742.5	\cdot	0.75=\$6727.5\)	(that's	a	$22.5	loss),	but
the	result	is	that	you	are	now	paying	all	4500	of	your	customers	20	cents	each	to	volunteer	at	that
charity - an	incentive	size	of	$900	(if	you	just	count	the	customers	who	actually	do	volunteer,	$225).
So	the	store	loses	a	bit,	but	gets	a	huge	amount	of	leverage,	de-facto	contributing	at	least	$225
depending	on	how	you	measure	it	for	a	cost	of	only	$22.5.

Now,	what	we	can	start	to	do	is	build	up	an	ecosystem	of	"stickers",	which	are	non-transferable
digital	"tokens"	that	organizations	hand	out	to	people	who	they	think	are	contributing	to	worthy
causes.	Tokens	could	be	organized	by	category	(eg.	poverty	relief,	science	research,	environmental,
local	community	projects,	open	source	software	development,	writing	good	blogs),	and	merchants
would	be	free	to	charge	marginally	lower	prices	to	holders	of	the	tokens	that	represent	whatever
causes	they	personally	approve	of.

The	next	stage	is	to	make	the	scheme	recursive	-	being	or	working	for	a	merchant	that	offers	lower
prices	to	holders	of	green	stickers	is	itself	enough	to	merit	you	a	green	sticker,	albeit	one	that	is	of
lower	potency	and	gives	you	a	lower	discount.	This	way,	if	an	entire	community	approves	of	a
particular	cause,	it	may	actually	be	profit-maximizing	to	start	offering	discounts	for	the	associated
sticker,	and	so	economic	and	social	pressure	will	maintain	a	certain	level	of	spending	and
participation	toward	the	cause	in	a	stable	equilibrium.

As	far	as	implementation	goes,	this	requires:

A	standard	for	stickers,	including	wallets	where	people	can	hold	stickers
Payment	systems	that	have	support	for	charging	lower	prices	to	sticker	holders	included
At	least	a	few	sticker-issuing	organizations	(the	lowest	overhead	is	likely	to	be	issuing	stickers
for	charity	donations,	and	for	easily	verifiable	online	content,	eg.	open	source	software	and
blogs)

So	this	is	something	that	can	certainly	be	bootstrapped	within	a	small	community	and	user	base	and
then	let	to	grow	over	time.

Update	2017.03.14:	here	is	an	economic	model/simulation	showing	the	above	implemented	as	a

http://www.thezeromarginalcostsociety.com/
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Python	script.

Update	2018.07.28:	after	discussions	with	others	(Glen	Weyl	and	several	Reddit	commenters),	I
realized	a	few	extra	things	about	this	mechanism,	some	encouraging	and	some	worrying:

The	above	mechanism	could	be	used	not	just	by	charities,	but	also	by	centralized	corporate
actors.	For	example,	a	large	corporation	could	offer	a	bribe	of	$40	to	any	store	that	offers	the
20-cent	discount	to	customers	of	its	products,	gaining	additional	revenue	much	higher	than	$40.
So	it's	empowering	but	potentially	dangerous	in	the	wrong	hands...	(I	have	not	researched	it	but
I'm	sure	this	kind	of	technique	is	used	in	various	kinds	of	loyalty	programs	already)
The	above	mechanism	has	the	property	that	a	merchant	can	"donate"	\(\$x\)	to	charity	at	a	cost
of	\(\$x^{2}\)	(note:	\(x^{2}<x\)	at	the	scales	we're	talking	about	here).	This	gives	it	a
structure	that's	economically	optimal	in	certain	ways	(see	quadratic	voting),	as	a	merchant	that
feels	twice	as	strongly	about	some	public	good	will	be	inclined	to	offer	twice	as	large	a	subsidy,
whereas	most	other	social	choice	mechanisms	tend	to	either	undervalue	(as	in	traditional
voting)	or	overvalue	(as	in	buying	policies	via	lobbying)	stronger	vs	weaker	preferences.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2003531
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[Mirror]	Zk-SNARKs:	Under	the	Hood

This	is	a	mirror	of	the	post	at	https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-
b33151a013f6

This	is	the	third	part	of	a	series	of	articles	explaining	how	the	technology	behind	zk-SNARKs	works;
the	previous	articles	on	quadratic	arithmetic	programs	and	elliptic	curve	pairings	are	required
reading,	and	this	article	will	assume	knowledge	of	both	concepts.	Basic	knowledge	of	what	zk-
SNARKs	are	and	what	they	do	is	also	assumed.	See	also	Christian	Reitwiessner's	article	here	for
another	technical	introduction.

In	the	previous	articles,	we	introduced	the	quadratic	arithmetic	program,	a	way	of	representing	any
computational	problem	with	a	polynomial	equation	that	is	much	more	amenable	to	various	forms	of
mathematical	trickery.	We	also	introduced	elliptic	curve	pairings,	which	allow	a	very	limited	form	of
one-way	homomorphic	encryption	that	lets	you	do	equality	checking.	Now,	we	are	going	to	start	from
where	we	left	off,	and	use	elliptic	curve	pairings,	together	with	a	few	other	mathematical	tricks,	in
order	to	allow	a	prover	to	prove	that	they	know	a	solution	for	a	particular	QAP	without	revealing
anything	else	about	the	actual	solution.

This	article	will	focus	on	the	Pinocchio	protocol	by	Parno,	Gentry,	Howell	and	Raykova	from	2013
(often	called	PGHR13);	there	are	a	few	variations	on	the	basic	mechanism,	so	a	zk-SNARK	scheme
implemented	in	practice	may	work	slightly	differently,	but	the	basic	principles	will	in	general	remain
the	same.

To	start	off,	let	us	go	into	the	key	cryptographic	assumption	underlying	the	security	of	the
mechanism	that	we	are	going	to	use:	the	*knowledge-of-exponent*	assumption.

Basically,	if	you	get	a	pair	of	points	\(P\)	and	\(Q\),	where	\(P	\cdot	k	=	Q\),	and	you	get	a	point	\(C\),
then	it	is	not	possible	to	come	up	with	\(C	\cdot	k\)	unless	\(C\)	is	"derived"	from	\(P\)	in	some	way
that	you	know.	This	may	seem	intuitively	obvious,	but	this	assumption	actually	cannot	be	derived
from	any	other	assumption	(eg.	discrete	log	hardness)	that	we	usually	use	when	proving	security	of
elliptic	curve-based	protocols,	and	so	zk-SNARKs	do	in	fact	rest	on	a	somewhat	shakier	foundation
than	elliptic	curve	cryptography	more	generally	—	although	it's	still	sturdy	enough	that	most
cryptographers	are	okay	with	it.

Now,	let's	go	into	how	this	can	be	used.	Supposed	that	a	pair	of	points	\((P,	Q)\)	falls	from	the	sky,
where	\(P	\cdot	k	=	Q\),	but	nobody	knows	what	the	value	of	\(k\)	is.	Now,	suppose	that	I	come	up
with	a	pair	of	points	\((R,	S)\)	where	\(R	\cdot	k	=	S\).	Then,	the	KoE	assumption	implies	that	the	only
way	I	could	have	made	that	pair	of	points	was	by	taking	\(P\)	and	\(Q\),	and	multiplying	both	by	some
factor	r	that	I	personally	know.	Note	also	that	thanks	to	the	magic	of	elliptic	curve	pairings,	checking
that	\(R	=	k	\cdot	S\)	doesn't	actually	require	knowing	\(k\)	-	instead,	you	can	simply	check	whether
or	not	\(e(R,	Q)	=	e(P,	S)\).

Let's	do	something	more	interesting.	Suppose	that	we	have	ten	pairs	of	points	fall	from	the	sky:	\
((P_1,	Q_1),	(P_2,	Q_2)...	(P_{10},	Q_{10})\).	In	all	cases,	\(P_i	\cdot	k	=	Q_i\).	Suppose	that	I	then
provide	you	with	a	pair	of	points	\((R,	S)\)	where	\(R	\cdot	k	=	S\).	What	do	you	know	now?	You	know
that	\(R\)	is	some	linear	combination	\(P_1	\cdot	i_1	+	P_2	\cdot	i_2	+	...	+	P_{10}	\cdot	i_{10}\),
where	I	know	the	coefficients	\(i_1,	i_2	...	i_{10}\).	That	is,	the	only	way	to	arrive	at	such	a	pair	of
points	\((R,	S)\)	is	to	take	some	multiples	of	\(P_1,	P_2	...	P_{10}\)	and	add	them	together,	and	make
the	same	calculation	with	\(Q_1,	Q_2	...	Q_{10}\).

Note	that,	given	any	specific	set	of	\(P_1...P_{10}\)	points	that	you	might	want	to	check	linear
combinations	for,	you	can't	actually	create	the	accompanying	\(Q_1...Q_{10}\)	points	without
knowing	what	\(k\)	is,	and	if	you	do	know	what	\(k\)	is	then	you	can	create	a	pair	\((R,	S)\)	where	\(R
\cdot	k	=	S\)	for	whatever	\(R\)	you	want,	without	bothering	to	create	a	linear	combination.	Hence,
for	this	to	work	it's	absolutely	imperative	that	whoever	creates	those	points	is	trustworthy	and
actually	deletes	\(k\)	once	they	created	the	ten	points.	This	is	where	the	concept	of	a	"trusted
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setup"	comes	from.

Remember	that	the	solution	to	a	QAP	is	a	set	of	polynomials	\((A,	B,	C)\)	such	that	\(A(x)	\cdot	B(x)	-
C(x)	=	H(x)	\cdot	Z(x)\),	where:

\(A\)	is	a	linear	combination	of	a	set	of	polynomials	\(\{A_1...A_m\}\)

\(B\)	is	the	linear	combination	of	\(\{B_1...B_m\}\)	with	the	same	coefficients

\(C\)	is	a	linear	combination	of	\(\{C_1...C_m\}\)	with	the	same	coefficients

The	sets	\(\{A_1...A_m\},	\{B_1...B_m\}\)	and	\(\{C_1...C_m\}\)	and	the	polynomial	\(Z\)	are	part	of	the
problem	statement.

However,	in	most	real-world	cases,	\(A,	B\)	and	\(C\)	are	extremely	large;	for	something	with	many
thousands	of	circuit	gates	like	a	hash	function,	the	polynomials	(and	the	factors	for	the	linear
combinations)	may	have	many	thousands	of	terms.	Hence,	instead	of	having	the	prover	provide	the
linear	combinations	directly,	we	are	going	to	use	the	trick	that	we	introduced	above	to	have	the
prover	prove	that	they	are	providing	something	which	is	a	linear	combination,	but	without	revealing
anything	else.

You	might	have	noticed	that	the	trick	above	works	on	elliptic	curve	points,	not	polynomials.	Hence,
what	actually	happens	is	that	we	add	the	following	values	to	the	trusted	setup:

\(G	\cdot	A_1(t),	G	\cdot	A_1(t)	\cdot	k_a\)

\(G	\cdot	A_2(t),	G	\cdot	A_2(t)	\cdot	k_a\)

...

\(G	\cdot	B_1(t),	G	\cdot	B_1(t)	\cdot	k_b\)

\(G	\cdot	B_2(t),	G	\cdot	B_2(t)	\cdot	k_b\)

...

\(G	\cdot	C_1(t),	G	\cdot	C_1(t)	\cdot	k_c\)

\(G	\cdot	C_2(t),	G	\cdot	C_2(t)	\cdot	k_c\)

...

You	can	think	of	t	as	a	"secret	point"	at	which	the	polynomial	is	evaluated.	\(G\)	is	a	"generator"
(some	random	elliptic	curve	point	that	is	specified	as	part	of	the	protocol)	and	\(t,	k_a,	k_b\)	and	\
(k_c\)	are	"toxic	waste",	numbers	that	absolutely	must	be	deleted	at	all	costs,	or	else	whoever	has
them	will	be	able	to	make	fake	proofs.	Now,	if	someone	gives	you	a	pair	of	points	\(P\),	\(Q\)	such	that
\(P	\cdot	k_a	=	Q\)	(reminder:	we	don't	need	\(k_a\)	to	check	this,	as	we	can	do	a	pairing	check),	then
you	know	that	what	they	are	giving	you	is	a	linear	combination	of	\(A_i\)	polynomials	evaluated	at	\
(t\).

Hence,	so	far	the	prover	must	give:

\(\pi	_a	=	G	\cdot	A(t),	\pi	'_a	=	G	\cdot	A(t)	\cdot	k_a\)

\(\pi	_b	=	G	\cdot	B(t),	\pi	'_b	=	G	\cdot	B(t)	\cdot	k_b\)

\(\pi	_c	=	G	\cdot	C(t),	\pi	'_c	=	G	\cdot	C(t)	\cdot	k_c\)

Note	that	the	prover	doesn't	actually	need	to	know	(and	shouldn't	know!)	\(t,	k_a,	k_b\)	or	\(k_c\)	to
compute	these	values;	rather,	the	prover	should	be	able	to	compute	these	values	just	from	the	points
that	we're	adding	to	the	trusted	setup.

The	next	step	is	to	make	sure	that	all	three	linear	combinations	have	the	same	coefficients.	This	we
can	do	by	adding	another	set	of	values	to	the	trusted	setup:	\(G	\cdot	(A_i(t)	+	B_i(t)	+	C_i(t))	\cdot
b\),	where	\(b\)	is	another	number	that	should	be	considered	"toxic	waste"	and	discarded	as	soon	as
the	trusted	setup	is	completed.	We	can	then	have	the	prover	create	a	linear	combination	with	these
values	with	the	same	coefficients,	and	use	the	same	pairing	trick	as	above	to	verify	that	this	value
matches	up	with	the	provided	\(A	+	B	+	C\).

Finally,	we	need	to	prove	that	\(A	\cdot	B	-	C	=	H	\cdot	Z\).	We	do	this	once	again	with	a	pairing



check:

\(e(\pi	_a,	\pi	_b)	/	e(\pi	_c,	G)	?=	e(\pi	_h,	G	\cdot	Z(t))\)

Where	\(\pi	_h=	G	\cdot	H(t)\).	If	the	connection	between	this	equation	and	\(A	\cdot	B	-	C	=	H	\cdot
Z\)	does	not	make	sense	to	you,	go	back	and	read	the	article	on	pairings.

We	saw	above	how	to	convert	\(A,	B\)	and	\(C\)	into	elliptic	curve	points;	\(G\)	is	just	the	generator
(ie.	the	elliptic	curve	point	equivalent	of	the	number	one).	We	can	add	\(G	\cdot	Z(t)\)	to	the	trusted
setup.	\(H\)	is	harder;	\(H\)	is	just	a	polynomial,	and	we	predict	very	little	ahead	of	time	about	what
its	coefficients	will	be	for	each	individual	QAP	solution.	Hence,	we	need	to	add	yet	more	data	to	the
trusted	setup;	specifically	the	sequence:

\(G,	G	\cdot	t,	G	\cdot	t^2,	G	\cdot	t^3,	G	\cdot	t^4	...\).

In	the	Zcash	trusted	setup,	the	sequence	here	goes	up	to	about	2	million;	this	is	how	many	powers	of
\(t\)	you	need	to	make	sure	that	you	will	always	be	able	to	compute	\(H(t)\),	at	least	for	the	specific
QAP	instance	that	they	care	about.	And	with	that,	the	prover	can	provide	all	of	the	information	for
the	verifier	to	make	the	final	check.

There	is	one	more	detail	that	we	need	to	discuss.	Most	of	the	time	we	don't	just	want	to	prove	in	the
abstract	that	some	solution	exists	for	some	specific	problem;	rather,	we	want	to	prove	either	the
correctness	of	some	specific	solution	(eg.	proving	that	if	you	take	the	word	"cow"	and	SHA3	hash	it	a
million	times,	the	final	result	starts	with	0x73064fe5),	or	that	a	solution	exists	if	you	restrict	some	of
the	parameters.	For	example,	in	a	cryptocurrency	instantiation	where	transaction	amounts	and
account	balances	are	encrypted,	you	want	to	prove	that	you	know	some	decryption	key	k	such	that:

1.	 decrypt(old_balance,	k)	>=	decrypt(tx_value,	k)

2.	 decrypt(old_balance,	k)	-	decrypt(tx_value,	k)	=	decrypt(new_balance,	k)

The	encrypted	old_balance,	tx_value	and	new_balance	should	be	specified	publicly,	as	those	are	the
specific	values	that	we	are	looking	to	verify	at	that	particular	time;	only	the	decryption	key	should	be
hidden.	Some	slight	modifications	to	the	protocol	are	needed	to	create	a	"custom	verification	key"
that	corresponds	to	some	specific	restriction	on	the	inputs.

Now,	let's	step	back	a	bit.	First	of	all,	here's	the	verification	algorithm	in	its	entirety,	courtesy	of	ben
Sasson,	Tromer,	Virza	and	Chiesa:

The	first	line	deals	with	parametrization;	essentially,	you	can	think	of	its	function	as	being	to	create	a
"custom	verification	key"	for	the	specific	instance	of	the	problem	where	some	of	the	arguments	are
specified.	The	second	line	is	the	linear	combination	check	for	\(A,	B\)	and	\(C\);	the	third	line	is	the
check	that	the	linear	combinations	have	the	same	coefficients,	and	the	fourth	line	is	the	product
check	\(A	\cdot	B	-	C	=	H	\cdot	Z\).
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Altogether,	the	verification	process	is	a	few	elliptic	curve	multiplications	(one	for	each	"public"	input
variable),	and	five	pairing	checks,	one	of	which	includes	an	additional	pairing	multiplication.	The
proof	contains	eight	elliptic	curve	points:	a	pair	of	points	each	for	\(A(t),	B(t)\)	and	\(C(t)\),	a	point	\
(\pi	_k\)	for	\(b	\cdot	(A(t)	+	B(t)	+	C(t))\),	and	a	point	\(\pi	_h\)	for	\(H(t)\).	Seven	of	these	points	are
on	the	\(F_p\)	curve	(32	bytes	each,	as	you	can	compress	the	\(y\)	coordinate	to	a	single	bit),	and	in
the	Zcash	implementation	one	point	(\(\pi	_b\))	is	on	the	twisted	curve	in	\(F_{p^2}\)	(64	bytes),	so
the	total	size	of	the	proof	is	~288	bytes.

The	two	computationally	hardest	parts	of	creating	a	proof	are:

Dividing	\((A	\cdot	B	-	C)	/	Z\)	to	get	\(H\)	(algorithms	based	on	the	Fast	Fourier	transform	can
do	this	in	sub-quadratic	time,	but	it's	still	quite	computationally	intensive)

Making	the	elliptic	curve	multiplications	and	additions	to	create	the	\(A(t),	B(t),	C(t)\)	and	\
(H(t)\)	values	and	their	corresponding	pairs

The	basic	reason	why	creating	a	proof	is	so	hard	is	the	fact	that	what	was	a	single	binary	logic	gate
in	the	original	computation	turns	into	an	operation	that	must	be	cryptographically	processed	through
elliptic	curve	operations	if	we	are	making	a	zero-knowledge	proof	out	of	it.	This	fact,	together	with
the	superlinearity	of	fast	Fourier	transforms,	means	that	proof	creation	takes	~20–40	seconds	for	a
Zcash	transaction.

Another	very	important	question	is:	can	we	try	to	make	the	trusted	setup	a	little...	less	trust-
demanding?	Unfortunately	we	can't	make	it	completely	trustless;	the	KoE	assumption	itself	precludes
making	independent	pairs	\((P_i,	P_i	\cdot	k)\)	without	knowing	what	\(k\)	is.	However,	we	can
increase	security	greatly	by	using	\(N\)-of-\(N\)	multiparty	computation	-	that	is,	constructing	the
trusted	setup	between	\(N\)	parties	in	such	a	way	that	as	long	as	at	least	one	of	the	participants
deleted	their	toxic	waste	then	you're	okay.

To	get	a	bit	of	a	feel	for	how	you	would	do	this,	here's	a	simple	algorithm	for	taking	an	existing	set	(\
(G,	G	\cdot	t,	G	\cdot	t^2,	G	\cdot	t^3...\)),	and	"adding	in"	your	own	secret	so	that	you	need	both
your	secret	and	the	previous	secret	(or	previous	set	of	secrets)	to	cheat.

The	output	set	is	simply:

\(G,	(G	\cdot	t)	\cdot	s,	(G	\cdot	t^2)	\cdot	s^2,	(G	\cdot	t^3)	\cdot	s^3...\)

Note	that	you	can	produce	this	set	knowing	only	the	original	set	and	s,	and	the	new	set	functions	in
the	same	way	as	the	old	set,	except	now	using	\(t	\cdot	s\)	as	the	"toxic	waste"	instead	of	\(t\).	As	long
as	you	and	the	person	(or	people)	who	created	the	previous	set	do	not	both	fail	to	delete	your	toxic
waste	and	later	collude,	the	set	is	"safe".

Doing	this	for	the	complete	trusted	setup	is	quite	a	bit	harder,	as	there	are	several	values	involved,
and	the	algorithm	has	to	be	done	between	the	parties	in	several	rounds.	It's	an	area	of	active
research	to	see	if	the	multi-party	computation	algorithm	can	be	simplified	further	and	made	to
require	fewer	rounds	or	made	more	parallelizable,	as	the	more	you	can	do	that	the	more	parties	it
becomes	feasible	to	include	into	the	trusted	setup	procedure.	It's	reasonable	to	see	why	a	trusted
setup	between	six	participants	who	all	know	and	work	with	each	other	might	make	some	people
uncomfortable,	but	a	trusted	setup	with	thousands	of	participants	would	be	nearly	indistinguishable
from	no	trust	at	all	-	and	if	you're	really	paranoid,	you	can	get	in	and	participate	in	the	setup
procedure	yourself,	and	be	sure	that	you	personally	deleted	your	value.

Another	area	of	active	research	is	the	use	of	other	approaches	that	do	not	use	pairings	and	the	same
trusted	setup	paradigm	to	achieve	the	same	goal;	see	Eli	ben	Sasson's	recent	presentation	for	one
alternative	(though	be	warned,	it's	at	least	as	mathematically	complicated	as	SNARKs	are!)

Special	thanks	to	Ariel	Gabizon	and	Christian	Reitwiessner	for	reviewing.
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One	of	the	key	cryptographic	primitives	behind	various	constructions,	including	deterministic
threshold	signatures,	zk-SNARKs	and	other	simpler	forms	of	zero-knowledge	proofs	is	the	elliptic
curve	pairing.	Elliptic	curve	pairings	(or	"bilinear	maps")	are	a	recent	addition	to	a	30-year-long
history	of	using	elliptic	curves	for	cryptographic	applications	including	encryption	and	digital
signatures;	pairings	introduce	a	form	of	"encrypted	multiplication",	greatly	expanding	what	elliptic
curve-based	protocols	can	do.	The	purpose	of	this	article	will	be	to	go	into	elliptic	curve	pairings	in
detail,	and	explain	a	general	outline	of	how	they	work.

You're	not	expected	to	understand	everything	here	the	first	time	you	read	it,	or	even	the	tenth	time;
this	stuff	is	genuinely	hard.	But	hopefully	this	article	will	give	you	at	least	a	bit	of	an	idea	as	to	what
is	going	on	under	the	hood.

Elliptic	curves	themselves	are	very	much	a	nontrivial	topic	to	understand,	and	this	article	will
generally	assume	that	you	know	how	they	work;	if	you	do	not,	I	recommend	this	article	here	as	a
primer:	https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-
cryptography/.	As	a	quick	summary,	elliptic	curve	cryptography	involves	mathematical	objects	called
"points"	(these	are	literal	two-dimensional	points	with	\((x,	y)\)	coordinates),	with	special	formulas	for
adding	and	subtracting	them	(ie.	for	calculating	the	coordinates	of	\(R	=	P	+	Q\)),	and	you	can	also
multiply	a	point	by	an	integer	(ie.	\(P	\cdot	n	=	P	+	P	+	...	+	P\),	though	there's	a	much	faster	way	to
compute	it	if	\(n\)	is	big).

Here's	how	point	addition	looks	like	graphically.

There	exists	a	special	point	called	the	"point	at	infinity"	(\(O\)),	the	equivalent	of	zero	in	point
arithmetic;	it's	always	the	case	that	\(P	+	O	=	P\).	Also,	a	curve	has	an	"order";	there	exists	a	number
\(n\)	such	that	\(P	\cdot	n	=	O\)	for	any	\(P\)	(and	of	course,	\(P	\cdot	(n+1)	=	P,	P	\cdot	(7	\cdot	n	+	5)
=	P	\cdot	5\),	and	so	on).	There	is	also	some	commonly	agreed	upon	"generator	point"	\(G\),	which	is
understood	to	in	some	sense	represent	the	number	\(1\).	Theoretically,	any	point	on	a	curve	(except	\
(O\))	can	be	\(G\);	all	that	matters	is	that	\(G\)	is	standardized.
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Pairings	go	a	step	further	in	that	they	allow	you	to	check	certain	kinds	of	more	complicated
equations	on	elliptic	curve	points	—	for	example,	if	\(P	=	G	\cdot	p,	Q	=	G	\cdot	q\)	and	\(R	=	G	\cdot
r\),	you	can	check	whether	or	not	\(p	\cdot	q	=	r\),	having	just	\(P,	Q\)	and	\(R\)	as	inputs.	This	might
seem	like	the	fundamental	security	guarantees	of	elliptic	curves	are	being	broken,	as	information
about	\(p\)	is	leaking	from	just	knowing	P,	but	it	turns	out	that	the	leakage	is	highly	contained	—
specifically,	the	decisional	Diffie	Hellman	problem	is	easy,	but	the	computational	Diffie	Hellman
problem	(knowing	\(P\)	and	\(Q\)	in	the	above	example,	computing	\(R	=	G	\cdot	p	\cdot	q\))	and	the
discrete	logarithm	problem	(recovering	\(p\)	from	\(P\))	remain	computationally	infeasible	(at	least,	if
they	were	before).

A	third	way	to	look	at	what	pairings	do,	and	one	that	is	perhaps	most	illuminating	for	most	of	the	use
cases	that	we	are	about,	is	that	if	you	view	elliptic	curve	points	as	one-way	encrypted	numbers	(that
is,	\(encrypt(p)	=	p	\cdot	G	=	P\)),	then	whereas	traditional	elliptic	curve	math	lets	you	check	linear
constraints	on	the	numbers	(eg.	if	\(P	=	G	\cdot	p,	Q	=	G	\cdot	q\)	and	\(R	=	G	\cdot	r\),	checking	\(5
\cdot	P	+	7	\cdot	Q	=	11	\cdot	R\)	is	really	checking	that	\(5	\cdot	p	+	7	\cdot	q	=	11	\cdot	r\)),
pairings	let	you	check	quadratic	constraints	(eg.	checking	\(e(P,	Q)	\cdot	e(G,	G	\cdot	5)	=	1\)	is	really
checking	that	\(p	\cdot	q	+	5	=	0\)).	And	going	up	to	quadratic	is	enough	to	let	us	work	with
deterministic	threshold	signatures,	quadratic	arithmetic	programs	and	all	that	other	good	stuff.

Now,	what	is	this	funny	\(e(P,	Q)\)	operator	that	we	introduced	above?	This	is	the	pairing.
Mathematicians	also	sometimes	call	it	a	bilinear	map;	the	word	"bilinear"	here	basically	means	that	it
satisfies	the	constraints:

\(e(P,	Q	+	R)	=	e(P,	Q)	\cdot	e(P,	R)\)

\(e(P	+	S,	Q)	=	e(P,	Q)	\cdot	e(S,	Q)\)

Note	that	\(+\)	and	\(\cdot\)	can	be	arbitrary	operators;	when	you're	creating	fancy	new	kinds	of
mathematical	objects,	abstract	algebra	doesn't	care	how	\(+\)	and	\(\cdot\)	are	defined,	as	long	as
they	are	consistent	in	the	usual	ways,	eg.	\(a	+	b	=	b	+	a,	(a	\cdot	b)	\cdot	c	=	a	\cdot	(b	\cdot	c)\)	and
\((a	\cdot	c)	+	(b	\cdot	c)	=	(a	+	b)	\cdot	c\).

If	\(P\),	\(Q\),	\(R\)	and	\(S\)	were	simple	numbers,	then	making	a	simple	pairing	is	easy:	we	can	do	\
(e(x,	y)	=	2^{xy}\).	Then,	we	can	see:

\(e(3,	4+	5)	=	2^{3	\cdot	9}	=	2^{27}\)

\(e(3,	4)	\cdot	e(3,	5)	=	2^{3	\cdot	4}	\cdot	2^{3	\cdot	5}	=	2^{12}	\cdot	2^{15}	=	2^{27}\)

It's	bilinear!

However,	such	simple	pairings	are	not	suitable	for	cryptography	because	the	objects	that	they	work
on	are	simple	integers	and	are	too	easy	to	analyze;	integers	make	it	easy	to	divide,	compute
logarithms,	and	make	various	other	computations;	simple	integers	have	no	concept	of	a	"public	key"
or	a	"one-way	function".	Additionally,	with	the	pairing	described	above	you	can	go	backwards	-
knowing	\(x\),	and	knowing	\(e(x,	y)\),	you	can	simply	compute	a	division	and	a	logarithm	to
determine	\(y\).	We	want	mathematical	objects	that	are	as	close	as	possible	to	"black	boxes",	where
you	can	add,	subtract,	multiply	and	divide,	but	do	nothing	else.	This	is	where	elliptic	curves	and
elliptic	curve	pairings	come	in.

It	turns	out	that	it	is	possible	to	make	a	bilinear	map	over	elliptic	curve	points	—	that	is,	come	up
with	a	function	\(e(P,	Q)\)	where	the	inputs	\(P\)	and	\(Q\)	are	elliptic	curve	points,	and	where	the
output	is	what's	called	an	\((F_p)^{12}\)	element	(at	least	in	the	specific	case	we	will	cover	here;	the
specifics	differ	depending	on	the	details	of	the	curve,	more	on	this	later),	but	the	math	behind	doing
so	is	quite	complex.

First,	let's	cover	prime	fields	and	extension	fields.	The	pretty	elliptic	curve	in	the	picture	earlier	in
this	post	only	looks	that	way	if	you	assume	that	the	curve	equation	is	defined	using	regular	real
numbers.	However,	if	we	actually	use	regular	real	numbers	in	cryptography,	then	you	can	use
logarithms	to	"go	backwards",	and	everything	breaks;	additionally,	the	amount	of	space	needed	to
actually	store	and	represent	the	numbers	may	grow	arbitrarily.	Hence,	we	instead	use	numbers	in	a
prime	field.

A	prime	field	consists	of	the	set	of	numbers	\(0,	1,	2...	p-1\),	where	\(p\)	is	prime,	and	the	various
operations	are	defined	as	follows:

\(a	+	b:	(a	+	b)\)	%	\(p\)

\(a	\cdot	b:	(a	\cdot	b)\)	%	\(p\)

https://en.wikipedia.org/wiki/Decisional_Diffie%E2%80%93Hellman_assumption
https://en.wikipedia.org/wiki/Discrete_logarithm


\(a	-	b:	(a	-	b)\)	%	\(p\)

\(a	/	b:	(a	\cdot	b^{p-2})\)	%	\(p\)

Basically,	all	math	is	done	modulo	\(p\)	(see	here	for	an	introduction	to	modular	math).	Division	is	a
special	case;	normally,	\(\frac{3}{2}\)	is	not	an	integer,	and	here	we	want	to	deal	only	with	integers,
so	we	instead	try	to	find	the	number	\(x\)	such	that	\(x	\cdot	2	=	3\),	where	\(\cdot\)	of	course	refers
to	modular	multiplication	as	defined	above.	Thanks	to	Fermat's	little	theorem,	the	exponentiation
trick	shown	above	does	the	job,	but	there	is	also	a	faster	way	to	do	it,	using	the	Extended	Euclidean
Algorithm.	Suppose	\(p	=	7\);	here	are	a	few	examples:

\(2	+	3	=	5\)	%	\(7	=	5\)

\(4	+	6	=	10\)	%	\(7	=	3\)

\(2	-	5	=	-3\)	%	\(7	=	4\)

\(6	\cdot	3	=	18\)	%	\(7	=	4\)

\(3	/	2	=	(3	\cdot	2^5)\)	%	\(7	=	5\)

\(5	\cdot	2	=	10\)	%	\(7	=	3\)

If	you	play	around	with	this	kind	of	math,	you'll	notice	that	it's	perfectly	consistent	and	satisfies	all	of
the	usual	rules.	The	last	two	examples	above	show	how	\((a	/	b)	\cdot	b	=	a\);	you	can	also	see	that	\
((a	+	b)	+	c	=	a	+	(b	+	c),	(a	+	b)	\cdot	c	=	a	\cdot	c	+	b	\cdot	c\),	and	all	the	other	high	school
algebraic	identities	you	know	and	love	continue	to	hold	true	as	well.	In	elliptic	curves	in	reality,	the
points	and	equations	are	usually	computed	in	prime	fields.

Now,	let's	talk	about	extension	fields.	You	have	probably	already	seen	an	extension	field	before;	the
most	common	example	that	you	encounter	in	math	textbooks	is	the	field	of	complex	numbers,	where
the	field	of	real	numbers	is	"extended"	with	the	additional	element	\(\sqrt{-1}	=	i\).	Basically,
extension	fields	work	by	taking	an	existing	field,	then	"inventing"	a	new	element	and	defining	the
relationship	between	that	element	and	existing	elements	(in	this	case,	\(i^2	+	1	=	0\)),	making	sure
that	this	equation	does	not	hold	true	for	any	number	that	is	in	the	original	field,	and	looking	at	the
set	of	all	linear	combinations	of	elements	of	the	original	field	and	the	new	element	that	you	have	just
created.

We	can	do	extensions	of	prime	fields	too;	for	example,	we	can	extend	the	prime	field	\(\bmod	7\)	that
we	described	above	with	\(i\),	and	then	we	can	do:

\((2	+	3i)	+	(4	+	2i)	=	6	+	5i\)

\((5	+	2i)	+	3	=	1	+	2i\)

\((6	+	2i)	\cdot	2	=	5	+	4i\)

\(4i	\cdot	(2	+	i)	=	3	+	i\)

That	last	result	may	be	a	bit	hard	to	figure	out;	what	happened	there	was	that	we	first	decompose
the	product	into	\(4i	\cdot	2	+	4i	\cdot	i\),	which	gives	\(8i	-	4\),	and	then	because	we	are	working	in	\
(\bmod	7\)	math	that	becomes	\(i	+	3\).	To	divide,	we	do:

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic
https://en.wikipedia.org/wiki/Fermat's_little_theorem
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm


\(a	/	b:	(a	\cdot	b^{(p^2-2)})\)	%	\(p\)

Note	that	the	exponent	for	Fermat's	little	theorem	is	now	\(p^2\)	instead	of	\(p\),	though	once	again	if
we	want	to	be	more	efficient	we	can	also	instead	extend	the	Extended	Euclidean	Algorithm	to	do	the
job.	Note	that	\(x^{p^2	-	1}	=	1\)	for	any	\(x\)	in	this	field,	so	we	call	\(p^2	-	1\)	the	"order	of	the
multiplicative	group	in	the	field".

With	real	numbers,	the	Fundamental	Theorem	of	Algebra	ensures	that	the	quadratic	extension	that
we	call	the	complex	numbers	is	"complete"	—	you	cannot	extend	it	further,	because	for	any
mathematical	relationship	(at	least,	any	mathematical	relationship	defined	by	an	algebraic	formula)
that	you	can	come	up	with	between	some	new	element	\(j\)	and	the	existing	complex	numbers,	it's
possible	to	come	up	with	at	least	one	complex	number	that	already	satisfies	that	relationship.	With
prime	fields,	however,	we	do	not	have	this	issue,	and	so	we	can	go	further	and	make	cubic	extensions
(where	the	mathematical	relationship	between	some	new	element	\(w\)	and	existing	field	elements	is
a	cubic	equation,	so	\(1,	w\)	and	\(w^2\)	are	all	linearly	independent	of	each	other),	higher-order
extensions,	extensions	of	extensions,	etc.	And	it	is	these	kinds	of	supercharged	modular	complex
numbers	that	elliptic	curve	pairings	are	built	on.

For	those	interested	in	seeing	the	exact	math	involved	in	making	all	of	these	operations	written	out
in	code,	prime	fields	and	field	extensions	are	implemented	here:
https://github.com/ethereum/py_pairing/blob/master/py_ecc/bn128/bn128_field_elements.py

Now,	on	to	elliptic	curve	pairings.	An	elliptic	curve	pairing	(or	rather,	the	specific	form	of	pairing
we'll	explore	here;	there	are	also	other	types	of	pairings,	though	their	logic	is	fairly	similar)	is	a	map
\(G_2	\times	G_1	\rightarrow	G_t\),	where:

\(\bf	G_1\)	is	an	elliptic	curve,	where	points	satisfy	an	equation	of	the	form	\(y^2	=	x^3	+	b\),
and	where	both	coordinates	are	elements	of	\(F_p\)	(ie.	they	are	simple	numbers,	except
arithmetic	is	all	done	modulo	some	prime	number)

\(\bf	G_2\)	is	an	elliptic	curve,	where	points	satisfy	the	same	equation	as	\(G_1\),	except	where
the	coordinates	are	elements	of	\((F_p)^{12}\)	(ie.	they	are	the	supercharged	complex	numbers
we	talked	about	above;	we	define	a	new	"magic	number"	\(w\),	which	is	defined	by	a	\(12\)th
degree	polynomial	like	\(w^{12}	-	18	\cdot	w^6	+	82	=	0\))

\(\bf	G_t\)	is	the	type	of	object	that	the	result	of	the	elliptic	curve	goes	into.	In	the	curves	that	we
look	at,	\(G_t\)	is	\(\bf	(F_p)^{12}\)	(the	same	supercharged	complex	number	as	used	in	\(G_2\))

The	main	property	that	it	must	satisfy	is	bilinearity,	which	in	this	context	means	that:

\(e(P,	Q	+	R)	=	e(P,	Q)	\cdot	e(P,	R)\)

\(e(P	+	Q,	R)	=	e(P,	R)	\cdot	e(Q,	R)\)

There	are	two	other	important	criteria:

Efficient	computability	(eg.	we	can	make	an	easy	pairing	by	simply	taking	the	discrete
logarithms	of	all	points	and	multiplying	them	together,	but	this	is	as	computationally	hard	as
breaking	elliptic	curve	cryptography	in	the	first	place,	so	it	doesn't	count)

Non-degeneracy	(sure,	you	could	just	define	\(e(P,	Q)	=	1\),	but	that's	not	a	particularly	useful
pairing)

So	how	do	we	do	this?

The	math	behind	why	pairing	functions	work	is	quite	tricky	and	involves	quite	a	bit	of	advanced
algebra	going	even	beyond	what	we've	seen	so	far,	but	I'll	provide	an	outline.	First	of	all,	we	need	to
define	the	concept	of	a	divisor,	basically	an	alternative	way	of	representing	functions	on	elliptic
curve	points.	A	divisor	of	a	function	basically	counts	the	zeroes	and	the	infinities	of	the	function.	To
see	what	this	means,	let's	go	through	a	few	examples.	Let	us	fix	some	point	\(P	=	(P_x,	P_y)\),	and
consider	the	following	function:

\(f(x,	y)	=	x	-	P_x\)

The	divisor	is	\([P]	+	[-P]	-	2	\cdot	[O]\)	(the	square	brackets	are	used	to	represent	the	fact	that	we
are	referring	to	the	presence	of	the	point	\(P\)	in	the	set	of	zeroes	and	infinities	of	the	function,	not
the	point	P	itself;	\([P]	+	[Q]\)	is	not	the	same	thing	as	\([P	+	Q]\)).	The	reasoning	is	as	follows:

The	function	is	equal	to	zero	at	\(P\),	since	\(x\)	is	\(P_x\),	so	\(x	-	P_x	=	0\)

https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
https://github.com/ethereum/py_pairing/blob/master/py_ecc/bn128/bn128_field_elements.py


The	function	is	equal	to	zero	at	\(-P\),	since	\(-P\)	and	\(P\)	share	the	same	\(x\)	coordinate

The	function	goes	to	infinity	as	\(x\)	goes	to	infinity,	so	we	say	the	function	is	equal	to	infinity	at
\(O\).	There's	a	technical	reason	why	this	infinity	needs	to	be	counted	twice,	so	\(O\)	gets	added
with	a	"multiplicity"	of	\(-2\)	(negative	because	it's	an	infinity	and	not	a	zero,	two	because	of	this
double	counting).

The	technical	reason	is	roughly	this:	because	the	equation	of	the	curve	is	\(x^3	=	y^2	+	b,	y\)	goes	to
infinity	"\(1.5\)	times	faster"	than	\(x\)	does	in	order	for	\(y^2\)	to	keep	up	with	\(x^3\);	hence,	if	a
linear	function	includes	only	\(x\)	then	it	is	represented	as	an	infinity	of	multiplicity	\(2\),	but	if	it
includes	\(y\)	then	it	is	represented	as	an	infinity	of	multiplicity	\(3\).

Now,	consider	a	"line	function":

\(ax	+	by	+	c	=	0\)

Where	\(a\),	\(b\)	and	\(c\)	are	carefully	chosen	so	that	the	line	passes	through	points	\(P\)	and	\(Q\).
Because	of	how	elliptic	curve	addition	works	(see	the	diagram	at	the	top),	this	also	means	that	it
passes	through	\(-P-Q\).	And	it	goes	up	to	infinity	dependent	on	both	\(x\)	and	\(y\),	so	the	divisor
becomes	\([P]+	[Q]	+	[-P-Q]	-	3	\cdot	[O]\).

We	know	that	every	"rational	function"	(ie.	a	function	defined	only	using	a	finite	number	of	\(+,	-,
\cdot\)	and	\(/\)	operations	on	the	coordinates	of	the	point)	uniquely	corresponds	to	some	divisor,	up
to	multiplication	by	a	constant	(ie.	if	two	functions	\(F\)	and	\(G\)	have	the	same	divisor,	then	\(F	=	G
\cdot	k\)	for	some	constant	\(k\)).

For	any	two	functions	\(F\)	and	\(G\),	the	divisor	of	\(F	\cdot	G\)	is	equal	to	the	divisor	of	\(F\)	plus	the
divisor	of	\(G\)	(in	math	textbooks,	you'll	see	\((F	\cdot	G)	=	(F)	+	(G)\)),	so	for	example	if	\(f(x,	y)	=
P_x	-	x\),	then	\((f^3)	=	3	\cdot	[P]	+	3	\cdot	[-P]	-	6	\cdot	[O]\);	\(P\)	and	\(-P\)	are	"triple-counted"	to
account	for	the	fact	that	\(f^3\)	approaches	\(0\)	at	those	points	"three	times	as	quickly"	in	a	certain
mathematical	sense.

Note	that	there	is	a	theorem	that	states	that	if	you	"remove	the	square	brackets"	from	a	divisor	of	a
function,	the	points	must	add	up	to	\(O	([P]	+	[Q]	+	[-P-Q]	-	3	\cdot	[O]\)	clearly	fits,	as	\(P	+	Q	-	P	-	Q
-	3	\cdot	O	=	O)\),	and	any	divisor	that	has	this	property	is	the	divisor	of	a	function.

Now,	we're	ready	to	look	at	Tate	pairings.	Consider	the	following	functions,	defined	via	their	divisors:

\((F_P)	=	n	\cdot	[P]	-	n	\cdot	[O]\),	where	\(n\)	is	the	order	of	\(G_1\),	ie.	\(n	\cdot	P	=	O\)	for	any
\(P\)

\((F_Q)	=	n	\cdot	[Q]	-	n	\cdot	[O]\)



\((g)	=	[P	+	Q]	-	[P]	-	[Q]	+	[O]\)

Now,	let's	look	at	the	product	\(F_P	\cdot	F_Q	\cdot	g^n\).	The	divisor	is:

\(n	\cdot	[P]	-	n	\cdot	[O]	+	n	\cdot	[Q]	-	n	\cdot	[O]	+	n	\cdot	[P	+	Q]	-	n	\cdot	[P]	-	n	\cdot	[Q]	+	n
\cdot	[O]\)

Which	simplifies	neatly	to:

\(n	\cdot	[P	+	Q]	-	n	\cdot	[O]\)

Notice	that	this	divisor	is	of	exactly	the	same	format	as	the	divisor	for	\(F_P\)	and	\(F_Q\)	above.
Hence,	\(F_P	\cdot	F_Q	\cdot	g^n	=	F_{P	+	Q}\).

Now,	we	introduce	a	procedure	called	the	"final	exponentiation"	step,	where	we	take	the	result	of	our
functions	above	(\(F_P,	F_Q\),	etc.)	and	raise	it	to	the	power	\(z	=	(p^{12}	-	1)	/	n\),	where	\(p^{12}	-
1\)	is	the	order	of	the	multiplicative	group	in	\((F_p)^{12}\)	(ie.	for	any	\(x	\in	(F_p)^{12},
x^{(p^{12}	-	1)}	=	1\)).	Notice	that	if	you	apply	this	exponentiation	to	any	result	that	has	already
been	raised	to	the	power	of	\(n\),	you	get	an	exponentiation	to	the	power	of	\(p^{12}	-	1\),	so	the
result	turns	into	\(1\).	Hence,	after	final	exponentiation,	\(g^n\)	cancels	out	and	we	get	\(F_P^z	\cdot
F_Q^z	=	(F_{P	+	Q})^z\).	There's	some	bilinearity	for	you.

Now,	if	you	want	to	make	a	function	that's	bilinear	in	both	arguments,	you	need	to	go	into	spookier
math,	where	instead	of	taking	\(F_P\)	of	a	value	directly,	you	take	\(F_P\)	of	a	divisor,	and	that's
where	the	full	"Tate	pairing"	comes	from.	To	prove	some	more	results	you	have	to	deal	with	notions
like	"linear	equivalence"	and	"Weil	reciprocity",	and	the	rabbit	hole	goes	on	from	there.	You	can	find
more	reading	material	on	all	of	this	here	and	here.

For	an	implementation	of	a	modified	version	of	the	Tate	pairing,	called	the	optimal	Ate	paring,	see
here.	The	code	implements	Miller's	algorithm,	which	is	needed	to	actually	compute	\(F_P\).

Note	that	the	fact	pairings	like	this	are	possible	is	somewhat	of	a	mixed	blessing:	on	the	one	hand,	it
means	that	all	the	protocols	we	can	do	with	pairings	become	possible,	but	is	also	means	that	we	have
to	be	more	careful	about	what	elliptic	curves	we	use.

Every	elliptic	curve	has	a	value	called	an	embedding	degree;	essentially,	the	smallest	\(k\)	such	that	\
(p^k	-	1\)	is	a	multiple	of	\(n\)	(where	\(p\)	is	the	prime	used	for	the	field	and	\(n\)	is	the	curve	order).
In	the	fields	above,	\(k	=	12\),	and	in	the	fields	used	for	traditional	ECC	(ie.	where	we	don't	care
about	pairings),	the	embedding	degree	is	often	extremely	large,	to	the	point	that	pairings	are
computationally	infeasible	to	compute;	however,	if	we	are	not	careful	then	we	can	generate	fields
where	\(k	=	4\)	or	even	\(1\).

If	\(k	=	1\),	then	the	"discrete	logarithm"	problem	for	elliptic	curves	(essentially,	recovering	\(p\)
knowing	only	the	point	\(P	=	G	\cdot	p\),	the	problem	that	you	have	to	solve	to	"crack"	an	elliptic
curve	private	key)	can	be	reduced	into	a	similar	math	problem	over	\(F_p\),	where	the	problem
becomes	much	easier	(this	is	called	the	MOV	attack);	using	curves	with	an	embedding	degree	of	\
(12\)	or	higher	ensures	that	this	reduction	is	either	unavailable,	or	that	solving	the	discrete	log
problem	over	pairing	results	is	at	least	as	hard	as	recovering	a	private	key	from	a	public	key	"the
normal	way"	(ie.	computationally	infeasible).	Do	not	worry;	all	standard	curve	parameters	have	been
thoroughly	checked	for	this	issue.

Stay	tuned	for	a	mathematical	explanation	of	how	zk-SNARKs	work,	coming	soon.

Special	thanks	to	Christian	Reitwiessner,	Ariel	Gabizon	(from	Zcash)	and	Alfred	Menezes	for
reviewing	and	making	corrections.
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https://github.com/ethereum/py_pairing/blob/master/py_ecc/bn128/bn128_pairing.py
https://crypto.stanford.edu/pbc/notes/ep/miller.html
https://crypto.stanford.edu/pbc/notes/elliptic/movattack.html
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[Mirror]	A	Proof	of	Stake	Design	Philosophy

This	is	a	mirror	of	the	post	at	https://medium.com/@VitalikButerin/a-proof-of-stake-design-
philosophy-506585978d51

Systems	like	Ethereum	(and	Bitcoin,	and	NXT,	and	Bitshares,	etc)	are	a	fundamentally	new	class	of
cryptoeconomic	organisms	—	decentralized,	jurisdictionless	entities	that	exist	entirely	in	cyberspace,
maintained	by	a	combination	of	cryptography,	economics	and	social	consensus.	They	are	kind	of	like
BitTorrent,	but	they	are	also	not	like	BitTorrent,	as	BitTorrent	has	no	concept	of	state	—	a	distinction
that	turns	out	to	be	crucially	important.	They	are	sometimes	described	as	decentralized	autonomous
corporations,	but	they	are	also	not	quite	corporations	—	you	can't	hard	fork	Microsoft.	They	are	kind
of	like	open	source	software	projects,	but	they	are	not	quite	that	either	—	you	can	fork	a	blockchain,
but	not	quite	as	easily	as	you	can	fork	OpenOffice.

These	cryptoeconomic	networks	come	in	many	flavors	—	ASIC-based	PoW,	GPU-based	PoW,	naive
PoS,	delegated	PoS,	hopefully	soon	Casper	PoS	—	and	each	of	these	flavors	inevitably	comes	with	its
own	underlying	philosophy.	One	well-known	example	is	the	maximalist	vision	of	proof	of	work,	where
"the"	correct	blockchain,	singular,	is	defined	as	the	chain	that	miners	have	burned	the	largest
amount	of	economic	capital	to	create.	Originally	a	mere	in-protocol	fork	choice	rule,	this	mechanism
has	in	many	cases	been	elevated	to	a	sacred	tenet	—	see	this	Twitter	discussion	between	myself	and
Chris	DeRose	for	an	example	of	someone	seriously	trying	to	defend	the	idea	in	a	pure	form,	even	in
the	face	of	hash-algorithm-changing	protocol	hard	forks.	Bitshares'	delegated	proof	of	stake	presents
another	coherent	philosophy,	where	everything	once	again	flows	from	a	single	tenet,	but	one	that	can
be	described	even	more	simply:	shareholders	vote.

Each	of	these	philosophies;	Nakamoto	consensus,	social	consensus,	shareholder	voting	consensus,
leads	to	its	own	set	of	conclusions	and	leads	to	a	system	of	values	that	makes	quite	a	bit	of	sense
when	viewed	on	its	own	terms	—	though	they	can	certainly	be	criticized	when	compared	against	each
other.	Casper	consensus	has	a	philosophical	underpinning	too,	though	one	that	has	so	far	not	been	as
succinctly	articulated.

Myself,	Vlad,	Dominic,	Jae	and	others	all	have	their	own	views	on	why	proof	of	stake	protocols	exist
and	how	to	design	them,	but	here	I	intend	to	explain	where	I	personally	am	coming	from.

I'll	proceed	to	listing	observations	and	then	conclusions	directly.

Cryptography	is	truly	special	in	the	21st	century	because	cryptography	is	one	of	the	very	few
fields	where	adversarial	conflict	continues	to	heavily	favor	the	defender.	Castles	are	far
easier	to	destroy	than	build,	islands	are	defendable	but	can	still	be	attacked,	but	an	average
person's	ECC	keys	are	secure	enough	to	resist	even	state-level	actors.	Cypherpunk	philosophy	is
fundamentally	about	leveraging	this	precious	asymmetry	to	create	a	world	that	better	preserves
the	autonomy	of	the	individual,	and	cryptoeconomics	is	to	some	extent	an	extension	of	that,
except	this	time	protecting	the	safety	and	liveness	of	complex	systems	of	coordination	and
collaboration,	rather	than	simply	the	integrity	and	confidentiality	of	private	messages.	Systems
that	consider	themselves	ideological	heirs	to	the	cypherpunk	spirit	should	maintain
this	basic	property,	and	be	much	more	expensive	to	destroy	or	disrupt	than	they	are	to
use	and	maintain.

The	"cypherpunk	spirit"	isn't	just	about	idealism;	making	systems	that	are	easier	to	defend	than
they	are	to	attack	is	also	simply	sound	engineering.

On	medium	to	long	time	scales,	humans	are	quite	good	at	consensus.	Even	if	an
adversary	had	access	to	unlimited	hashing	power,	and	came	out	with	a	51%	attack	of	any	major
blockchain	that	reverted	even	the	last	month	of	history,	convincing	the	community	that	this
chain	is	legitimate	is	much	harder	than	just	outrunning	the	main	chain's	hashpower.	They	would
need	to	subvert	block	explorers,	every	trusted	member	in	the	community,	the	New	York	Times,
archive.org,	and	many	other	sources	on	the	internet;	all	in	all,	convincing	the	world	that	the	new
attack	chain	is	the	one	that	came	first	in	the	information	technology-dense	21st	century	is	about
as	hard	as	convincing	the	world	that	the	US	moon	landings	never	happened.	These	social
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considerations	are	what	ultimately	protect	any	blockchain	in	the	long	term,	regardless
of	whether	or	not	the	blockchain's	community	admits	it	(note	that	Bitcoin	Core	does	admit	this
primacy	of	the	social	layer).

However,	a	blockchain	protected	by	social	consensus	alone	would	be	far	too	inefficient	and
slow,	and	too	easy	for	disagreements	to	continue	without	end	(though	despite	all	difficulties,	it
has	happened);	hence,	economic	consensus	serves	an	extremely	important	role	in
protecting	liveness	and	safety	properties	in	the	short	term.

Because	proof	of	work	security	can	only	come	from	block	rewards	(in	Dominic	Williams'	terms,
it	lacks	two	of	the	three	Es),	and	incentives	to	miners	can	only	come	from	the	risk	of	them	losing
their	future	block	rewards,	proof	of	work	necessarily	operates	on	a	logic	of	massive	power
incentivized	into	existence	by	massive	rewards.	Recovery	from	attacks	in	PoW	is	very	hard:
the	first	time	it	happens,	you	can	hard	fork	to	change	the	PoW	and	thereby	render	the	attacker's
ASICs	useless,	but	the	second	time	you	no	longer	have	that	option,	and	so	the	attacker	can
attack	again	and	again.	Hence,	the	size	of	the	mining	network	has	to	be	so	large	that	attacks	are
inconceivable.	Attackers	of	size	less	than	X	are	discouraged	from	appearing	by	having	the
network	constantly	spend	X	every	single	day.	I	reject	this	logic	because	(i)	it	kills	trees,
and	(ii)	it	fails	to	realize	the	cypherpunk	spirit	—	cost	of	attack	and	cost	of	defense	are
at	a	1:1	ratio,	so	there	is	no	defender's	advantage.

Proof	of	stake	breaks	this	symmetry	by	relying	not	on	rewards	for	security,	but	rather
penalties.	Validators	put	money	("deposits")	at	stake,	are	rewarded	slightly	to	compensate
them	for	locking	up	their	capital	and	maintaining	nodes	and	taking	extra	precaution	to	ensure
their	private	key	safety,	but	the	bulk	of	the	cost	of	reverting	transactions	comes	from	penalties
that	are	hundreds	or	thousands	of	times	larger	than	the	rewards	that	they	got	in	the	meantime.
The	"one-sentence	philosophy"	of	proof	of	stake	is	thus	not	"security	comes	from
burning	energy",	but	rather	"security	comes	from	putting	up	economic	value-at-loss".	A
given	block	or	state	has	$X	security	if	you	can	prove	that	achieving	an	equal	level	of	finalization
for	any	conflicting	block	or	state	cannot	be	accomplished	unless	malicious	nodes	complicit	in	an
attempt	to	make	the	switch	pay	$X	worth	of	in-protocol	penalties.

Theoretically,	a	majority	collusion	of	validators	may	take	over	a	proof	of	stake	chain,	and	start
acting	maliciously.	However,	(i)	through	clever	protocol	design,	their	ability	to	earn	extra	profits
through	such	manipulation	can	be	limited	as	much	as	possible,	and	more	importantly	(ii)	if	they
try	to	prevent	new	validators	from	joining,	or	execute	51%	attacks,	then	the	community	can
simply	coordinate	a	hard	fork	and	delete	the	offending	validators'	deposits.	A	successful
attack	may	cost	$50	million,	but	the	process	of	cleaning	up	the	consequences	will	not
be	that	much	more	onerous	than	the	geth/parity	consensus	failure	of	2016.11.25.	Two
days	later,	the	blockchain	and	community	are	back	on	track,	attackers	are	$50	million	poorer,
and	the	rest	of	the	community	is	likely	richer	since	the	attack	will	have	caused	the	value	of	the
token	to	go	up	due	to	the	ensuing	supply	crunch.	That's	attack/defense	asymmetry	for	you.

The	above	should	not	be	taken	to	mean	that	unscheduled	hard	forks	will	become	a	regular
occurrence;	if	desired,	the	cost	of	a	single	51%	attack	on	proof	of	stake	can	certainly	be	set	to
be	as	high	as	the	cost	of	a	permanent	51%	attack	on	proof	of	work,	and	the	sheer	cost	and
ineffectiveness	of	an	attack	should	ensure	that	it	is	almost	never	attempted	in	practice.

Economics	is	not	everything.	Individual	actors	may	be	motivated	by	extra-protocol	motives,
they	may	get	hacked,	they	may	get	kidnapped,	or	they	may	simply	get	drunk	and	decide	to
wreck	the	blockchain	one	day	and	to	hell	with	the	cost.	Furthermore,	on	the	bright	side,
individuals'	moral	forbearances	and	communication	inefficiencies	will	often	raise	the
cost	of	an	attack	to	levels	much	higher	than	the	nominal	protocol-defined	value-at-loss.
This	is	an	advantage	that	we	cannot	rely	on,	but	at	the	same	time	it	is	an	advantage	that	we
should	not	needlessly	throw	away.

Hence,	the	best	protocols	are	protocols	that	work	well	under	a	variety	of	models	and
assumptions	—	economic	rationality	with	coordinated	choice,	economic	rationality	with
individual	choice,	simple	fault	tolerance,	Byzantine	fault	tolerance	(ideally	both	the	adaptive	and
non-adaptive	adversary	variants),	Ariely/Kahneman-inspired	behavioral	economic	models	("we
all	cheat	just	a	little")	and	ideally	any	other	model	that's	realistic	and	practical	to	reason	about.
It	is	important	to	have	both	layers	of	defense:	economic	incentives	to	discourage
centralized	cartels	from	acting	anti-socially,	and	anti-centralization	incentives	to
discourage	cartels	from	forming	in	the	first	place.

Consensus	protocols	that	work	as-fast-as-possible	have	risks	and	should	be	approached
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very	carefully	if	at	all,	because	if	the	possibility	to	be	very	fast	is	tied	to	incentives	to	do	so,
the	combination	will	reward	very	high	and	systemic-risk-inducing	levels	of	network-level
centralization	(eg.	all	validators	running	from	the	same	hosting	provider).	Consensus	protocols
that	don't	care	too	much	how	fast	a	validator	sends	a	message,	as	long	as	they	do	so	within
some	acceptably	long	time	interval	(eg.	4–8	seconds,	as	we	empirically	know	that	latency	in
ethereum	is	usually	~500ms-1s)	do	not	have	these	concerns.	A	possible	middle	ground	is
creating	protocols	that	can	work	very	quickly,	but	where	mechanics	similar	to	Ethereum's	uncle
mechanism	ensure	that	the	marginal	reward	for	a	node	increasing	its	degree	of	network
connectivity	beyond	some	easily	attainable	point	is	fairly	low.

From	here,	there	are	of	course	many	details	and	many	ways	to	diverge	on	the	details,	but	the	above
are	the	core	principles	that	at	least	my	version	of	Casper	is	based	on.	From	here,	we	can	certainly
debate	tradeoffs	between	competing	values	.	Do	we	give	ETH	a	1%	annual	issuance	rate	and	get	an
$50	million	cost	of	forcing	a	remedial	hard	fork,	or	a	zero	annual	issuance	rate	and	get	a	$5	million
cost	of	forcing	a	remedial	hard	fork?	When	do	we	increase	a	protocol's	security	under	the	economic
model	in	exchange	for	decreasing	its	security	under	a	fault	tolerance	model?	Do	we	care	more	about
having	a	predictable	level	of	security	or	a	predictable	level	of	issuance?	These	are	all	questions	for
another	post,	and	the	various	ways	of	implementing	the	different	tradeoffs	between	these	values	are
questions	for	yet	more	posts.	But	we'll	get	to	it	:)
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[Mirror]	Quadratic	Arithmetic	Programs:
from	Zero	to	Hero

This	is	a	mirror	of	the	post	at	https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-
from-zero-to-hero-f6d558cea649

There	has	been	a	lot	of	interest	lately	in	the	technology	behind	zk-SNARKs,	and	people	are
increasingly	trying	to	demystify	something	that	many	have	come	to	call	"moon	math"	due	to	its
perceived	sheer	indecipherable	complexity.	zk-SNARKs	are	indeed	quite	challenging	to	grasp,
especially	due	to	the	sheer	number	of	moving	parts	that	need	to	come	together	for	the	whole	thing	to
work,	but	if	we	break	the	technology	down	piece	by	piece	then	comprehending	it	becomes	simpler.

The	purpose	of	this	post	is	not	to	serve	as	a	full	introduction	to	zk-SNARKs;	it	assumes	as
background	knowledge	that	(i)	you	know	what	zk-SNARKs	are	and	what	they	do,	and	(ii)	know
enough	math	to	be	able	to	reason	about	things	like	polynomials	(if	the	statement	\(P(x)	+	Q(x)	=	(P	+
Q)(x)\)	,	where	\(P\)	and	\(Q\)	are	polynomials,	seems	natural	and	obvious	to	you,	then	you're	at	the
right	level).	Rather,	the	post	digs	deeper	into	the	machinery	behind	the	technology,	and	tries	to
explain	as	well	as	possible	the	first	half	of	the	pipeline,	as	drawn	by	zk-SNARK	researcher	Eran
Tromer	here:

The	steps	here	can	be	broken	up	into	two	halves.	First,	zk-SNARKs	cannot	be	applied	to	any
computational	problem	directly;	rather,	you	have	to	convert	the	problem	into	the	right	"form"	for	the
problem	to	operate	on.	The	form	is	called	a	"quadratic	arithmetic	program"	(QAP),	and	transforming
the	code	of	a	function	into	one	of	these	is	itself	highly	nontrivial.	Along	with	the	process	for
converting	the	code	of	a	function	into	a	QAP	is	another	process	that	can	be	run	alongside	so	that	if
you	have	an	input	to	the	code	you	can	create	a	corresponding	solution	(sometimes	called	"witness"	to
the	QAP).	After	this,	there	is	another	fairly	intricate	process	for	creating	the	actual	"zero	knowledge
proof"	for	this	witness,	and	a	separate	process	for	verifying	a	proof	that	someone	else	passes	along	to
you,	but	these	are	details	that	are	out	of	scope	for	this	post.

The	example	that	we	will	choose	is	a	simple	one:	proving	that	you	know	the	solution	to	a	cubic
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equation:	\(x^3	+	x	+	5	=	35\)	(hint:	the	answer	is	\(3\)).	This	problem	is	simple	enough	that	the
resulting	QAP	will	not	be	so	large	as	to	be	intimidating,	but	nontrivial	enough	that	you	can	see	all	of
the	machinery	come	into	play.

Let	us	write	out	our	function	as	follows:

def	qeval(x):
				y	=	x**3
				return	x	+	y	+	5

The	simple	special-purpose	programming	language	that	we	are	using	here	supports	basic	arithmetic
(\(+\),	\(-\),	\(\cdot\),	\(/\)),	constant-power	exponentiation	(\(x^7\)	but	not	\(x^y\))	and	variable
assignment,	which	is	powerful	enough	that	you	can	theoretically	do	any	computation	inside	of	it	(as
long	as	the	number	of	computational	steps	is	bounded;	no	loops	allowed).	Note	that	modulo	(%)	and
comparison	operators	(\(<\),	\(>\),	\(\leq\),	\(\geq\))	are	NOT	supported,	as	there	is	no	efficient	way	to
do	modulo	or	comparison	directly	in	finite	cyclic	group	arithmetic	(be	thankful	for	this;	if	there	was	a
way	to	do	either	one,	then	elliptic	curve	cryptography	would	be	broken	faster	than	you	can	say
"binary	search"	and	"Chinese	remainder	theorem").

You	can	extend	the	language	to	modulo	and	comparisons	by	providing	bit	decompositions	(eg.	\(13	=
2^3	+	2^2	+	1\))	as	auxiliary	inputs,	proving	correctness	of	those	decompositions	and	doing	the
math	in	binary	circuits;	in	finite	field	arithmetic,	doing	equality	(==)	checks	is	also	doable	and	in	fact
a	bit	easier,	but	these	are	both	details	we	won't	get	into	right	now.	We	can	extend	the	language	to
support	conditionals	(eg.	if	\(x	<	5:	y	=	7;\)	else:	\(y	=	9\))	by	converting	them	to	an	arithmetic	form:	\
(y	=	7	\cdot	(x	<	5)	+	9	\cdot	(x	\geq	5)\)	though	note	that	both	"paths"	of	the	conditional	would	need
to	be	executed,	and	if	you	have	many	nested	conditionals	then	this	can	lead	to	a	large	amount	of
overhead.

Let	us	now	go	through	this	process	step	by	step.	If	you	want	to	do	this	yourself	for	any	piece	of	code,
I	implemented	a	compiler	here	(for	educational	purposes	only;	not	ready	for	making	QAPs	for	real-
world	zk-SNARKs	quite	yet!).

Flattening
The	first	step	is	a	"flattening"	procedure,	where	we	convert	the	original	code,	which	may	contain
arbitrarily	complex	statements	and	expressions,	into	a	sequence	of	statements	that	are	of	two	forms:
\(x	=	y\)	(where	\(y\)	can	be	a	variable	or	a	number)	and	\(x	=	y\)	\((op)\)	\(z\)	(where	\(op\)	can	be	\
(+\),	\(-\),	\(\cdot\),	\(/\)	and	\(y\)	and	\(z\)	can	be	variables,	numbers	or	themselves	sub-expressions).
You	can	think	of	each	of	these	statements	as	being	kind	of	like	logic	gates	in	a	circuit.	The	result	of
the	flattening	process	for	the	above	code	is	as	follows:

sym_1	=	x	*	x
y	=	sym_1	*	x
sym_2	=	y	+	x
~out	=	sym_2	+	5

If	you	read	the	original	code	and	the	code	here,	you	can	fairly	easily	see	that	the	two	are	equivalent.

Gates	to	R1CS
Now,	we	convert	this	into	something	called	a	rank-1	constraint	system	(R1CS).	An	R1CS	is	a
sequence	of	groups	of	three	vectors	(\(a\),	\(b\),	\(c\)),	and	the	solution	to	an	R1CS	is	a	vector	\(s\),
where	\(s\)	must	satisfy	the	equation	\(s	.	a	\cdot	s	.	b	-	s	.	c	=	0\),	where	\(.\)	represents	the	dot
product	-	in	simpler	terms,	if	we	"zip	together"	\(a\)	and	\(s\),	multiplying	the	two	values	in	the	same
positions,	and	then	take	the	sum	of	these	products,	then	do	the	same	to	\(b\)	and	\(s\)	and	then	\(c\)
and	\(s\),	then	the	third	result	equals	the	product	of	the	first	two	results.	For	example,	this	is	a
satisfied	R1CS:

https://github.com/ethereum/research/tree/master/zksnark


But	instead	of	having	just	one	constraint,	we	are	going	to	have	many	constraints:	one	for	each	logic
gate.	There	is	a	standard	way	of	converting	a	logic	gate	into	a	\((a,	b,	c)\)	triple	depending	on	what
the	operation	is	(\(+\),	\(-\),	\(\cdot\)	or	\(/\))	and	whether	the	arguments	are	variables	or	numbers.
The	length	of	each	vector	is	equal	to	the	total	number	of	variables	in	the	system,	including	a	dummy
variable	~one	at	the	first	index	representing	the	number	\(1\),	the	input	variables,	a	dummy	variable
~out	representing	the	output,	and	then	all	of	the	intermediate	variables	(\(sym_1\)	and	\(sym_2\)
above);	the	vectors	are	generally	going	to	be	very	sparse,	only	filling	in	the	slots	corresponding	to	the
variables	that	are	affected	by	some	particular	logic	gate.

First,	we'll	provide	the	variable	mapping	that	we'll	use:

'~one',	'x',	'~out',	'sym_1',	'y',	'sym_2'

The	solution	vector	will	consist	of	assignments	for	all	of	these	variables,	in	that	order.

Now,	we'll	give	the	\((a,	b,	c)\)	triple	for	the	first	gate:

a	=	[0,	1,	0,	0,	0,	0]
b	=	[0,	1,	0,	0,	0,	0]
c	=	[0,	0,	0,	1,	0,	0]

You	can	see	that	if	the	solution	vector	contains	\(3\)	in	the	second	position,	and	\(9\)	in	the	fourth
position,	then	regardless	of	the	rest	of	the	contents	of	the	solution	vector,	the	dot	product	check	will
boil	down	to	\(3	\cdot	3	=	9\),	and	so	it	will	pass.	If	the	solution	vector	has	\(-3\)	in	the	second	position
and	\(9\)	in	the	fourth	position,	the	check	will	also	pass;	in	fact,	if	the	solution	vector	has	\(7\)	in	the
second	position	and	\(49\)	in	the	fourth	position	then	that	check	will	still	pass	—	the	purpose	of	this
first	check	is	to	verify	the	consistency	of	the	inputs	and	outputs	of	the	first	gate	only.

Now,	let's	go	on	to	the	second	gate:

a	=	[0,	0,	0,	1,	0,	0]
b	=	[0,	1,	0,	0,	0,	0]
c	=	[0,	0,	0,	0,	1,	0]

In	a	similar	style	to	the	first	dot	product	check,	here	we're	checking	that	\(sym_1	\cdot	x	=	y\).

Now,	the	third	gate:

a	=	[0,	1,	0,	0,	1,	0]
b	=	[1,	0,	0,	0,	0,	0]
c	=	[0,	0,	0,	0,	0,	1]

Here,	the	pattern	is	somewhat	different:	it's	multiplying	the	first	element	in	the	solution	vector	by	the
second	element,	then	by	the	fifth	element,	adding	the	two	results,	and	checking	if	the	sum	equals	the
sixth	element.	Because	the	first	element	in	the	solution	vector	is	always	one,	this	is	just	an	addition
check,	checking	that	the	output	equals	the	sum	of	the	two	inputs.



Finally,	the	fourth	gate:

a	=	[5,	0,	0,	0,	0,	1]
b	=	[1,	0,	0,	0,	0,	0]
c	=	[0,	0,	1,	0,	0,	0]

Here,	we're	evaluating	the	last	check,	~out	\(=	sym_2	+	5\).	The	dot	product	check	works	by	taking
the	sixth	element	in	the	solution	vector,	adding	five	times	the	first	element	(reminder:	the	first
element	is	\(1\),	so	this	effectively	means	adding	\(5\)),	and	checking	it	against	the	third	element,
which	is	where	we	store	the	output	variable.

And	there	we	have	our	R1CS	with	four	constraints.	The	witness	is	simply	the	assignment	to	all	the
variables,	including	input,	output	and	internal	variables:

[1,	3,	35,	9,	27,	30]

You	can	compute	this	for	yourself	by	simply	"executing"	the	flattened	code	above,	starting	off	with
the	input	variable	assignment	\(x=3\),	and	putting	in	the	values	of	all	the	intermediate	variables	and
the	output	as	you	compute	them.

The	complete	R1CS	put	together	is:

A
[0,	1,	0,	0,	0,	0]
[0,	0,	0,	1,	0,	0]
[0,	1,	0,	0,	1,	0]
[5,	0,	0,	0,	0,	1]

B
[0,	1,	0,	0,	0,	0]
[0,	1,	0,	0,	0,	0]
[1,	0,	0,	0,	0,	0]
[1,	0,	0,	0,	0,	0]

C
[0,	0,	0,	1,	0,	0]
[0,	0,	0,	0,	1,	0]
[0,	0,	0,	0,	0,	1]
[0,	0,	1,	0,	0,	0]

R1CS	to	QAP
The	next	step	is	taking	this	R1CS	and	converting	it	into	QAP	form,	which	implements	the	exact	same
logic	except	using	polynomials	instead	of	dot	products.	We	do	this	as	follows.	We	go	3from	four
groups	of	three	vectors	of	length	six	to	six	groups	of	three	degree-3	polynomials,	where	evaluating
the	polynomials	at	each	x	coordinate	represents	one	of	the	constraints.	That	is,	if	we	evaluate	the
polynomials	at	\(x=1\),	then	we	get	our	first	set	of	vectors,	if	we	evaluate	the	polynomials	at	\(x=2\),
then	we	get	our	second	set	of	vectors,	and	so	on.

We	can	make	this	transformation	using	something	called	a	Lagrange	interpolation.	The	problem	that
a	Lagrange	interpolation	solves	is	this:	if	you	have	a	set	of	points	(ie.	\((x,	y)\)	coordinate	pairs),	then
doing	a	Lagrange	interpolation	on	those	points	gives	you	a	polynomial	that	passes	through	all	of
those	points.	We	do	this	by	decomposing	the	problem:	for	each	\(x\)	coordinate,	we	create	a
polynomial	that	has	the	desired	\(y\)	coordinate	at	that	\(x\)	coordinate	and	a	\(y\)	coordinate	of	\(0\)
at	all	the	other	\(x\)	coordinates	we	are	interested	in,	and	then	to	get	the	final	result	we	add	all	of	the
polynomials	together.

Let's	do	an	example.	Suppose	that	we	want	a	polynomial	that	passes	through	\((1,	3),	(2,	2)\)	and	\((3,
4)\).	We	start	off	by	making	a	polynomial	that	passes	through	\((1,	3),	(2,	0)\)	and	\((3,	0)\).	As	it	turns
out,	making	a	polynomial	that	"sticks	out"	at	\(x=1\)	and	is	zero	at	the	other	points	of	interest	is	easy;
we	simply	do:

(x	-	2)	*	(x	-	3)

Which	looks	like	this:



Now,	we	just	need	to	"rescale"	it	so	that	the	height	at	x=1	is	right:

(x	-	2)	*	(x	-	3)	*	3	/	((1	-	2)	*	(1	-	3))

This	gives	us:

1.5	*	x**2	-	7.5	*	x	+	9

We	then	do	the	same	with	the	other	two	points,	and	get	two	other	similar-looking	polynomials,	except
that	they	"stick	out"	at	\(x=2\)	and	\(x=3\)	instead	of	\(x=1\).	We	add	all	three	together	and	get:

1.5	*	x**2	-	5.5	*	x	+	7



With	exactly	the	coordinates	that	we	want.	The	algorithm	as	described	above	takes	\(O(n^3)\)	time,
as	there	are	\(n\)	points	and	each	point	requires	\(O(n^2)\)	time	to	multiply	the	polynomials	together;
with	a	little	thinking,	this	can	be	reduced	to	\(O(n^2)\)	time,	and	with	a	lot	more	thinking,	using	fast
Fourier	transform	algorithms	and	the	like,	it	can	be	reduced	even	further	—	a	crucial	optimization
when	functions	that	get	used	in	zk-SNARKs	in	practice	often	have	many	thousands	of	gates.

Now,	let's	use	Lagrange	interpolation	to	transform	our	R1CS.	What	we	are	going	to	do	is	take	the
first	value	out	of	every	\(a\)	vector,	use	Lagrange	interpolation	to	make	a	polynomial	out	of	that
(where	evaluating	the	polynomial	at	\(i\)	gets	you	the	first	value	of	the	\(i\)th	\(a\)	vector),	repeat	the
process	for	the	first	value	of	every	\(b\)	and	\(c\)	vector,	and	then	repeat	that	process	for	the	second
values,	the	third,	values,	and	so	on.	For	convenience	I'll	provide	the	answers	right	now:

A	polynomials
[-5.0,	9.166,	-5.0,	0.833]
[8.0,	-11.333,	5.0,	-0.666]
[0.0,	0.0,	0.0,	0.0]
[-6.0,	9.5,	-4.0,	0.5]
[4.0,	-7.0,	3.5,	-0.5]
[-1.0,	1.833,	-1.0,	0.166]

B	polynomials
[3.0,	-5.166,	2.5,	-0.333]
[-2.0,	5.166,	-2.5,	0.333]
[0.0,	0.0,	0.0,	0.0]
[0.0,	0.0,	0.0,	0.0]
[0.0,	0.0,	0.0,	0.0]
[0.0,	0.0,	0.0,	0.0]

C	polynomials
[0.0,	0.0,	0.0,	0.0]
[0.0,	0.0,	0.0,	0.0]
[-1.0,	1.833,	-1.0,	0.166]
[4.0,	-4.333,	1.5,	-0.166]
[-6.0,	9.5,	-4.0,	0.5]
[4.0,	-7.0,	3.5,	-0.5]

Coefficients	are	in	ascending	order,	so	the	first	polynomial	above	is	actually	\(0.833	\cdot	x^3	—	5
\cdot	x^2	+	9.166	\cdot	x	-	5\).	This	set	of	polynomials	(plus	a	Z	polynomial	that	I	will	explain	later)
makes	up	the	parameters	for	this	particular	QAP	instance.	Note	that	all	of	the	work	up	until	this
point	needs	to	be	done	only	once	for	every	function	that	you	are	trying	to	use	zk-SNARKs	to	verify;
once	the	QAP	parameters	are	generated,	they	can	be	reused.



Let's	try	evaluating	all	of	these	polynomials	at	\(x=1\).	Evaluating	a	polynomial	at	\(x=1\)	simply
means	adding	up	all	the	coefficients	(as	\(1^k	=	1\)	for	all	\(k\)),	so	it's	not	difficult.	We	get:

A	results	at	x=1
0
1
0
0
0
0

B	results	at	x=1
0
1
0
0
0
0

C	results	at	x=1
0
0
0
1
0
0

And	lo	and	behold,	what	we	have	here	is	exactly	the	same	as	the	set	of	three	vectors	for	the	first
logic	gate	that	we	created	above.

Checking	the	QAP
Now	what's	the	point	of	this	crazy	transformation?	The	answer	is	that	instead	of	checking	the
constraints	in	the	R1CS	individually,	we	can	now	check	all	of	the	constraints	at	the	same	time	by
doing	the	dot	product	check	on	the	polynomials.

Because	in	this	case	the	dot	product	check	is	a	series	of	additions	and	multiplications	of	polynomials,
the	result	is	itself	going	to	be	a	polynomial.	If	the	resulting	polynomial,	evaluated	at	every	\(x\)
coordinate	that	we	used	above	to	represent	a	logic	gate,	is	equal	to	zero,	then	that	means	that	all	of
the	checks	pass;	if	the	resulting	polynomial	evaluated	at	at	least	one	of	the	\(x\)	coordinate
representing	a	logic	gate	gives	a	nonzero	value,	then	that	means	that	the	values	going	into	and	out	of
that	logic	gate	are	inconsistent	(ie.	the	gate	is	\(y	=	x	\cdot	sym_1\)	but	the	provided	values	might	be
\(x	=	2,sym_1	=	2\)	and	\(y	=	5\)).

Note	that	the	resulting	polynomial	does	not	itself	have	to	be	zero,	and	in	fact	in	most	cases	won't	be;
it	could	have	any	behavior	at	the	points	that	don't	correspond	to	any	logic	gates,	as	long	as	the	result



is	zero	at	all	the	points	that	do	correspond	to	some	gate.	To	check	correctness,	we	don't	actually
evaluate	the	polynomial	\(t	=	A	.	s	\cdot	B	.	s	-	C	.	s\)	at	every	point	corresponding	to	a	gate;	instead,
we	divide	\(t\)	by	another	polynomial,	\(Z\),	and	check	that	\(Z\)	evenly	divides	\(t\)	-	that	is,	the
division	\(t	/	Z\)	leaves	no	remainder.

\(Z\)	is	defined	as	\((x	-	1)	\cdot	(x	-	2)	\cdot	(x	-	3)	...\)	-	the	simplest	polynomial	that	is	equal	to	zero
at	all	points	that	correspond	to	logic	gates.	It	is	an	elementary	fact	of	algebra	that	any	polynomial
that	is	equal	to	zero	at	all	of	these	points	has	to	be	a	multiple	of	this	minimal	polynomial,	and	if	a
polynomial	is	a	multiple	of	\(Z\)	then	its	evaluation	at	any	of	those	points	will	be	zero;	this
equivalence	makes	our	job	much	easier.

Now,	let's	actually	do	the	dot	product	check	with	the	polynomials	above.	First,	the	intermediate
polynomials:

A	.	s	=	[43.0,	-73.333,	38.5,	-5.166]
B	.	s	=	[-3.0,	10.333,	-5.0,	0.666]
C	.	s	=	[-41.0,	71.666,	-24.5,	2.833]

Now,	\(A	.	s	\cdot	B	.	s	—	C	.	s\):

t	=	[-88.0,	592.666,	-1063.777,	805.833,	-294.777,	51.5,	-3.444]

Now,	the	minimal	polynomial	\(Z	=	(x	-	1)	\cdot	(x	-	2)	\cdot	(x	-	3)	\cdot	(x	-	4)\):

Z	=	[24,	-50,	35,	-10,	1]

And	if	we	divide	the	result	above	by	\(Z\),	we	get:

h	=	t	/	Z	=	[-3.666,	17.055,	-3.444]

With	no	remainder.

And	so	we	have	the	solution	for	the	QAP.	If	we	try	to	falsify	any	of	the	variables	in	the	R1CS	solution
that	we	are	deriving	this	QAP	solution	from	—	say,	set	the	last	one	to	\(31\)	instead	of	\(30\),	then	we
get	a	\(t\)	polynomial	that	fails	one	of	the	checks	(in	that	particular	case,	the	result	at	\(x=3\)	would
equal	\(-1\)	instead	of	\(0\)),	and	furthermore	\(t\)	would	not	be	a	multiple	of	\(Z\);	rather,	dividing	\(t	/
Z\)	would	give	a	remainder	of	\([-5.0,	8.833,	-4.5,	0.666]\).

Note	that	the	above	is	a	simplification;	"in	the	real	world",	the	addition,	multiplication,	subtraction
and	division	will	happen	not	with	regular	numbers,	but	rather	with	finite	field	elements	—	a	spooky
kind	of	arithmetic	which	is	self-consistent,	so	all	the	algebraic	laws	we	know	and	love	still	hold	true,
but	where	all	answers	are	elements	of	some	finite-sized	set,	usually	integers	within	the	range	from	\
(0\)	to	\(n-1\)	for	some	\(n\).	For	example,	if	\(n	=	13\),	then	\(1	/	2	=	7\)	(and	\(7	\cdot	2	=	1),	3	\cdot	5
=	2\),	and	so	forth.	Using	finite	field	arithmetic	removes	the	need	to	worry	about	rounding	errors	and
allows	the	system	to	work	nicely	with	elliptic	curves,	which	end	up	being	necessary	for	the	rest	of	the
zk-SNARK	machinery	that	makes	the	zk-SNARK	protocol	actually	secure.

Special	thanks	to	Eran	Tromer	for	helping	to	explain	many	details	about	the	inner	workings	of	zk-
SNARKs	to	me.


